首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Histidine decarboxylase (HDC) catalyses the formation of histamine from L‐histidine. Histamine is a biogenic amine involved in many physiological and pathological processes, but its role in the regeneration of skeletal muscles has not been thoroughly clarified. Here, using a murine model of hindlimb ischaemia, we show that histamine deficiency in Hdc knockout (Hdc?/?) mice significantly reduces blood perfusion and impairs muscle regeneration. Using Hdc‐EGFP transgenic mice, we demonstrate that HDC is expressed predominately in CD11b+Gr‐1+ myeloid cells but not in skeletal muscles and endothelial cells. Large amounts of HDC‐expressing CD11b+ myeloid cells are rapidly recruited to injured and inflamed muscles. Hdc?/? enhances inflammatory responses and inhibits macrophage differentiation. Mechanically, we demonstrate that histamine deficiency decreases IGF‐1 (insulin‐like growth factor 1) levels and diminishes myoblast proliferation via H3R/PI3K/AKT‐dependent signalling. These results indicate a novel role for HDC‐expressing CD11b+ myeloid cells and histamine in myoblast proliferation and skeletal muscle regeneration.  相似文献   

2.
《Autophagy》2013,9(9):1435-1437
Autophagy impairment has been implicated in several muscle disorders and in age-related dysfunction. Although previous reports pointed to FOXO as a positive regulator of autophagy in skeletal muscle, it remained unclear what is triggering autophagy. We found that TSC muscle knockout (TSCmKO) mice, characterized by specific depletion of TSC1 in skeletal muscle, and thus constant activation of MTORC1, develop a late-onset myopathy marked by the accumulation of autophagic substrates. In those mice, autophagy induction is blocked despite FOXO activation because of constant MTORC1-dependent inhibition of ULK1. Treatment of TSCmKO mice with rapamycin is sufficient to restore autophagy and to alleviate, at least in part, the myopathy. Inversely, inactivation of the MTORC1 pathway in RPTOR-depleted muscles triggers LC3B lipidation in spite of FOXO inhibition. In conclusion, MTORC1 constitutes the master regulator of autophagy induction in skeletal muscle and its deregulation leads to pathologic alterations of muscle homeostasis.  相似文献   

3.
4.
5.
The satellite cell compartment provides skeletal muscle with a remarkable capacity for regeneration. Here, we have used isolated myofibers to investigate the activation and proliferative potential of satellite cells. We have previously shown that satellite cells are heterogeneous: the majority express Myf5 and M-cadherin protein, presumably reflecting commitment to myogenesis, while a minority is negative for both. Although MyoD is rarely detected in quiescent satellite cells, over 98% of satellite cells contain MyoD within 24 h of stimulation. Significantly, MyoD is only observed in cells that are already expressing Myf5. In contrast, a minority population does not activate by the criteria of Myf5 or MyoD expression. Following the synchronous activation of the myogenic regulatory factor+ve satellite cells, their daughter myoblasts proliferate with a doubling time of approximately 17 h, irrespective of the fiber type (type I, IIa, or IIb) from which they originate. Although fast myofibers have fewer associated satellite cells than slow, and accordingly produce fewer myoblasts, each myofiber phenotype is associated with a complement of satellite cells that has sufficient proliferative potential to fully regenerate the parent myofiber within 4 days. This time course is similar to that observed in vivo following acute injury and indicates that cells other than satellite cells are not required for complete myofiber regeneration.  相似文献   

6.
This experiment was conducted to study the effects of fasting and refeeding on expression of the atrogin-1 and Akt/FOXO signaling pathway in skeletal muscle of chicks. Chicks were fasted for 24 h and refed for 2 h. Atrogin-1 mRNA expression was increased by fasting, and their increment was reduced by refeeding. Phosphorylations of Akt and FOXO1 were not decreased by fasting, but, they were increased by refeeding. These results indicate that refeeding stimulates phosphorylation of Akt/FOXO, resulting in a decrease in atrogin-1 expression in skeletal muscle of chicks.  相似文献   

7.
The mitochondrial flavoprotein apoptosis-inducing factor (AIF) has proved to be either the main mediator of apoptosis or an anti-apoptotic factor via its putative oxidoreductase and peroxide scavenging activities. We report here that 100 muM hydrogen peroxide (H2O2) induced the proliferation of C2C12 myoblasts and over-expression of AIF simultaneously in vitro. Immunofluorescence showed that the over-expression of AIF was located in the cytoplasm. The immunopositive AIF was detected in nuclei 27 days after denervation of skeletal muscle, but in the cytoplasm it was detected 27 days after fiber-damaged skeletal muscle. AIF may be a factor involved in skeletal muscle regeneration.  相似文献   

8.
The thymus is the central immune organ, but it is known to progressively degenerate with age. As thymus degeneration is paralleled by the wasting of aging skeletal muscle, we speculated that the thymus may play a role in muscle wasting. Here, using thymectomized mice, we show that the thymus is necessary for skeletal muscle regeneration, a process tightly associated with muscle aging. Compared to control mice, the thymectomized mice displayed comparable growth of muscle mass, but decreased muscle regeneration in response to injury, as evidenced by small and sparse regenerative myofibers along with inhibited expression of regeneration-associated genes myh3, myod, and myogenin. Using paired box 7 (Pax7)-immunofluorescence staining and 5-Bromo-2′-deoxyuridine-incorporation assay, we determined that the decreased regeneration capacity was caused by a limited satellite cell pool. Interestingly, the conditioned culture medium of isolated thymocytes had a potent capacity to directly stimulate satellite cell expansion in vitro. These expanded cells were enriched in subpopulations of quiescent satellite cells (Pax7highMyoDlowEdUpos) and activated satellite cells (Pax7highMyoDhighEdUpos), which were efficiently incorporated into the regenerative myofibers. We thus propose that the thymus plays an essential role in muscle regeneration by directly promoting satellite cell expansion and may function profoundly in the muscle aging process.  相似文献   

9.
10.
11.
12.
13.
MicroRNA-107 (miR-107) has been demonstrated to regulate proliferation and apoptosis in many types of cancers. Nevertheless, its biological function in gastric cancer remains largely unexplored. Here, we found that the expression level of miR-107 was increased in gastric cancer in comparison with the adjacent normal tissues. The enforced expression of miR-107 was able to promote cell proliferation in NCI-N87 and AGS cells, while miR-107 antisense oligonucleotides (antisense miR-107) blocked cell proliferation. At the molecular level, our results further revealed that expression of FOXO1 was negatively regulated by miR-107. Therefore, the data reported here demonstrate that miR-107 is an important regulator in gastric cancer, which will contribute to a better understanding of the important mis-regulated miRNAs in gastric cancer.  相似文献   

14.
  相似文献   

15.
16.
17.
18.
19.
To investigate the intracellular signaling mechanisms by which clenbuterol reduces muscle protein degradation, we examined the phosphorylation level and intracellular localization of FOXO1 in the sartorius muscle of neonatal chicks. One-day-old chicks were given a single intraperitoneal injection of clenbuterol (0.1 mg/kg body weight). Three hours after injection, AKT protein was phosphorylated in the sartorius muscle by clenbuterol injection. Coincidentally, clenbuterol increased cytosolic level of phosphorylated FOXO1 protein, while it decreased nuclear level of FOXO1 protein in the sartorius muscle. Furthermore, clenbuterol decreased the expression of mRNAs for muscle-specific ubiquitin ligases (atrogin-1/MAFbx and MuRF1) in the sartorius muscle accompanied by decreased plasma 3-methylhistidine concentration, an index of muscle protein degradation, at 3 h after injection. These results suggested that, in the sartorius muscle of the chicks, clenbuterol changed the intracellular localization of phosphorylated FOXO1, and consequently decreased protein degradation via suppressing the expression of genes encoding muscle-specific ubiquitin ligases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号