首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-Azahypoxanthine (AHX, 1) and imidazole-4-carboxamide (ICA, 2) were isolated from a fairy-ring forming fungus Lepista sordida. AHX was converted into a metabolite, 2-aza-8-oxohypoxanthine (AOH, 3), in plants. Afterward, it turned out that these three compounds, fairy chemicals (FSc), endogenously exist in plants and are biosynthesized via a new purine metabolic pathway. Furthermore, FCs increased the yields of rice, wheat and other crops in the filled experiments.  相似文献   

2.
The metabolic pathway of aniline was examined in Rhodococcus erythropolis AN-13 that was isolated from soil when aniline was provided as a sole source of carbon and nitrogen. cis, cis-Muconic acid and β-ketoadipic acid were detected by thin-layer chromatography in an incubation mixture containing aniline and resting cells of this strain. These two carboxylic acids were also formed from catechol, when the substrate was incubated with cell-free extract of aniline-grown cells, and characterized spectrally as crystalline samples. Ammonia was released from aniline by resting cells. The cell-free extract of aniline-grown cells had a strong catechol 1,2-dioxygenase activity. Catechol, once formed from aniline, was apparently converted so rapidly to cis, cis-muconic acid that it could not be isolated. These results suggest that R. erythropolis AN-13 converted aniline to catechol with the release of ammonia and then mineralized catechol ultimately to inorganic end products, H2O and CO2, through the β ketoadipic acid pathway.  相似文献   

3.
Summary From soil a caffeine degrading bacterium was isolated which is able to grow on media containing up to 2% caffeine as the sole source of carbon and nitrogen. The organism was identified as Pseudomonas putida and referred to as Pseudomonas putida WS. Mutants of this strain converted caffeine and were shown to accumulate a mixture of theobromine and heteroxanthine during resting cells experiments.The highest yield in accumulation products was obtained with the mutant strain H8, however the production rate with resting cells was too small for commercial purposes. The yield was significantly increased by growth of the mutant on diluted complex media. With this technique a yield of 50% based on the amount of caffeine could be obtained for heteroxanthine. The concentration maximum is reached when caffeine is completely converted and only traces of theobromine are present.Dedicated to Professor G. Braunitzer on the occasion of his 65th birthday  相似文献   

4.
A bacterium that assimilates 2,3-dichloro-1-propanol was isolated from soil by enrichment culture. The strain was identified as Pseudomonas sp. by the taxonomic studies. The strain converted 2,3-dichloro-1-propanol to 3-chloro-1,2-propanediol, releasing chloride ion. The conversion was stereospecific because the residual 2,3-dichloro-1-propanol and formed 3-chloro-1,2-propanediol gave optical rotation. The resting cells converted various halohydrins to the dehalogenated alcohols, and cell-free extracts had strong epoxyhydrolase activity. These results indicated that the strain assimilated 2,3-dichloro-1-propanol via 3-chloro-1,2-propanediol, glycidol, and glycerol. The possibility to manufacture optically active 2,3-dichloro-1-propanol is discussed.  相似文献   

5.
The spectrum of reactivity with various types of cells of a monoclonal antibody (CH-4) which detects a private MHC antigen of chickens was analysed. CH-4 agglutinates only RBCs that possess the B2 (MHC) haplotype. A new rosetteforming cell (RFC) assay was devised to detect individual cells (excluding RBCs) that possess the CH-4 specificity on their cell surfaces. RBCs that have CH-4 chemically coupled to their surfaces attach to, and form rosettes with, B2 antigen-bearing cells. Most non-RBC RFC were detected in active erythropoietic organs (adult bone marrow and embryonic spleen), and none were found in organs where erythropoiesis does not occur: adult thymus and bursa. Preincubation of bone marrow cells with CH-4 plus complement almost completely inhibits their capacity to form CFU-E without affecting their ability to form GM-CFU. In addition, CH-4 plus complement does not inhibit the capacity of B2/B2 lymphocytes to induce a graft-versus-host reaction under conditions where anti-B2 lymphocyte alloantisera are completely inhibitory. Our results strongly suggest that CH-4 monoclonal antibodies detect a private specificity on a gene product of the B-G locus whose expression is restricted to erythroid stem cells and erythrocytes.  相似文献   

6.
This study aimed to construct an acetonitrile-containing waste treatment process by using nitrile-degrading microorganisms. To degrade high concentrations of acetonitrile, the microorganisms were newly acquired from soil and water samples. Although no nitrilase-producing microorganisms were found to be capable of degrading high concentrations of acetonitrile, the resting cells of Rhodococcus pyridinivorans S85-2 containing nitrile hydratase could degrade acetonitrile at concentrations as high as 6 M. In addition, an amidase-producing bacterium, Brevundimonas diminuta AM10-C-1, of which the resting cells degraded 6 M acetamide, was isolated. The combination of R. pyridinivorans S85-2 and B. diminuta AM10-C-1 was tested for the conversion of acetonitrile into acetic acid. The resting cells of B. diminuta AM10-C-1 were added after the first conversion involving R. pyridinivorans S85-2. Through this tandem process, 6 M acetonitrile was converted to acetic acid at a conversion rate of >90% in 10 h. This concise procedure will be suitable for practical use in the treatment of acetonitrile-containing wastes on-site.  相似文献   

7.
【目的】血红素可作为细菌重要的铁离子来源,然而转运过多的血红素也会对细菌造成毒性。细菌通过调节、外排、螯合等多种方式减轻血红素毒性作用。鸭疫里氏杆菌(Riemerella anatipestifer, RA)是一种感染鸭及其他禽类的革兰氏阴性病原菌。前期研究表明,该菌编码血红素转运系统,且能够从血红蛋白获取血红素,然而该菌是否编码血红素解毒蛋白未知。本研究以编码一氧化氮合成酶的基因B739_RS00825为研究对象,分析其在抗血红素毒性和氧化应激损伤以及定殖能力中的功能。【方法】构建B739_RS00825缺失株,并通过测定生长曲线、细菌存活率、毒力及定殖等试验方法鉴定其在抗血红素毒性、抗氧化应激损伤、宿主致病中的功能。【结果】与RA CH-1相比,RA CH-1ΔB739_RS00825在添加过量血红素的培养基中生长不受影响;然而与RACH-1Δfur相比,RACH-1ΔfurΔB739_RS00825在含血红素培养基中的生长明显受到抑制且对H2O2的抵抗力降低;B739_RS00825基因在氧化应激条件下及fur缺失株中明显上调;与RA ...  相似文献   

8.
Gluconobacter oxydans converts glucose to gluconic acid and subsequently to 2-keto-d-gluconic acid (2-KGA) and 5-keto-d-gluconic acid (5-KGA) by membrane-bound periplasmic pyrroloquinoline quinone-dependent and flavin-dependent dehydrogenases. The product pattern obtained with several strains differed significantly. To increase the production of 5-KGA, which can be converted to industrially important l-(+)-tartaric acid, growth parameters were optimized. Whereas resting cells of G. oxydans ATCC 621H converted about 11% of the available glucose to 2-KGA and 6% to 5-KGA, with growing cells and improved growth under defined conditions (pH 5, 10% pO2, 0.05% pCO2) a conversion yield of about 45% 5-KGA from the available glucose was achieved. As the accumulation of the by-product 2-KGA is highly disadvantageous for an industrial application of G. oxydans, a mutant was generated in which the membrane-bound gluconate-2-dehydrogenase complex was inactivated. This mutant, MF1, grew in a similar way to the wild type, but formation of the undesired 2-KGA was not observed. Under improved growth conditions, mutant MF1 converted the available glucose almost completely (84%) into 5-KGA. Therefore, this newly developed recombinant strain is suitable for the industrial production of 5-KGA.  相似文献   

9.
A bacterium that utilizes 2,4,6-tribromophenol (2,4,6-TBP) as sole carbon and energy source was isolated from soil contaminated with brominated pollutants. This bacterium, designated strain TB01, was identified as an Ochrobactrum species. The organism degraded 100 μM of 2,4,6-TBP within 36 h in a growing culture. In addition, it released 3 mol of bromine ions from 1 mol of 2,4,6-TBP during the complete degradation of 2,4,6-TBP in a resting cell assay. Moreover, cells grown on 2,4,6-TBP degraded 2,6-dibromophenol (2,6-DBP), 4-bromophenol (4-BP), 2,4,6-trichlorophenol (2,4,6-TCP) and phenol. Metabolic intermediates were detected in the reaction mixture of an in vitro assay for 2,4,6-TBP, and they were identified as 2,4-DBP and 2-BP. NADH was required for the debromination of 2,4,6-TBP. These results suggest that 2,4,6-TBP is converted to phenol through sequential reductive debromination reactions via 2,4-DBP and 2-BP by this strain.  相似文献   

10.
邢康南  牛翠娟 《生态学报》2020,40(21):7978-7986
周期性孤雌繁殖的轮虫靠休眠卵度过不良环境,等环境适宜时休眠卵孵化出干雌体,再次通过孤雌繁殖建立种群。通常休眠卵要经历一段休眠期再孵化,但也有些休眠卵生成后很快孵化,称为早孵化现象。有关休眠卵不同孵化对策如何影响其干雌体克隆种群的增长,目前尚不清楚。分别观测了萼花臂尾轮虫(Brachionus calyciflorus)的两个品系H1(窄温度生态位)和D1(宽温度生态位)的休眠卵在不同孵化对策和不同食物浓度下所生产的干雌体克隆群的种群增长差异。孵化对策包括早孵化(early hatching,EH)和晚孵化(late hatching,LH);食物浓度包括高食物浓度(high food concentration,HF:2×106个细胞/mL)和低食物浓度(low food concentration,LF:5×105个细胞/mL),每个品系下各设置4个实验组(LH-HF、LH-LF、EH-HF、EH-LF),每组10个重复。结果发现,对D1品系来说:孵化对策和食物浓度对最大种群数量具有显著的综合影响(P=0.002),但两因素间不存在交互作用(P=0.911);早孵化的干雌体种群在最大种群数量上显著高于晚孵化的干雌体种群(P=0.001)。对H1品系:孵化对策和食物浓度对最大种群数量综合影响显著(P<0.001),且两个因素之间存在交互作用(P<0.001);高食物浓度下,EH干雌体克隆群的最大种群数量显著低于LH干雌体克隆群(P<0.001)。高食物浓度下干雌体克隆群开始有性生殖的密度阈值,D1品系EH组显著高于LH组(P=0.041);而H1品系EH组却显著低于LH组(P=0.022)。最高种群密度下,H1品系的有性生殖率在两种孵化对策之间存在显著差异(P=0.044),EH种群的有性生殖率低于LH种群,而D品系却未见有性生殖率在不同孵化对策间存在明显差异。本研究结果显示休眠卵的孵化对策会影响其后代干雌体种群的增长特性,其影响的结果可能与种群的生境适应相关。  相似文献   

11.
Under conditions of the spontaneous or induced autolysis of thick cell suspensions,Arthrobacter globiformis strains produced cells exhibiting features typical of resting microbial forms. The number of viable resting cells was greater under conditions of induced rather than spontaneous autolysis. The thermoresistance of the resting cells of A.globiformis strains isolated from 2-to 3 million-year-old permafrost was higher than that of the collectionA. globiformis strain.  相似文献   

12.
Summary 3-Chlorobenzoate grown cells of Pseudomonas sp. strain B13 or Alcaligenes sp. strain A7-2 converted 3-fluorobenzoate to 2-fluoro-cis,cis-muconate with 87% yield. The latter strain produced 1.6 g/l. The type II muconate cycloisomerases of neither strain exhibit acitivity for 2-fluoro-cis,cis-muconate. Succinate grown cells of Pseudomonas sp. strain B13 converted benzoate to cis,cis-muconate (91% yield; 7.4 g/l). Enzyme tests confirmed that no muconate cycloisomerising enzyme was induced within 24 h.  相似文献   

13.
A new dibenzothiophene (DBT) desulfurizing bacterium was isolated from oil-contaminated soils in Iran. HPLC analysis and PCR-based detection of the presence of the DBT desulfurization genes (dszA, dszB and dszC) indicate that this strain converts DBT to 2-hydroxybiphenyl (2-HBP) via the 4S pathway. The strain, identified as Rhodococcus erythropolis SHT87, can utilize DBT, dibenzothiophene sulfone, thiophene, 2-methylthiophene and dimethylsulfoxide as a sole sulfur source for growth at 30 °C.The maximum specific desulfurization activity of strain SHT87 resting cells in aqueous and biphasic organic–aqueous systems at 30 °C was determined to be 0.36 and 0.47 μmol 2-HBP min−1 (g dry cell)−1, respectively. Three mM DBT was completely metabolized by SHT87 resting cells in the aqueous and biphasic systems within 10 h. The rate and the extent of the desulfurization reaction by strain SHT87 suggest that this strain can be used for the biodesulfurization of diesel oils.  相似文献   

14.
Fatty aldehydes are an important group of fragrance and flavor compounds that are found in different fruits and flowers. A biotechnological synthesis of fatty aldehydes based on Escherichia coli cells expressing an α-dioxygenase (αDOX) from Oryza sativa (rice) is presented. α-Dioxygenases are the initial enzymes of α-oxidation in plants and oxidize long and medium-chain C n fatty acids to 2-hydroperoxy fatty acids. The latter are converted to C n − 1 fatty aldehydes by spontaneous decarboxylation. Successful expression of αDOX in E. coli was proven by an in vitro luciferase assay. Using resting cells of this recombinant E. coli strain, conversion of different fatty acids to the respective fatty aldehydes shortened by one carbon atom was demonstrated. The usage of Triton X 100 improves the conversion rate up to 1 g aldehyde per liter per hour. Easy reuse of the cells was demonstrated by performing a second biotransformation without any loss of biocatalytic activity.  相似文献   

15.
Streptomyces sp GE44282 was isolated in the course of a screening program for novel antibiotics. It co-produces heneicomycin and aurodox, two kirromycin-type antibiotics, which differ by the presence of an hydroxyl group at the C30 position of aurodox. Heneicomycin is converted into aurodox both by growing and resting cells ofStreptomyces sp GE44282 and by the producer of aurodox,Streptomyces goldiniensis ATCC 21386. This bioconversion of heneicomycin is substrate-specific and is not observed using the producer of heneicomycin,Streptomyces filippiniensis NRRL 11044. The three strains show very similar taxonomic characteristics. These results suggest that heneicomycin is a precursor of aurodox, the production of which depends on the bioconversion capability expressed by the strain.  相似文献   

16.
Alternariol (AOH) and alternariol-9-methyl ether (AME) are major toxins produced by fungi of the genus Alternaria and are frequently found in various food items. Because AOH has three hydroxyl groups and AME two, the formation of various glucuronides must be expected. When AOH was incubated with hepatic and intestinal microsomes from rats, pigs and humans in the presence of uridine diphosphate glucuronic acid, two glucuronides were detected and tentatively identified as AOH-3-O-glucuronide and AOH-9-O-glucuronide. Under the same conditions, AME yielded predominantly AME-3-O-glucuronide and only small amounts of AME-7-O-glucuronide. The activities of all microsomes for the glucuronidation of AOH and AME were in the same range. Nine out of ten recombinant human UDP-glucuronosyltransferases (UGTs) were able to glucuronidate AOH, and eight out of ten UGTs had activity for AME. These data suggest that AOH and AME are readily glucuronidated in hepatic and extrahepatic tissues, implying that glucuronidation constitutes a major metabolic pathway in the disposition of these mycotoxins. Presented at the Mycotoxin Workshop, Utrecht, Netherlands, April 28–30, 2008  相似文献   

17.
Strains of the bacteria Zymomonas sp. were studied for their ability to form higher alcohols. In a complex growth medium, six strains were shown to produce significant amounts of 1-propanol, 1-butanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-2-butanol, pentanols, secondary hexyl-alcohols, and trace amounts of n-hexanol. When resting cells of these organisms were placed into a fermentation medium containing glucose and Tris-buffer, Z. mobilis 8938 produced increased levels of 1-butanol, and secondary hexyl-alcohols at concentrations of 13.5 mg/liter and 5.8 mg/liter, respectively. Another strain, Z. mobilis subsp. mobilis B 806, stimulated the formation of 1-propanol and 1-butanol at concentrations of 14.9 mg/liter and 23.52 mg/liter, respectively. Amino acids or amino acid precursors were then added to the fermentation medium. The presence of threonine and α-ketobutyric acid stimulated Z. mobilis 8938 to produce 82.6 mg/liter secondary hexyl-alcohols and 8.0 mg/liter n-hexanol, respectively. Isoleucine and valine increased the production of 2-methyl-1-butanol (394.0 mg/liter) and 3-methyl-1-butanol (113.4 mg/liter), respectively, by Z. mobilis subsp. mobilis B 806. Glutamine enhanced the formation of 2-methyl-2-butanol production to concentrations 38.8 mg/liter in Zymomonas strain B 806. Additional experiments suggested that higher alcohol production could also be accomplished in the absence of glucose when cells were allowed to metabolize the precursors only. The effect of aromatic amino acids on phenol production was determined using resting cells of Zymomonas sp. The maximum yield of phenol (111.6 mg/liter) was found by Zymomonas strain 8938 in the presence of tyrosine. The addition of phenylalanine also stimulated this strain to form 71.4 mg/liter of phenol.  相似文献   

18.
《Mycoscience》2020,61(5):259-263
Imidazole-4-carboxamide (ICA) and 2-azahypoxanthine (AHX) obtained from Lepista sordida inhibit and promote the growth of herbaceous plants, respectively. In this study, we examined the effects of these compounds on the growth and ectomycorrhizal (EM) colonization of Pinus densiflora seedlings inoculated with Tricholoma matsutake that forms EM associations with pines. The EM colonization by T. matsutake was observed on the root systems of P. densiflora seedlings treated with and without ICA and AHX. The growth of both non-EM and EM P. densiflora seedlings was inhibited by ICA, regardless of the EM colonization. In contrast, AHX promoted the growth of non-EM P. densiflora seedlings, but not of EM seedlings, suggesting that EM colonization interferes with the effect of AHX on P. densiflora growth.  相似文献   

19.
4-Aminobenzenesulfonate is degraded via 4-sulfocatechol by a mixed bacterial culture that consists of Hydrogenophaga palleronii strain S1 and Agrobacterium radiobacter strain S2. From the 4-sulfocatechol-degrading organism A. radiobacter strain S2, a dioxygenase that converted 4-sulfocatechol to 3-sulfomuconate was purified to homogeneity. The purified enzyme also converted protocatechuate with a similar catalytic activity to 3-carboxy-cis,cis-muconate. Furthermore, the purified enzyme oxidized 3,4-dihydroxyphenylacetate, 3,4-dihydroxycinnamate, catechol, and 3- and 4-methylcatechol. The enzyme had a mol. wt. of about 97,400 as determined by gel filtration and consisted of two different types of subunits with mol. wt. of about 23,000 and 28,500. The NH2-terminal amino acid sequences of the two subunits were determined. An isofunctional dioxygenase was partially purified from H. palleronii strain S1. A. radiobacter strain S2 also induced, after growth with 4-sulfocatechol, an „ordinary“ protocatechuate 3,4-dioxygenase that did not oxidize 4-sulfocatechol. This enzyme was also purified to homogeneity, and its catalytic and structural characteristics were compared to the „4-sulfocatechol-dioxygenase“ from the same strain. Received: 5 February 1996 / Accepted: 18 April 1996  相似文献   

20.
Bacteria were enriched from soil samples with succinate as carbon source and racemic 2-phenylpropionitrile as sole source of nitrogen. One of the isolates, strain d3, converted (R,S)-2-phenylpropionitrile with high enantioselectivity to (S)-2-phenylpropionic acid. Strain d3 was identified as Agrobacterium tumefaciens. Resting cells hydrolysed 2-phenylpropionitrile via 2-phenylpropionamide to 2-phenylpropionic acid. Racemic 2-phenylpropionitrile as well as 2-phenylpropionamide were converted to (S)-2-phenylpropionic acid with an enantiometric excess above 96%. The nitrile hydratase and the amidase were both shown to convert preferentially the S enantiomer of their respective substrate. These two enzymes were induced in the presence of (R,S)-2-phenylpropionitrile but only in the absence of ammonia. In addition to 2-phenylpropionitrile strain d3 could utilize various aliphatic and aromatic nitriles as nitrogen sources. Resting cells of strain d3 also converted (R,S)-2-phenylbutyronitrile, ibuprofen nitrile, ketoprofen nitrile and -aminophenylacetonitrile with high enantioselectivity. The nitrile- and amide-converting enzyme activities were also found in cell-free extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号