首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The peptidoglycan of Selenomonas ruminantium is covalently bound to cadaverine (PG-cadaverine), which likely plays a significant role in maintaining the integrity of the cell surface structure. The outer membrane of this bacterium contains a 45-kDa major protein (Mep45) that is a putative peptidoglycan-associated protein. In this report, we determined the nucleotide sequence of the mep45 gene and investigated the relationship between PG-cadaverine, Mep45, and the cell surface structure. Amino acid sequence analysis showed that Mep45 is comprised of an N-terminal S-layer-homologous (SLH) domain followed by α-helical coiled-coil region and a C-terminal β-strand-rich region. The N-terminal SLH domain was found to be protruding into the periplasmic space and was responsible for binding to peptidoglycan. It was determined that Mep45 binds to the peptidoglycan in a manner dependent on the presence of PG-cadaverine. Electron microscopy revealed that defective PG-cadaverine decreased the structural interactions between peptidoglycan and the outer membrane, consistent with the proposed role for PG-cadaverine. The C-terminal β-strand-rich region of Mep45 was predicted to be a membrane-bound unit of the 14-stranded β-barrel structure. Here we propose that PG-cadaverine possesses functional importance to facilitate the structural linkage between peptidoglycan and the outer membrane via specific interaction with the SLH domain of Mep45.Polyamines, the ubiquitous polycationic compounds composed of a hydrocarbon backbone with multiple amino groups, exist in all living cells and participate in a wide variety of biological reactions, including DNA, RNA, and protein synthesis (34). However, it has been revealed that some strictly anaerobic eubacteria belonging to the Veillonellaceae family, such as Selenomonas ruminantium, Veillonella alcalescens, Veillonella parvula, and Anaerovibrio lipolyticus, possess polyamines covalently linked to their peptidoglycan (PG) as an essential constituent (8, 16, 17). S. ruminantium possesses a peptidoglycan associated with cadaverine. Cadaverine binds covalently to the α-carboxyl group of the d-glutamic acid residue of peptidoglycan by one of its two amino groups, and the other amino group remains as a free cation (15). In this bacterium, cadaverine is synthesized constitutively from lysine by lysine/ornithine decarboxylase (LDC/ODC [EC 4.1.1.18]), a bifunctional enzyme that decarboxylates both l-lysine and l-ornithine at similar Km and Vmax values (35, 36) and is transferred to a d-glutamic acid residue by a particulate enzyme designated as lipid intermediate:diamine transferase (20). The cadaverine synthesis by LDC/ODC is completely inhibited by dl-α-difluoromethyllysine (DFML) or dl-α-difluoromethylornithine (DFMO), which inhibits the decarboxylating activity toward both l-lysine and l-ornithine (35), and the prevention of the cadaverine synthesis in S. ruminantium was shown to lead to the significant decrease of the amount of the cadaverine covalently linked to peptidoglycan (PG-cadaverine) and result in the growth inhibition (17). Since this inhibitory effect accompanies a drastic morphological change of the cells resulting in an aberrant cell surface structure, PG-cadaverine has been assumed to play a significant role in maintaining the integrity of the cell surface (17).The cell surface structure of S. ruminantium has a typical Gram-negative three-layer organization, comprising a cytoplasmic membrane, peptidoglycan layer, and outer membrane (18). However, it contains neither the free nor bound form of murein-lipoprotein (19), which plays an important role in the structural linkage between the outer membrane and peptidoglycan, thereby maintaining the structural integrity of the cell surface structures of Gram-negative bacteria (5, 33). The Escherichia coli lpo mutant that lacks murein-lipoprotein becomes hypersensitive to EDTA, resulting in rapid cell lysis upon exposure to EDTA. In contrast, S. ruminantium shows no cell lysis, even in the presence of high concentrations of EDTA, despite the absence of murein-lipoprotein (19). One possible interpretation for these findings was the assumption that PG-cadaverine associates with the structural connection between the outer membrane and peptidoglycan, thereby replacing the function of murein-lipoprotein with an outer membrane component or components. Nevertheless, the factors in the outer membrane interacting with PG-cadaverine have not been identified.The outer membrane of S. ruminantium contains a 45-kDa major protein (Mep45), which has been proposed to be a peptidoglycan-associating protein (18, 19). Kalmokoff et al. reported that the major outer membrane protein of S. ruminantium OB268, which is similar to Mep45 in size, contains an N-terminal surface-layer homology (SLH) domain (13), a putative functional domain that interacts with cell wall components (27). These findings prompted us to investigate the Mep45 major outer membrane protein of S. ruminantium as a putative outer membrane component interacting with PG-cadaverine. In this report, we characterize the Mep45 protein and its interactions with PG-cadaverine and prove their involvement in the structural linkage between the outer membrane and peptidoglycan.  相似文献   

2.
In Selenomonas ruminantium, a strictly anaerobic and gram-negative bacterium, cadaverine covalently linked to the peptidoglycan is required for the interaction between the peptidoglycan and the S-layer homologous (SLH) domain of the major outer membrane protein Mep45. Here, using a series of diamines with a general structure of NH(3)(+)(CH(2))(n)NH(3)(+) (n = 3 to 6), we found that cadaverine (n = 5) specifically serves as the most efficient constituent of the peptidoglycan in acquiring the high resistance of the cell to external damage agents and is required for effective interaction between the SLH domain of Mep45 and the peptidoglycan, facilitating the correct anchoring of the outer membrane to the peptidoglycan.  相似文献   

3.
The ammonium permease Mep2p mediates ammonium uptake and also induces filamentous growth in the human-pathogenic yeast Candida albicans in response to nitrogen limitation. The C-terminal cytoplasmic tail of Mep2p contains a signaling domain that is not required for ammonium transport but is essential for Mep2p-dependent morphogenesis. Progressive C-terminal truncations showed Y433 to be the last amino acid that is essential for the induction of filamentous growth, thereby delimiting the Mep2p signaling domain. To understand in more detail how the signaling activity of Mep2p is regulated by ammonium availability and transport, we mutated conserved amino acid residues that have been implicated in ammonium binding or uptake. Mutation of D180, which has been proposed to mediate initial contact with extracellular ammonium, or the pore-lining residues H188 and H342 abolished Mep2p expression, indicating that these residues are important for protein stability. Mutation of F239, which together with F126 is thought to form an extracytosolic gate to the conductance channel, abolished both ammonium uptake and Mep2p-dependent filament formation, despite proper localization of the protein. On the other hand, mutation of W167, which is assumed to participate with Y122, F126, and S243 in the recruitment and coordination of the ammonium ion at the extracytosolic side of the cell membrane, also abolished filament formation without having a strong impact on ammonium transport, demonstrating that extracellular alterations in Mep2p can affect intracellular signaling. Mutation of Y122 reduced ammonium uptake much more strongly than mutation of W167 but still allowed efficient filament formation, indicating that the signaling activity of Mep2p is not directly correlated with its transport activity. These results provide important insights into ammonium transport and control of morphogenesis by Mep2p in C. albicans.  相似文献   

4.
SLH domains (for surface layer homology) are involved in the attachment of proteins to bacterial cell walls. The data presented here assign the conserved TRAE motif within SLH domains a key role for the binding. The charged amino acids arginine (R) or/and glutamic acid (E) were replaced via site-directed mutagenesis by different amino acids. Effects were visualized in an in vitro binding assay using native cell wall sacculi of Thermoanaerobacterium thermosulfurigenes EM1 and different variants of an SLH protein which consisted of the triplicate SLH domain of xylanase XynA of this bacterium and which was purified after expression in Escherichia coli. The results indicated (1) that the TRAE motif is critical for the binding function of SLH domains, (2) that a functional TRAE motif is necessary in all three domains, (3) that a least one (preferentially positively) charged amino acid in the TRAE motif is required for the functionality of the SLH domain, and (4) that the position of the negatively and positively charged amino acids is important. The finding that the cell wall of T. thermosulfurigenes EM1 contains pyruvate (4 μg mg−1) is in agreement with the hypothesis that pyruvylated secondary cell wall polymers function as ligand for SLH domains.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

5.
Are bacterial ‘autotransporters’ really transporters?   总被引:1,自引:0,他引:1  
Autotransporters are bacterial outer membrane proteins that consist of a large N-terminal extracellular domain ('passenger domain') and a C-terminal beta-barrel domain ('beta domain'). The beta domain was originally proposed to function as a channel that transports its own passenger domain across the outer membrane. Results of recent structural, biochemical and molecular genetic studies, however, have challenged this idea. Here I describe an alternative model in which translocation of the passenger domain is mediated by an exogenous factor (possibly a newly identified factor necessary for assembly of outer membrane proteins called 'Omp85/YaeT'), whereas the beta domain only targets the protein to the outer membrane and serves as a membrane anchor.  相似文献   

6.
The translocase of the outer mitochondrial membrane (TOM) complex is the general entry site into the organelle for newly synthesized proteins. Despite its central role in the biogenesis of mitochondria, the assembly process of this complex is not completely understood. Mim1 (mitochondrial import protein 1) is a mitochondrial outer membrane protein with an undefined role in the assembly of the TOM complex. The protein is composed of an N-terminal cytosolic domain, a central putative transmembrane segment (TMS) and a C-terminal domain facing the intermembrane space. Here we show that Mim1 is required for the integration of the import receptor Tom20 into the outer membrane. We further investigated what the structural characteristics allowing Mim1 to fulfil its function are. The N- and C-terminal domains of Mim1 are crucial neither for the function of the protein nor for its biogenesis. Thus, the TMS of Mim1 is the minimal functional domain of the protein. We show that Mim1 forms homo-oligomeric structures via its TMS, which contains two helix-dimerization GXXXG motifs. Mim1 with mutated GXXXG motifs did not form oligomeric structures and was inactive. With all these data taken together, we propose that the homo-oligomerization of Mim1 allows it to fulfil its function in promoting the integration of Tom20 into the mitochondrial outer membrane.  相似文献   

7.
Gram-negative bacteria such as Escherichia coli are surrounded by two membranes with a thin peptidoglycan (PG)-layer located in between them in the periplasmic space. The outer membrane protein A (OmpA) is a 325-residue protein and it is the major protein component of the outer membrane of E. coli. Previous structure determinations have focused on the N-terminal fragment (residues 1–171) of OmpA, which forms an eight stranded transmembrane β-barrel in the outer membrane. Consequently it was suggested that OmpA is composed of two independently folded domains in which the N-terminal β-barrel traverses the outer membrane and the C-terminal domain (residues 180–325) adopts a folded structure in the periplasmic space. However, some reports have proposed that full-length OmpA can instead refold in a temperature dependent manner into a single domain forming a larger transmembrane pore. Here, we have determined the NMR solution structure of the C-terminal periplasmic domain of E. coli OmpA (OmpA180–325). Our structure reveals that the C-terminal domain folds independently into a stable globular structure that is homologous to the previously reported PG-associated domain of Neisseria meningitides RmpM. Our results lend credence to the two domain structure model and a PG-binding function for OmpA, and we could indeed localize the PG-binding site on the protein through NMR chemical shift perturbation experiments. On the other hand, we found no evidence for binding of OmpA180–325 with the TonB protein. In addition, we have also expressed and purified full-length OmpA (OmpA1–325) to study the structure of the full-length protein in micelles and nanodiscs by NMR spectroscopy. In both membrane mimetic environments, the recombinant OmpA maintains its two domain structure that is connected through a flexible linker. A series of temperature-dependent HSQC experiments and relaxation dispersion NMR experiments detected structural destabilization in the bulge region of the periplasmic domain of OmpA above physiological temperatures, which may induce dimerization and play a role in triggering the previously reported larger pore formation.  相似文献   

8.
The major outer membrane protein of Acinetobacter baumannii is the heat-modifiable protein HMP-AB, a porin with a large pore size allowing the penetration of solutes having a molecular weight of up to approximately 800 Da. Cross-linking experiments with glutardialdehyde failed to show any cross-linking between the monomers, a fact that proves again that this porin protein functions as a monomeric porin. The specific activity of this porin was found to be similar to that of other monomeric porins. Tryptic digestion of the outer membrane yielded a 23-kDa fragment of the HMP-AB protein that was resistant to further trypsin treatment. This observation indicates that HMP-AB is assembled in the membrane in a manner similar to monomeric porins. Cloning of the HMP-AB gene revealed an open reading frame of 1038 bp encoding a protein of 346 amino acids and a calculated molecular mass of 35,636 Da. The amino acid sequence and composition were typical of Gram-negative bacterial porins: a highly negative hydropathy index, absence of hydrophobic residue stretches, a slightly negative total charge, low instability index, high glycine content, and an absence of cysteine residues. Sequence comparison of HMP-AB with other outer membrane proteins revealed a clear homology with the monomeric outer membrane proteins, outer membrane protein A (OmpA) of Enterobacteria, and outer membrane protein F (OprF) of Pseudomonas sp. Secondary structure analysis indicated that HMP-AB has a 172-amino acid N-terminal domain that spans the outer membrane by eight amphiphilic beta strands and a C-terminal domain that apparently serves as an anchoring protein to the peptidoglycan layer. The results also indicate that HMP-AB belongs to the eight transmembrane beta-strand family of outer membrane proteins.  相似文献   

9.
Haemophilus influenzae elaborates a surface protein called Hap, which is associated with the capacity for intimate interaction with cultured epithelial cells. Expression of hap results in the production of three protein species: outer membrane proteins of approximately 155 kDa and 45 kDa and an extracellular protein of approximately 110 kDa. The 155 kDa protein corresponds to full-length mature Hap (without the signal sequence), and the 110 kDa extracellular protein represents the N-terminal portion of mature Hap (designated Haps). In the present study, we examined the mechanism of processing and secretion of Hap. Site-directed mutagenesis suggested that Hap is a serine protease that undergoes autoproteolytic cleavage to generate the 110 kDa extracellular protein and the 45 kDa outer membrane protein. Biochemical analysis confirmed this conclusion and established that cleavage occurs on the bacterial cell surface. Determination of N-terminal amino acid sequence and mutagenesis studies revealed that the 45 kDa protein corresponds to the C-terminal portion of Hap, starting at N1037. Analysis of the secondary structure of this protein (designated Hapβ) predicted formation of a β-barrel with an N-terminal transmembrane α-helix followed by 14 transmembrane β-strands. Additional analysis revealed that the final β-strand contains an amino acid motif common to other β-barrel outer membrane proteins. Upon deletion of this entire C-terminal consensus motif, Hap could no longer be detected in the outer membrane, and secretion of Haps was abolished. Deletion or complete alteration of the final three amino acid residues had a similar but less dramatic effect, suggesting that this terminal tripeptide is particularly important for outer membrane localization and/or stability of the protein. In contrast, isolated point mutations that disrupted the amphipathic nature of the consensus motif or eliminated the C-terminal tryptophan had no effect on outer membrane localization of Hap or secretion of Haps. These results provide insight into a growing family of Gram-negative bacterial exoproteins that are secreted by an IgA1 protease-like mechanism; in addition, they contribute to a better understanding of the structural determinants of targeting of β-barrel proteins to the bacterial outer membrane.  相似文献   

10.
Integral outer membrane transporters of the Omp85/TpsB superfamily mediate the translocation of proteins across, or their integration into, the outer membranes of Gram-negative bacteria, chloroplasts, and mitochondria. The Bordetella pertussis FhaC/FHA couple serves as a model for the two-partner secretion pathway in Gram-negative bacteria, with the TpsB protein, FhaC, being the specific transporter of its TpsA partner, FHA, across the outer membrane. In this work, we have investigated the structure/function relationship of FhaC by analyzing the ion channel properties of the wild type protein and a collection of mutants with varied FHA secretion activities. We demonstrated that the channel is formed by the C-terminal two-thirds of FhaC most likely folding into a beta-barrel domain predicted to be conserved throughout the family. A C-proximal motif that represents the family signature appears essential for pore function. The N-terminal 200 residues of FhaC constitute a functionally distinct domain that modulates the pore properties and may participate in FHA recognition.  相似文献   

11.
Adhesion to host cells is the first step in the virulence cycle of any pathogen. In Gram‐negative bacteria, adhesion is mediated, among other virulence factors such as the lipopolysaccharides, by specific outer‐membrane proteins generally termed adhesins that belong to a wide variety of families and have different evolutionary origins. In Brucella, a widespread zoonotic pathogen of animal and human health concern, adhesion is central as it may determine the intracellular fate of the bacterium, an essential stage in its pathogenesis. In the present paper, we further characterised a genomic locus that we have previously reported encodes an adhesin (BigA) with a bacterial immunoglobulin‐like domain (BIg‐like). We found that this region encodes a second adhesin, which we have named BigB; and PalA, a periplasmic protein necessary for the proper display in the outer membrane of BigA and BigB. Deletion of bigB or palA diminishes the adhesion of the bacterium and overexpression of BigB dramatically increases it. Incubation of cells with the recombinant BIg‐like domain of BigB induced important cytoskeletal rearrangements and affected the focal adhesion sites indicating that the adhesin targets cell–cell or cell–matrix proteins. We additionally show that PalA has a periplasmic localisation and is completely necessary for the proper display of BigA and BigB, probably avoiding their aggregation and facilitating their transport to the outer membrane. Our results indicate that this genomic island is entirely devoted to the adhesion of Brucella to host cells.  相似文献   

12.
The outer membrane proteins (OMPs) of Gram-negative bacteria play a crucial role in virulence and pathogenesis. Identification of these proteins represents an important goal for bacterial proteomics, because it aids in vaccine development. Here, we have developed such an approach for Ehrlichia ruminantium, the obligate intracellular bacterium that causes heartwater. A preliminary whole proteome analysis of elementary bodies, the extracellular infectious form of the bacterium, had been performed previously, but information is limited about OMPs in this organism and about their role in the protective immune response. Identification of OMPs is also essential for understanding Ehrlichia’s OM architecture, and how the bacterium interacts with the host cell environment. First, we developed an OMP extraction method using the ionic detergent sarkosyl, which enriched the OM fraction. Second, proteins were separated via one-dimensional electrophoresis, and digested peptides were analyzed via nano-liquid chromatographic separation coupled with mass spectrometry (LC-MALDI-TOF/TOF). Of 46 unique proteins identified in the OM fraction, 18 (39%) were OMPs, including 8 proteins involved in cell structure and biogenesis, 4 in transport/virulence, 1 porin, and 5 proteins of unknown function. These experimental data were compared to the predicted subcellular localization of the entire E. ruminantium proteome, using three different algorithms. This work represents the most complete proteome characterization of the OM fraction in Ehrlichia spp. The study indicates that suitable subcellular fractionation experiments combined with straightforward computational analysis approaches are powerful for determining the predominant subcellular localization of the experimentally observed proteins. We identified proteins potentially involved in E. ruminantium pathogenesis, which are good novel targets for candidate vaccines. Thus, combining bioinformatics and proteomics, we discovered new OMPs for E. ruminantium that are valuable data for those investigating new vaccines against this organism. In summary, we provide both pioneering data and novel insights into the pathogenesis of this obligate intracellular bacterium.  相似文献   

13.
Three exocellular enzymes of Thermoanaerobacterium thermosulfurigenes EM1 possess a C-terminal triplicated sequence related to a domain of bacterial cell surface proteins (S-layer proteins). At least one copy of this sequence, named the SLH (for S-layer homology) domain, is also present at the N terminus of the S-layer protein of this bacterium. The hypothesis that SLH domains serve to anchor proteins to the cell surface was investigated by using the SLH domain-containing xylanase. This enzyme was isolated from T. thermosulfurigenes EM1, and different forms with and without SLH domains were synthesized in Escherichia coli. The interaction of these proteins with isolated components of the cell envelope was determined to identify the attachment site in the cell wall. In addition, a polypeptide consisting of three SLH domains and the N terminus of the S-layer protein of T. thermosulfurigenes EM1 were included in these studies. The results indicate that SLH domains are necessary for the attachment of these proteins to peptidoglycan-containing sacculi. Extraction of the native sacculi with hydrofluoric acid led to the conclusion that not peptidoglycan but accessory cell wall polymers function as the adhesion component in the cell wall. Our results provide further evidence that attachment of proteins via their SLH domains represents an additional mode to display polypeptides on the cell surfaces of bacteria.  相似文献   

14.
Gram-negative bacteria, such as Escherichia coli, frequently utilize tripartite efflux complexes in the RND (resistance–nodulation–cell division) family to expel diverse toxic compounds from the cell. These complexes span both the inner and outer membranes of the bacterium via an α-helical, inner membrane transporter; a periplasmic membrane fusion protein; and a β-barrel, outer membrane channel. One such efflux system, CusCBA, is responsible for extruding biocidal Cu(I) and Ag(I) ions. To remove these toxic ions, the CusC outer membrane channel must form a β-barrel structural domain, which creates a pore and spans the entire outer membrane. We here report the crystal structures of wild-type CusC, as well as two CusC mutants, suggesting that the first N-terminal cysteine residue plays an important role in protein–membrane interactions and is critical for the insertion of this channel protein into the outer membrane. These structures provide insight into the mechanisms on CusC folding and transmembrane channel formation. It is found that the interactions between CusC and membrane may be crucial for controlling the opening and closing of this β-barrel, outer membrane channel.  相似文献   

15.
Outer membrane protein A (OmpA), a major structural protein of the outer membrane of Escherichia coli, consists of an N-terminal 8-stranded beta-barrel transmembrane domain and a C-terminal periplasmic domain. OmpA has served as an excellent model for studying the mechanism of insertion, folding, and assembly of constitutive integral membrane proteins in vivo and in vitro. The function of OmpA is currently not well understood. Particularly, the question whether or not OmpA forms an ion channel and/or nonspecific pore for uncharged larger solutes, as some other porins do, has been controversial. We have incorporated detergent-purified OmpA into planar lipid bilayers and studied its permeability to ions by single channel conductance measurements. In 1 M KCl, OmpA formed small (50-80 pS) and large (260-320 pS) channels. These two conductance states were interconvertible, presumably corresponding to two different conformations of OmpA in the membrane. The smaller channels are associated with the N-terminal transmembrane domain, whereas both domains are required to form the larger channels. The two channel activities provide a new functional assay for the refolding in vitro of the two respective domains of OmpA. Wild-type and five single tryptophan mutants of urea-denatured OmpA are shown to refold into functional channels in lipid bilayers.  相似文献   

16.
《Anaerobe》2009,15(3):74-81
Thin sectioning and freeze-fracture-etch of the ovine ruminal isolate Mitsuokella multacida strain 46/5(2) revealed a Gram-negative envelope ultra-structure consisting of a peptidoglycan wall overlaid by an outer membrane. Sodium-dodecyl-sulfate-polyacrylamide gel electrophoretic (SDS-PAGE) analysis of whole cells, cell envelopes and Triton X-100 extracted envelopes in combination with thin-section and N-terminal sequence analyses demonstrated that the outer membrane contained two major proteins (45 and 43 kDa) sharing identical N-termini (A-A-N-P-F-S-D-V-P-A-D-H-W-A-Y-D). A gene encoding a protein with a predicted N-terminus identical to those of the 43 and 45 kDa outer-membrane proteins was cloned. The 1290 bp open reading frame encoded a 430 amino acid polypeptide with a predicted molecular mass of 47,492 Da. Cleavage of a predicted 23 amino acid leader sequence would yield a protein with a molecular mass of 45,232 Da. Mass spectroscopic analysis confirmed that the cloned gene (ompM1) encoded the 45 kDa outer-membrane protein. The N-terminus of the mature OmpM1 protein (residues 24–70) shared homology with surface-layer homology (SLH) domains found in a wide variety of regularly structured surface-layers (S-layers). However, the outer-membrane locale, resistance to denaturation by SDS and high temperatures and the finding that the C-terminal residue was a phenylalanine suggested that ompM1 encoded a porin. Threading analysis in combination with the identification of membrane spanning domains indicated that the C-terminal region of OmpM1 (residues 250–430) likely forms a 16-strand β-barrel and appears to be related to the unusual N-terminal SLH-domain-containing β-barrel-porins previously described in the cyanobacterium Synechococcus PCC6301.  相似文献   

17.
Colicin Ia, a channel‐forming bactericidal protein, uses the outer membrane protein, Cir, as its primary receptor. To kill Escherichia coli, it must cross this membrane. The crystal structure of Ia receptor‐binding domain bound to Cir, a 22‐stranded plugged β‐barrel protein, suggests that the plug does not move. Therefore, another pathway is needed for the colicin to cross the outer membrane, but no ‘second receptor’ has ever been identified for TonB‐dependent colicins, such as Ia. We show that if the receptor‐binding domain of colicin Ia is replaced by that of colicin E3, this chimera effectively kills cells, provided they have the E3 receptor (BtuB), Cir, and TonB. This is consistent with wild‐type Ia using one Cir as its primary receptor (BtuB in the chimera) and a second Cir as the translocation pathway for its N‐terminal translocation (T) domain and its channel‐forming C‐terminal domain. Deletion of colicin Ia's receptor‐binding domain results in a protein that kills E. coli, albeit less effectively, provided they have Cir and TonB. We show that purified T domain competes with Ia and protects E. coli from being killed by it. Thus, in addition to binding to colicin Ia's receptor‐binding domain, Cir also binds weakly to its translocation domain.  相似文献   

18.
The mechanism of TonB dependent siderophore uptake through outer membrane transporters in Gram-negative bacteria is poorly understood. In an effort to expand our knowledge of the interaction between TonB and the outer membrane transporters, we have cloned and expressed the FepA cork domain (11–154) from Salmonella typhimurium and characterized its interaction with the periplasmic C-terminal domain of TonB (103–239) by isotope assisted FTIR and NMR spectroscopy. For comparison we also performed similar experiments using the FecA N-terminal domain (1–96) from Escherichia coli which includes the conserved TonB box. The FepA cork domain was completely unfolded in solution, as observed for the E. coli cork domain previously [Usher et al. (2001) Proc Natl Acad Sci USA 98, 10676–10681]. The FepA cork domain was found to bind to TonB, eliciting essentially the same chemical shift changes in TonB C-terminal domain as was observed in the presence of TonB box peptides. The FecA construct did not cause this same structural change in TonB. The binding of the FepA cork domain to TonB-CTD was found to decrease the amount of ordered secondary structure in TonB-CTD. It is likely that the FecA N-terminal domain interferes with TonB-CTD binding to the TonB box. Binding of the FepA cork domain induces a loss of secondary structure in TonB, possibly exposing TonB surface area for additional intermolecular interactions such as potential homodimerization or additional interactions with the barrel of the outer membrane transporter.  相似文献   

19.
Autotransporters are a superfamily of proteins secreted by Gram-negative bacteria including many virulence factors. They are modular proteins composed of an N-terminal signal peptide, a surface-exposed ‘passenger’ domain carrying the activity of the protein, and a C-terminal ‘translocator’ domain composed of an α-helical linker region and a transmembrane β-barrel. The translocator domain plays an essential role for the secretion of the passenger domain across the outer membrane; however, the mechanism of autotransport remains poorly understood. The whooping cough agent Bordetella pertussis produces an autotransporter serine-protease, SphB1, which is involved in the maturation of an adhesin at the bacterial surface. SphB1 also mediates the proteolytic maturation of its own precursor. We used SphB1 as a model autotransporter and performed the first comparisons of the biochemical and biophysical properties of an isolated translocator domain with those of the same domain preceded by the C-terminal moiety of its natural passenger. By using cross-linking and dynamic light scattering, we provide evidence that the passenger domain promotes the auto-association of SphB1, although these interactions appear rather labile. Electrophysiological studies revealed that the passenger domain of the autotransporter appears to maintain the translocator channel in a low-conductance conformation, most likely by stabilizing the α-helix inside the pore. That the passenger may significantly influence AT physicochemical properties is likely to be relevant for the in vivo maturation and stability of AT proteins.  相似文献   

20.
The NSm nonstructural protein of Rift Valley fever virus (family Bunyaviridae, genus Phlebovirus) has an antiapoptotic function and affects viral pathogenesis. We found that NSm integrates into the mitochondrial outer membrane and that the protein''s N terminus is exposed to the cytoplasm. The C-terminal region of NSm, which contains a basic amino acid cluster and a putative transmembrane domain, targeted the protein to the mitochondrial outer membrane and exerted antiapoptotic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号