首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
Cellulase was produced by Acremonium cellulolyticus using untreated waste paper sludge (PS) as the carbon source. The clay present in PS did not show any inhibitory effect on cellulase production but did alter the pH during fermentation. On the flask scale, the maleate buffer concentration and pH were key factors that affected the efficiency of cellulase production from PS cellulose. Optimum cellulase production in a 3-L fermentor of working volume 1.5 L was achieved by controlling the pH value at 6.0 using 2 M NaOH and 2 M maleic acid, and the productivity reached 8.18 FPU/mL. When 40.89 g/L PS cellulose, 2.2 g/L (NH(4) )(2) SO(4) , and 4.4 g/L urea were added to a 48-h culture, the cellulase activity was 9.31 FPU/mL at the flask scale and 10.96 FPU/mL in the 3-L fermentor. These values are ~80% of those obtained when pure cellulose is used as the carbon source. The method developed here presents a new route for the utilization of PS.  相似文献   

3.
A feruloyl esterase catalyzes the hydrolysis of the 4-hydroxy-3-methoxycinnamoyl (feruloyl) group from esterified sugars in plant cell walls. Talaromyces cellulolyticus is a high cellulolytic-enzyme producing fungus. However, there is no report for feruloyl esterase activity of T. cellulolyticus. Analysis of the genome database of T. cellulolyticus identified a gene encoding a putative feruloyl esterase B. The recombinant enzyme was prepared using a T. cellulolyticus homologous expression system and characterized. The purified enzyme exhibited hydrolytic activity toward p-nitrophenyl acetate, p-nitrophenyl trans-ferulate, methyl ferulate, rice husk, and bagasse. HPLC assays showed that the enzyme released ferulic acid and p-coumaric acid from hydrothermal-treated rice husk and bagasse. Trichoderma sp. is well-known high cellulolytic-enzyme producing fungus useful for the lignocellulosic biomass saccharification. Interestingly, no feruloyl esterase has been reported from Trichoderma sp. The results show that this enzyme is expected to be industrially useful for biomass saccharification.  相似文献   

4.
5.
6.
产纤维素酶菌种TP1202的选育及产酶条件研究   总被引:6,自引:0,他引:6  
从腐木上分离到1株纤维素酶活较高的野生纤维素酶产生菌TP01,经鉴定为绿色木霉(Trichoderma viride)。以TP01为出发菌株,经紫外线、亚硝基胍、硫酸二乙酯和LiCl等物理化学诱变处理,最后得到1株高产突变株TP1202。通过对培养基中氮源、碳源、培养温度、培养时间、培养基的含水量、培养基的起始pH、培养基中葡萄糖含量的研究,测定Trichoderma viride TP1202纤维素酶的CMC和滤纸酶活,找到了产纤维素酶的较佳条件,即,稻草粉:麦麸=4:1,物料:水份=1:0.75-1,以(NH4)2SO4或NH4Cl为氮源,葡萄糖含量为1%-2%,起始pH为7.5,在30℃下培养96-120h左右,其酶活力为最高,每克干曲CMC酶和滤纸酶活分别达到28900U、604U,是出发菌株的3倍和6倍。  相似文献   

7.
Cellulase (CMCase) and xylanase enzyme production and saccharification of sugar cane bagasse were coupled into two stages and named enzyme production and sugar cane bagasse saccharification. The performance of Cellulomonas flavigena (Cf) PR‐22 cultured in a bubble column reactor (BCR) was compared to that in a stirred tank reactor (STR). Cells cultured in the BCR presented higher yields and productivity of both CMCase and xylanase activities than those grown in the STR configuration. A continuous culture with Cf PR‐22 was run in the BCR using 1% alkali‐pretreated sugar cane bagasse and mineral media, at dilution rates ranging from 0.04 to 0.22 1/h. The highest enzymatic productivity values were found at 0.08 1/h with 1846.4 ± 126.4 and 101.6 ± 5.6 U/L·h for xylanase and CMCase, respectively. Effluent from the BCR in steady state was transferred to an enzymatic reactor operated in fed‐batch mode with an initial load of 75 g of pretreated sugar cane bagasse; saccharification was then performed in an STR at 55°C and 300 rpm for 90 h. The constant addition of fresh enzyme as well as the increase in time of contact with the substrate increased the total soluble sugar concentration 83% compared to the value obtained in a batch enzymatic reactor. This advantageous strategy may be used for industrial enzyme pretreatment and saccharification of lignocellulosic wastes to be used in bioethanol and chemicals production from lignocellulose. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:321–326, 2016  相似文献   

8.
The filamentous fungus Trichoderma reesei is a potent cellulase producer and the best-studied cellulolytic fungus. A lot of investigations not only on glycoside hydrolases produced by T. reesei, but also on the machinery controlling gene expression of these enzyme have made this fungus a model organism for cellulolytic fungi. We have investigated the T. reesei strain including mutants developed in Japan in detail to understand the molecular mechanisms that control the cellulase gene expression, the biochemical and morphological aspects that could favor this phenotype, and have attempted to generate novel strains that may be appropriate for industrial use. Subsequently, we developed recombinant strains by combination of these insights and the heterologous-efficient saccharifing enzymes. Resulting enzyme preparations were highly effective for saccharification of various biomass. In this review, we present some of the salient findings from the recent biochemical, morphological, and molecular analyses of this remarkable cellulase hyper-producing fungus.  相似文献   

9.
从万古霉素抗性突变体中筛选碱性纤维素酶高产菌株   总被引:2,自引:0,他引:2  
以芽胞杆菌 X—6 为出发菌株,经甲基磺酸乙酯( E M S) 和紫外线( U V) 复合诱变,选育万古霉素抗性突变体。研究结果表明,抗药性突变株碱性羧甲基纤维素酶( C M Case) 产量提高的正变率和正变幅度明显高于非抗药性菌株。从抗性突变株中获得 E V23 菌株,其产酶活力比出发株 X—6 提高320 % ,酶活力达353u/ ml。  相似文献   

10.
纤维素酶制备过程中不同底物、菌种的研究   总被引:2,自引:0,他引:2  
比较用两个菌(黑氏木霉Trichoderma reesei RutC-30及其改良菌种)和不同的纤维底物备纤维素酶解效果与酶系构成,研究表明,以玉米秸秆米为底物,发言奶菌种产酶时间比里氏木霉早2天,且改良菌种滤纸酶活要比里氏木霉高,分别为2.39FPIU/mL和1.85FPIU/mL,里木氏霉已实际运用到生产工艺中,如把改良菌种运用至生产工艺必将产生可观的经济效益。  相似文献   

11.
Ethanol from lignocellulosic biomass is being pursued as an alternative to petroleum-based transportation fuels. To succeed in this endeavour, efficient digestion of cellulose into monomeric sugar streams is a key step. Current production systems for cellulase enzymes, i.e. fungi and bacteria, cannot meet the cost and huge volume requirements of this commodity-based industry. Transgenic maize ( Zea mays L.) seed containing cellulase protein in embryo tissue, with protein localized to the endoplasmic reticulum, cell wall or vacuole, allows the recovery of commercial amounts of enzyme. E1 cellulase, an endo-β-1,4-glucanase from Acidothermus cellulolyticus , was recovered at levels greater than 16% total soluble protein (TSP) in single seed. More significantly, cellobiohydrolase I (CBH I), an exocellulase from Trichoderma reesei , also accumulated to levels greater than 16% TSP in single seed, nearly 1000-fold higher than the expression in any other plant reported in the literature. The catalytic domain was the dominant form of E1 that was detected in the endoplasmic reticulum and vacuole, whereas CBH I holoenzyme was present in the cell wall. With one exception, individual transgenic events contained single inserts. Recovery of high levels of enzyme in T2 ears demonstrated that expression is likely to be stable over multiple generations. The enzymes were active in cleaving soluble substrate.  相似文献   

12.
Among cellulase genes, those of animals are known for their difficulty in overexpression. We constructed a chimeric library by family shuffling of endo-beta-1,4-glucanase genes from four different termite species (Reticulitermes speratus, Nasutitermes takasagoensis, Coptotermes formosanus, and Coptotermes acinaciformis) sharing 78.5-96% homology in amino acid sequence. The constructed library was screened by Congo red plate assay combined with 96-well micro-enzyme assay, and clones showing enhanced CMCase activities were obtained. The mutated genes were overexpressed in Escherichia coli intracellularly as an active form. The endo-beta-1,4-glucanase (CMCase) activity in soluble fractions of E. coli harboring the mutant genes was 20-30 fold higher than that of wild-type genes. The mutant enzyme showed high activity against CMC and properties similar to those of the native enzymes.  相似文献   

13.
Park EY  Naruse K  Kato T 《Bioresource technology》2011,102(10):6120-6127
Cellulase production in cultures of Acremonium cellulolyticus was significantly improved by using waste milk pack (MP) that had been pretreated with cellulase. When MP cellulose pretreated with cellulase (3 FPU/g MP) for 12 h was used as the sole carbon source for A. cellulolyticus culture in a 3-L fermentor, the cellulase activity was 16 FPU/ml. This was 25-fold higher (0.67 FPU/ml) compared with untreated MP cellulose and was comparable to that achieved with pure cellulose (Solka Floc). As the pretreatment progressed, roughness on the surface of untreated MP cellulose became to be smooth, but development of fissures on the surface of pretreated MP cellulose was observed. Cellulase pretreatment of MP increased both the accessibility of A. cellulolyticus to the surface and number of adsorption sites of cellulase on the surface of MP cellulose, leading to improved cellulase production in the A. cellulolyticus.  相似文献   

14.
The structure and content of endoplasmic reticulum (ER) were studied in the shake cultures of two strains of Trichoderma reesei, one wild type (QM6a) and the other a cellulase (EC 3.2.1.4) hyper-producing and catabolite repression resistant mutant (RUT-C30). The results of quantitative electron microscopic and biochemical assays were correlated. At the stage of growth when cellulase secretion was high the ER in RUT-C30 cells was highly developed and more abundant than the ER in QM6a cells. A process regulating ER biogenesis may have been deactivated by mutation in RUT-C30 cells and thus the potential for extracellular enzyme synthesis and secretion has been enhanced.  相似文献   

15.
乳链菌肽自身免疫基因nisI的表达对乳链菌肽产量的影响   总被引:1,自引:0,他引:1  
【目的】通过基因工程手段增加乳链菌肽(nisin)自身免疫基因nisI在nisin产生菌Lactococcus lactisNZ9800/pHJ201中的表达水平,增强该菌对nisin的抗性,从而达到提高nisin产量的目的。【方法】将带有强组成型启动子P59的免疫基因nisI克隆到nisin表达质粒pHJ201上,将重组质粒引入L.lactis NZ9800中,使nisI基因过量表达,得到重组菌株L.lactis NZ9800/pHMI,并比较该重组菌株与对照菌株L.lactis NZ9800/pHJ201的生长曲线、对nisin的抗性水平、抑菌活性及nisin产量的差异。【结果】nisI的表达对重组菌的生长速度没有明显的影响,却能促使重组菌株对nisin的抗性水平提高25%、在发酵6h和8h时,nisin的产量分别提高32%和25%。【结论】增加乳链菌肽自身免疫基因nisI的表达可以提高产生菌对nisin的抗性,从而提高乳链菌肽产量。  相似文献   

16.
Escherichia coli heat-labile enterotoxin (LT) mutants containing Val60→Gly or Ser114→Lys substitutions in the A subunit do not produce the A subunit efficiently in E. coli. These mutants accumulate mostly the B pentamer devoid of the A subunit in the periplasmic space. Here we show that overproduction of the periplasmic chaperone DsbA, which is involved in disulfide bond formation, in a strain deficient in the periplasmic protease DegP allows efficient production of the mutant LT molecules. Our results suggest that the formation of the oligomeric toxin is influenced by DsbA, which helps protein folding, and by DegP, which removes the folded intermediates that can be untoxic for the cell. Received: 30 October 1996 / Accepted: 8 January 1997  相似文献   

17.
The objective of this study was to evaluate the effectiveness of supplementation of cellulase and xylanase to diets of growing goats to improve nutrient digestibility, utilisation of energy and mitigation of enteric methane emissions. The experiment was conducted in a 5 × 5 Latin square design using five goats with permanent rumen fistulae and five treatments consisted of two levels of cellulase crossed over with two levels of xylanase plus unsupplemented Control. The cellulase (243 U/g) derived from Neocallimastix patriciarum was added at 0.8 and 1.6 g/kg dry matter intake (DMI) and the xylanase (31,457 U/ml) derived from Aspergillus oryzae was fed at 1.4 and 2.2 ml/kg DMI. There were no differences in apparent digestibility of organic matter, neutral detergent fibre, acid detergent fibre and rumen fermentation parameters (i.e. ammonia-nitrogen [N], volatile fatty acids) among all treatments. Dietary cellulase and xylanase addition did not influence energy and N utilisation. But compared to xylanase addition at the higher dose, at the low xylanase dose the retained N, the availability of retained N and digested N were increased (< 0.01). Moreover, enzyme addition did not affect the enteric methane emission and community diversity of ruminal methanogens. The present results indicated that previous in vitro findings were not confirmed in ruminant trials.  相似文献   

18.
Abstract

In this context, carboxymethyl cellulase (CMCase) production from Glutamicibacter arilaitensis strain ALA4 was initially optimized by one factor at a time (OFAT) method using goat dung as proficient feedstock. Two-level full factorial design (25 factorial matrix) using first-order polynomial model revealed the significant (p?<?0.05) influence of pH, moisture, and peptone on CMCase activity. Central composite design at N?=?20 was further taken into account using a second-order polynomial equation, and thereby liberated maximum CMCase activity of 4925.56?±?31.61?U/g in the goat dung medium of pH 8.0 and 100% moisture containing 1% (w/w) peptone, which was approximately two fold increment with respect to OFAT method. Furthermore, the partially purified CMCase exhibited stability not only at high pH and temperature but also in the presence of varied metal ions, organic solvents, surfactants, and inhibitors with pronounced residual activities. The enzymatic hydrolysis using partially purified CMCase depicted the maximum liberation of fermentable sugars from alkali pretreated lignocellulosic wastes biomass in the order of paddy straw (13.8?±?0.15?mg/g)?>?pomegranate peel (9.1?±?0.18?mg/g)?>?sweet lime peel (8.37?±?0.16?mg/g), with saccharification efficiency of 62.1?±?0.8, 40.95?±?0.4, and 37.66?±?0.4%, respectively after 72?hr of treatment.  相似文献   

19.
斜卧青霉Penicillium decumbens T.是1种重要的产纤维素酶丝状真菌,能有效地降解利用木质纤维素生产第2代生物燃料。为了提高斜卧青霉纤维素酶的产量,构建了去泛素化酶基因creB的敲除盒,并通过同源双交换重组的方法,获得了creB基因缺失突变株ΔcreB。该突变株呈现明显的纤维素酶表达分泌抗葡萄糖代谢阻遏效应,ΔcreB菌株的滤纸酶活、内切纤维素酶活、木聚糖酶活以及外切纤维素酶活分别提高1.8倍、1.71倍、2.06倍以及2.04倍,其胞外蛋白质含量提高了2.68倍。确定了creB基因缺失突变株具有抗碳源代谢物阻遏的生理现象,CREB对斜卧青霉生产纤维素酶的能力具有显著影响,为系统改造丝状真菌高产纤维素酶菌株提供了理论指导。  相似文献   

20.
纤维素酶液体发酵最佳培养基的确定   总被引:11,自引:0,他引:11  
用响应面法对里氏木霉WX—112液体发酵产纤维素酶的培养基进行了优化。首先用快速登高路径逼近最大产酶区域,然后根据快速登高法的实验结果进行响应面实验。运用逐步回归分析法,获得滤纸酶活与豆饼粉、麸皮、KH2PO4、微晶纤维素粉(Avicel)的最优回归方程,且分析了各因子间的交互效应。最后,通过岭脊分析确定了滤纸酶活达最大值10.53IU/mL时的最佳组合条件:豆饼粉3.18%、麸皮2.95%、KH2PO4 0.25%、Avicel 3.79%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号