首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We found a novel cyclodextrin glucanotransferase (CGTase) from alkalophilic Bacillus sp. G-825-6. The enzyme was expressed in the culture broth by recombinant Bacillus subtilis KN2 and was purified and characterized. The enzyme named CGTase825-6 showed 95% amino acid sequence identity with a known enzyme β-/γ-CGTase from Bacillus firmus/lentus 290-3. However, the product specificity of CGTase825-6 differed from that of β-/γ-CGTase. CGTase825-6 produced γ-cyclodextrin (CD) as the main product, but degradation of γ-CD was observed with prolonged reaction. The product specificity of the enzyme was positioned between γ-CGTase produced by Bacillus clarkii 7364 and B. firmus/lentus 290-3 β-/γ-CGTase. It showed that the difference of product specificity was dependent on only 28 amino acid residues in 671 residues in CGTase825-6. We compared the amino acid sequence of CGTase825-6 and those of other CGTases and constructed a protein structure model of CGTase825-6. The comparison suggested that the diminished loop (Val138-Asp142) should provide subsite -8 for γ-CD production and that Asp142 might have an important role in product specificity. CGTase825-6 should be a useful tool to produce γ-CD and to study the differences of producing mechanisms between γ-CD and β-CD.  相似文献   

3.
d(+)-Carnitine dehydrogenase from Agrobacterium sp. catalyzes the oxidation of d(+)-carnitine to 3-dehydrocarnitine as initial step of d(+)-carnitine degradation. The NAD+-specific, cytosolic enzyme was purified 126-fold to apparent electrophoretic homogeneity by 4 chromatographic steps. The molecular mass of the native enzyme was estimated to be 88 kDa by size-exclusion chromatography. It seems to be composed of 3 identical subunits with a relative molecular mass of 28 kDa as found by sodium dodecyl sulfate polyacrylamide gel electrophoresis and laser-induced mass spectrometry. The isoelectric point was found to be 4.7–5.0. The optimum temperature is 37°C and the optimum pH for the oxidation and the reduction reaction are 9.0–9.5 and 5.5–6.5, respectively. The purified enzyme was further characterized with respect to substrate specificity, kinetic parameters and amino terminal sequence. Analogues of d(+)-carnitine (l(−)-carnitine, crotonobetaine, γ-butyrobetaine, carnitine amide, glycine betaine, choline) are competitive inhibitors of d(+)-carnitine oxidation. The equilibrium constant of the reaction of d(+)-carnitine dehydrogenase was determined to be 2.2 × 10−12. The purified d(+)-carnitine dehydrogenase has similar kinetic properties to the l(−)-carnitine dehydrogenase from the same microorganism as well as to l(−)-carnitine dehydrogenases of other bacteria.  相似文献   

4.
Purpose of work The purpose of this study is to report a thermostable λ-carrageenase that can degrade λ-carrageenan yielding neo-λ-carrabiose at 75 °C. A thermophilic strain Lc50-1 producing λ-carrageenase was isolated from a hot spring in Indonesia and identified as a Bacillus sp. The λ-carrageenase, Cga-L50, with an apparent molecular weight of 37 kDa and a specific activity of 105 U/mg was purified from the culture supernatant. The optimum pH and temperature of Cga-L50 were 8.0 and 75 °C, respectively. The enzyme was stable from pH 6–9 and retained ~50 % activity after holding at 85 °C for 10 min. Significant activation of Cga-L50 was observed with K+, Ca2+, Co2+, and Na+; whereas, the enzyme activity was inhibited by Sr2+, Mn2+, Fe2+, Cu2+,Cd2+, Mg2+, and EDTA. Cga-L50 is an endo-type λ-carrageenase that hydrolyzes β-1,4-linkages of λ-carrageenan, yielding neo-λ-carrabiose as the main product. This study is the first to present evidence of thermostable λ-carrageenase from hot spring bacteria.  相似文献   

5.
Summary A -cyclodextrin glucosyltransferase was purified from alkalophilic Bacillus sp. No. 562 over 64-fold with a yield of 32%. Its molecular size was estimated to be 170 kDa by gel filtration and 82 kDa by SDS-PAGE, with a pI of 7.2. The enzyme showed optimum activity at 65 °C and pH 7.0. It was stable from 0 to70 °C and from pH 7.0 to 11.0. The enzyme was specifically inhibited by Fe2+ and Fe3+.  相似文献   

6.
κ-Carrageenases exhibit apparent distinctions in gene sequence, molecular weight, enzyme properties, and posttranslational processes. In this study, a new κ-carrageenase gene named cgkZ was cloned from the marine bacterium Zobellia sp. ZM-2. The gene comprised an open reading frame of 1,638 bp and encoded 545 amino acids. The natural signal peptide of κ-carrageenase was used successfully for the secretory production of the recombinant enzyme in Escherichia coli. A posttranslational process that removes an amino acid sequence of about 20 kDa from the C-terminal end of κ-carrageenase was first discovered in E. coli. An increase in enzyme activity by 167.3 % in the presence of 5 mM DTT was discovered, and Na+ at a certain concentration range was positively correlated with enzyme activity. The κ-carrageenase production of E. coli was 9.0 times higher than that of ZM-2. These results indicate the potential use of the enzyme in the biotechnological industry.  相似文献   

7.
A putative -glucosidase clone has been isolated from a cDNA library constructed from mRNA of barley aleurones treated with gibberellin A3 (GA). The clone is 2752 bp in length and has an uninterrupted open reading frame encoding a polypeptide of 877 amino acids. A 680 amino acid region is 43% identical to human lysosomal -glucosidase and other glycosyl hydrolases. In isolated aleurones, the levels of the corresponding mRNA increase strongly after the application of GA, similar to the pattern exhibited by low-pI -amylase mRNA. High levels are also observed in the aleurone and scutellum after germination, while low levels are found in developing seeds. The genome contains a single form of this -glucosidase gene and two additional sequences that may be related genes or pseudogenes.Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

8.
9.
10.
Purification of a cis-epoxysuccinic acid hydrolase was achieved by ammonium sulfate precipitation, ionic exchange chromatography, hydrophobic interaction chromatography followed by size-exclusion chromatography. The enzyme was purified 177-fold with a yield of 14.4%. The apparent molecular mass of the enzyme was determined to be 33 kDa under denaturing conditions. The optimum pH for enzyme activity was 7.0, and the enzyme exhibited maximum activity at about 45 °C in 50 mM sodium phosphate buffer (pH 7.5). EDTA and o-phenanthrolin inhibited the enzyme activity remarkably, suggesting that the enzyme needs some metal cation to maintain its activity. Results of inductively coupled plasma mass spectrometry analysis indicated that the cis-epoxysuccinic acid hydrolase needs Zn2+ as a cofactor. Eight amino acids sequenced from the N-terminal region of the cis-epoxysuccinic acid hydrolase showed the same sequence as the N-terminal region of the beta subunit of the cis-epoxysuccinic acid hydrolase obtained from Alcaligenes sp.  相似文献   

11.
An extracellular β-galactosidase which catalyzed the production of galacto-oligosaccharide from lactose was harvested from the late stationary-phase of Bacillus sp MTCC 3088. The enzyme was purified 36.2-fold by ZnCl2 precipitation, ion exchange, hydrophobic interaction and gel filtration chromatography with an overall recovery of 12.7%. The molecular mass of the purified enzyme was estimated to be about 484 kDa by gel filtration on a Sephadex G-200 packed column and the molecular masses of the subunits were estimated to be 115, 86.5, 72.5, 45.7 and 41.2 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point of the native enzyme, determined by polyacrylamide gel electrofocusing, was 6.2. The optimum pH and temperature were 8 and 60°C, respectively. The Michaelis–Menten constants determined with respect to o-NO2-phenyl-β-D-galactopyranoside and lactose were 6.34 and 6.18 mM, respectively. The enzyme activity was strongly inhibited (68%) by galactose, the end product of lactose hydrolysis reaction. The β-galactosidase was specific for β-D anomeric linkages. Enzyme activity was significantly inhibited by metal ions (Hg2+, Cu2+ and Ag+) in the 1–2.5 mM range. Mg2+ was a good activator. Catalytic activity was not affected by the chelating agent EDTA. Journal of Industrial Microbiology & Biotechnology (2000) 24, 58–63. Received 09 February 1999/ Accepted in revised form 24 September 1999  相似文献   

12.
We recently found that two apoptotic DNase γ-like endonucleases (36 and 38kDa DNases) were present in Xenopus laevis larval and adult liver cell nuclei and that their activities increased in metamorphic climax. Here, we purified the main DNase γ-like endonuclease from Xenopus laevis liver cell nuclei and characterized its physical and enzymatic properties in detail. The molecular mass of Xenopus liver nuclear endonuclease was 38,000 daltons as determined by SDS-polyacrylamide gel electrophoresis. A native molecular mass of 35,000 was estimated by gel filtration. The purified Xenopus liver endonuclease was a neutral one and required both Ca2+ and Mg2+ for DNase activity. Unlike the mammalian DNase γ, the Ca2+/Mg2+ requirement could not be supplied by Mn2+. The inhibition profiles by aurintricarboxylic acid, sodium citrate and divalent metal ions such as Co2+, Ni2+, Cu2+ and Zn2+ were similar to those of mammalian DNase γ. These results suggest that this endonuclease is a Xenopus laevis homolog of the mammalian apoptotic endonuclease DNase γ. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
γ-Glutamylmethylamide synthetase [L-glutamate: methylamine ligase (ADP-forming), EC 6.3.4.12] was purified about 70-fold from a cell-free extract of Methylophaga sp. AA-30 by ammonium sulfate fractionation, Octyl-Sepharose column chromatography, and Sephacryl S-300 gel filtration. Only a single protein band was detected after SDS-polyacrylamide gel electrophoresis of the purified preparation; the band was at a position corresponding to a molecular weight of 56,000. The molecular weight of the enzyme was calculated to be 440,000 by Superose 6HR gel filtration, so we suggest that the enzyme is an octomer of identical subunits. The enzyme had maximum activity at pH 7.5 and 40°C. It could use ethylamine and propylamine instead of methylamine as the substrate, but it could not use D-glutamate or L-glutamine instead of L-glutamate.  相似文献   

14.
α-Amylase (EC 3.2.1.1) hydrolyzes an internal α-1,4-glucosidic linkage of starch and related glucans. Alkalophilic liquefying enzymes from Bacillus species are utilized as additives in dishwashing and laundry detergents. In this study, we found that Bacillus sp. AAH-31, isolated from soil, produced an alkalophilic liquefying α-amylase with high thermostability. Extracellular α-amylase from Bacillus sp. AAH-31 (AmyL) was purified in seven steps. The purified enzyme showed a single band of 91 kDa on SDS-PAGE. Its specific activity of hydrolysis of 0.5% soluble starch was 16.7 U/mg. Its optimum pH and temperature were 8.5 and 70 °C respectively. It was stable in a pH range of 6.4-10.3 and below 60 °C. The calcium ion did not affect its thermostability, unlike typical α-amylases. It showed 84.9% of residual activity after incubation in the presence of 0.1% w/v of EDTA at 60 °C for 1 h. Other chelating reagents (nitrilotriacetic acid and tripolyphosphate) did not affect the activity at all. AmyL was fully stable in 1% w/v of Tween 20, Tween 80, and Triton X-100, and 0.1% w/v of SDS and commercial detergents. It showed higher activity towards amylose than towards amylopectin or glycogen. Its hydrolytic activity towards γ-cyclodextin was as high as towards short-chain amylose. Maltotriose was its minimum substrate, and maltose and maltotriose accumulated in the hydrolysis of maltooligosaccharides longer than maltotriose and soluble starch.  相似文献   

15.
An agar-degrading Thalassomonas bacterium, strain JAMB-A33, was isolated from the sediment off Noma Point, Japan, at a depth of 230 m. A novel -agarase from the isolate was purified to homogeneity from cultures containing agar as a carbon source. The molecular mass of the purified enzyme, designated as agaraseA33, was 85 kDa on both SDS-PAGE and gel-filtration chromatography, suggesting that it is a monomer. The optimal pH and temperature for activity were about 8.5 and 45°C, respectively. The enzyme had a specific activity of 40.7 U/mg protein. The pattern of agarose hydrolysis showed that the enzyme is an endo-type -agarase, and the final main product was agarotetraose. The enzyme degraded not only agarose but also agarohexaose, neoagarohexaose, and porphyran.  相似文献   

16.
Cellulomonas sp. isolated from soil produces a high level of α-mannosidase (α-mannanase) inductively in culture fluid. The enzyme had two different molecular weight forms, and the properties of the high-molecular-weight form were reported previously (Takegawa, K. et al.: Biochim. Biophys. Acta, 991, 431–437, 1989). The low-molecular-weight α-mannosidase was purified to homogeneity by polyacrylamide gel electrophoresis. The molecular weight of the enzyme was over 150,000 by gel filtration. Unlike the high-molecular-weight form, the low-molecular-weight enzyme readily hydrolyzed α-1,2- and α-1,3-linked mannose chains.  相似文献   

17.
The purification and characterization of an extracellular α-l-arabinofuranosidase (α-l-AFase) from Chaetomium sp. was investigated in this report. The α-l-AFase was purified to homogeneity with a purification fold of 1030. The purified α-l-AFase had a specific activity of 20.6 U mg?1. The molecular mass of the enzyme was estimated to be 52.9 kDa and 51.6 kDa by SDS–PAGE and gel filtration, respectively. The optimal pH and temperature of the enzyme were pH 5.0 and 70 °C, respectively. The enzyme was stable over a broad pH range of 4.0–10.0 and also exhibited excellent thermostability, i.e., the residual activities reached 75% after treatment at 60 °C for 1 h. The enzyme showed strict substrate specificity for the α-l-arabinofuranosyl linkage. The Km and Vmax values for p-nitrophenyl (pNP)-α-l-arabinofuranoside were calculated to be 1.43 mM and 68.3 μmol min?1 mg?1 protein, respectively. Furthermore, the gene encoding α-l-AFase was cloned and sequenced and found to contain a catalytic domain belonging to the glycoside hydrolase (GH) family 43 α-l-AFase. The deduced amino acid sequence of the gene showed the highest identity (67%) to the putative α-l-AFase from Neurospora crassa. This is the first report on the purification, characterization and gene sequence of an α-l-AFase from Chaetomium sp.  相似文献   

18.
A novel 1,170 bp β-galactosidase gene sequence from Halomonas sp. S62 (BGalH) was identified through whole genome sequencing and was submitted to GenBank (Accession No. JQ337961). The BGalH gene was heterologously expressed in Escherichia coli BL21(DE3) cells, and the enzymatic properties of recombinant BGalH were studied. According to the polyacrylamide gel electrophoresis results and the sequence alignment analysis, BGalH is a dimeric protein and cannot be classified into one of the known β-galactosidase families (GH1, GH2, GH35, GH42). The optimal pH and temperature were determined to be 7.0 and 45 °C, respectively; the K m and K cat were 2.9 mM and 390.3 s?1, respectively, for the reaction with the substrate ortho-nitrophenyl-β-d-galactopyranoside. At 0–20 °C, BGalH exhibited 50–70 % activity relative to its activity under the optimal conditions. BGalH was stable over a wide range of pHs (6.0–8.5) after a 1 h incubation (>93 % relative activity) and was thermostable at 50 °C and below (>60 % relative activity). The enzyme hydrolyzes lactose completely in milk over 24 h at 7 °C. The characteristics of this novel β-galactosidase suggest that BGalH may be a good candidate for medical researches and food industry applications.  相似文献   

19.

A novel gene (ANK58566) encoding a cold-active α-amylase was cloned from marine bacterium Bacillus sp. dsh19-1 (CCTCC AB 2015426), and the protein was expressed in Escherichia coli. The gene had a length of 1302 bp and encoded an α-amylase of 433 amino acids with an estimated molecular mass of 50.1 kDa. The recombinant α-amylase (AmyD-1) showed maximum activity at 20 °C and pH 6.0, and retained about 35.7% of activity at 4 °C. The AmyD-1 activity was stimulated by Ca2+ and Na+. However, the chelating agent, EDTA, inactivated the enzyme. Moreover, AmyD-1 displayed extreme salt tolerance, with the highest activity in the presence of 2.0 M NaCl and 60.5% of activity in 5.0 M NaCl. The Km, Vmax and kcat of AmyD-1 in 2.0 M NaCl were 2.8 mg ml−1, 21.8 mg ml−1 min−1 and 933.5 s−1, respectively, at 20 °C and pH 6.0 with soluble starch as substrate. MALDI-TOF MS (Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry) revealed that the end products of starch hydrolysis by AmyD-1 were glucose, maltose, maltotriose, maltotetraose, and malt oligosaccharides. Thus, AmyD-1 is one of the very few α-amylases that can tolerate low temperatures and high salt concentrations, which makes it to be a potential candidate for research in basic and applied microbiology.

  相似文献   

20.
Marine bacterium Reinekea sp. KIT-YO10 was isolated from the seashore of Kanazawa Port in Japan as a seaweed-degrading bacterium. Homology between KIT-YO10 16S rDNA and the 16S rDNA of Reinekea blandensis and Reinekea marinisedimentorum was 96.4 and 95.4%, respectively. Endo-1,4-β-D-mannanase (β-mannanase, EC 3.2.1.78) from Reinekea sp. KIT-YO10 was purified 29.4-fold to a 21% yield using anion exchange chromatography. The purified enzyme had a molecular mass of 44.3?kDa, as estimated by SDS-PAGE. Furthermore, the purified enzyme displayed high specificity for konjac glucomannan, with no secondary agarase and arginase activity detected. Hydrolysis of konjac glucomannan and locust bean gum yielded oligosaccharides, compatible with an endo mode of substrate depolymerization. The purified enzyme possessed transglycosylation activity when mannooligosaccharides (mannotriose or mannotetraose) were used as substrates. Optimal pH and temperature were determined to be 8.0 and 70?°C, respectively. It showed thermostability at temperatures from 20 to 50?°C and alkaline stability up to pH 10.0. The current enzyme was thermostable and thermophile compared to the β-mannanase of other marine bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号