首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the identification and characterization of the eps gene cluster of Streptococcus thermophilus Sfi6 required for exopolysaccharide (EPS) synthesis. This report is the first genetic work concerning EPS production in a food microorganism. The EPS secreted by this strain consists of the following tetrasaccharide repeating unit:-->3)-beta-D-Galp-(1-->3)-[alpha-D-Galp-(1-->6)]-beta-D- D-Galp-(1-->3)-alpha-D-Galp-D-GalpNAc-(1-->. The genetic locus The genetic locus was identified by Tn916 mutagenesis in combination with a plate assay to identify Eps mutants. Sequence analysis of the gene region, which was obtained from subclones of a genomic library of Sfi6, revealed a 15.25-kb region encoding 15 open reading frames. EPS expression in the non-EPS-producing heterologous host, Lactococcus lactis MG1363, showed that within the 15.25-kb region, a region with a size of 14.52 kb encoding the 13 genes epsA to epsM was capable of directing EPS synthesis and secretion in this host. Homology searches of the predicted proteins in the Swiss-Prot database revealed high homology (40 to 68% identity) for epsA, B, C, D, and E and the genes involved in capsule synthesis in Streptococcus pneumoniae and Streptococcus agalactiae. Moderate to low homology (37 to 18% identity) was detected for epsB, D, F, and H and the genes involved in capsule synthesis in Staphylococcus aureus for epsC, D, and E and the genes involved in exopolysaccharide I (EPSI) synthesis in Rhizobium meliloti for epsC to epsJ and the genes involved in lipopolysaccharide synthesis in members of the Enterobacteriaceae, and finally for eps K and lipB of Neisseria meningitidis. Genes (epsJ, epsL, and epsM) for which the predicted proteins showed little or no homology with proteins in the Swiss-Prot database were shown to be involved in EPS synthesis by single-crossover gene disruption experiments.  相似文献   

2.
The genes responsible for exopolysaccharide (EPS) synthesis in Streptococcus thermophilus Sfi39 were identified on a 20-kb genomic fragment. The two genes, epsE and epsG, were shown to be involved in EPS synthesis as their disruption lead to the loss of the ropy phenotype. Several naturally selected nonropy mutants were isolated, one acquired an insertion sequence (IS)-element (IS905) in the middle of the eps gene cluster. The eps gene cluster was cloned and transferred into a nonEPS-producing heterologous host, Lactococcus lactis MG1363. The EPS produced was shown by chemical analysis and NMR spectroscopy to be identical to the EPS produced by S. thermophilus Sfi39. This demonstrated first that all genes needed for EPS production and export were present in the S. thermophilus Sfi39 eps gene cluster, and second that the heterologous production of an EPS was possible by transfer of the complete eps gene cluster alone, provided that the heterologous host possessed all necessary genetic information for precursor synthesis.  相似文献   

3.
4.
Streptococcus thermophilus Sfi6 produces an exopolysaccharide (EPS) composed of glucose, galactose and N-acetylgalactosamine in the molar ratio of 1:2:1. The genes responsible for the EPS biosynthesis have been isolated previously and found to be clustered in a 14.5 kb region encoding 13 genes. Transfer of this gene cluster into a non-EPS-producing heterologous host, Lactococcus lactis MG1363, yielded an EPS with a similar high molecular weight, but a different structure from the EPS from the native host. The structure of the recombinant EPS was determined by means of 1H homonuclear and 1H-13C heteronuclear two-dimensional nuclear magnetic resonance (NMR) spectra and was found to be --> 3)-beta-D-Glcp-(1 --> 3)-alpha-D-Galp-(1 --> 3)-beta-D-Galp-(1 --> as opposed to --> 3)[alpha-D-Galp-(1 --> 6)]-beta-D-Glcp-(1 --> 3)-alpha-D-GalpNAc-(1 --> 3)-beta-D-Galp-(1 --> for the wild-type S. thermophilus Sfi6. Furthermore, L. lactis MG1363 (pFS101) was also lacking a UDP-N-acetylglucosamine C4-epimerase activity, which would provide UDP-GalNAc for a GalNAc incorporation into the EPS and probably caused the substitution of GalNAc by Gal in the recombinant EPS. This modification implies that (i) bacterial glycosyltransferases could potentially have multiple specificities for the donor and the acceptor sugar molecule; and (ii) the repeating unit polymerase can recognize and polymerize a repeating unit that differs in the backbone as well as in the side-chain from its native substrate.  相似文献   

5.
Galactose transport in Streptococcus thermophilus.   总被引:4,自引:2,他引:2       下载免费PDF全文
Although Streptococcus thermophilus accumulated [14C]lactose in the absence of an endogenous energy source, galactose-fermenting (Gal+) cells were unable to accumulate [14C]galactose unless an additional energy source was added to the test system. Both Gal+ and galactose-nonfermenting (Gal-) strains transported galactose when preincubated with sucrose. Accumulation was inhibited 50 or 95% when 10 mM sodium fluoride or 1.0 mM iodoacetic acid, respectively, was added to sucrose-treated cells, indicating that ATP was required for galactose transport activity. Proton-conducting ionophores also inhibited galactose uptake, although N,N'-dicyclohexyl carbodiimide had no effect. The results suggest that galactose transport in S. thermophilus occurs via an ATP-dependent galactose permease and that a proton motive force is involved. The galactose permease in S. thermophilus TS2b (Gal+) had a Km for galactose of 0.25 mM and a Vmax of 195 micromol of galactose accumulated per min per g (dry weight) of cells. Several structurally similar sugars inhibited galactose uptake, indicating that the galactose permease had high affinities for these sugars.  相似文献   

6.
Galactokinase activity in Streptococcus thermophilus.   总被引:6,自引:3,他引:3       下载免费PDF全文
ATP-dependent phosphorylation of [14C]galactose by 11 strains of Streptococcus thermophilus indicated that these organisms possessed the Leloir enzyme, galactokinase (galK). Activities were 10 times higher in fully induced, galactose-fermenting (Gal+) strains than in galactose-nonfermenting (Gal-) strains. Lactose-grown, Gal- cells released free galactose into the medium and were unable to utilize residual galactose or to induce galK above basal levels. Gal+ S. thermophilus 19258 also released galactose into the medium, but when lactose was depleted growth on galactose commenced, and galK increased from 0.025 to 0.22 micromol of galactose phosphorylated per min per mg of protein. When lactose was added to galactose-grown cells of S. thermophilus 19258, galK activity rapidly decreased. These results suggest that galK in Gal+ S. thermophilus is subject to an induction-repression mechanism, but that galK cannot be induced in Gal- strains.  相似文献   

7.
8.
Streptococcus thermophilus AO54 possesses a single manganese-containing superoxide dismutase (MnSOD). The enzyme was found to be insensitive to cyanide or to a modified H2O2 treatment. The enzyme is expressed in a growth-phase-dependent fashion, increasing three- to fourfold upon entry into stationary phase. The specific activity for MnSOD was the same under anaerobic or aerobic conditions and was not induced by the presence of paraquat under aerobic conditions.  相似文献   

9.
10.
Autolysis of Streptococcus thermophilus   总被引:1,自引:0,他引:1  
  相似文献   

11.
12.
Although Streptococcus thermophilus accumulated [14C]lactose in the absence of an endogenous energy source, galactose-fermenting (Gal+) cells were unable to accumulate [14C]galactose unless an additional energy source was added to the test system. Both Gal+ and galactose-nonfermenting (Gal-) strains transported galactose when preincubated with sucrose. Accumulation was inhibited 50 or 95% when 10 mM sodium fluoride or 1.0 mM iodoacetic acid, respectively, was added to sucrose-treated cells, indicating that ATP was required for galactose transport activity. Proton-conducting ionophores also inhibited galactose uptake, although N,N'-dicyclohexyl carbodiimide had no effect. The results suggest that galactose transport in S. thermophilus occurs via an ATP-dependent galactose permease and that a proton motive force is involved. The galactose permease in S. thermophilus TS2b (Gal+) had a Km for galactose of 0.25 mM and a Vmax of 195 micromol of galactose accumulated per min per g (dry weight) of cells. Several structurally similar sugars inhibited galactose uptake, indicating that the galactose permease had high affinities for these sugars.  相似文献   

13.
ATP-dependent phosphorylation of [14C]galactose by 11 strains of Streptococcus thermophilus indicated that these organisms possessed the Leloir enzyme, galactokinase (galK). Activities were 10 times higher in fully induced, galactose-fermenting (Gal+) strains than in galactose-nonfermenting (Gal-) strains. Lactose-grown, Gal- cells released free galactose into the medium and were unable to utilize residual galactose or to induce galK above basal levels. Gal+ S. thermophilus 19258 also released galactose into the medium, but when lactose was depleted growth on galactose commenced, and galK increased from 0.025 to 0.22 micromol of galactose phosphorylated per min per mg of protein. When lactose was added to galactose-grown cells of S. thermophilus 19258, galK activity rapidly decreased. These results suggest that galK in Gal+ S. thermophilus is subject to an induction-repression mechanism, but that galK cannot be induced in Gal- strains.  相似文献   

14.
15.
Structure/function studies of glycosyltransferases.   总被引:11,自引:0,他引:11  
Glycosyltransferases are the enzymes that synthesize oligosaccharides, polysaccharides and glycoconjugates. The analysis of the wealth of sequences that are now available in databases allowed the determination of conserved peptide motifs for each class of enzyme. Recent experimental data demonstrated their importance in donor and acceptor substrate binding and in catalysis. Fold-recognition studies provided the first models of the catalytic domains of some of these enzymes, while the first successes in glycosyltransferase crystallography are opening new routes in structural glycobiology.  相似文献   

16.
Molecular genetics of Streptococcus thermophilus   总被引:4,自引:0,他引:4  
Abstract The metabolism and genetics of Streptococcus thermophilus (presently Streptococcus salivarius ssp. thermophilus ) have only been investigated recently despite its widespread use in milk fermentation processes. The development of recombinant DNA technology has allowed impressive progress to be made in the knowledge of thermophilic dairy streptococci. In particular, it has permitted a careful analysis of phenotypically altered variants which were derived from a mother strain by plasmid or chromosomal DNA reorganization. While natural phage defense mechanisms of S. thermophilus remain poorly documented, information on the bacteriophages responsible for fermentation failures has accumulated. The lysogenic state of two S. thermophilus strains has also been demonstrated for the first time. Gene transfer techniques for this species have been established and improved to the point that targeted manipulation of their chromosomal determinants is now feasible. Cloning and expression vectors have been constructed, and a few heterologous genes were successfully expressed in S. thermophilus . The first homologous genes, involved in carbohydrate utilization, have been cloned and sequenced, shedding some light on the molecular organization of key metabolic steps.  相似文献   

17.
18.
Bacteria have always been considered ideal organisms for genetic analysis. While this is true for some model organisms, like Escherichia coli, Bacillus subtilis and, more recently, Lactococcus lactis, genetic analysis of other organisms is often prevented by lack of valuable tools, like vectors, transposons and methods for transformation, gene inactivation and random insertional mutagenesis. This is the case of the moderately thermophilic bacterium Streptococcus thermophilus, an organism that, in spite of its widespread use for food fermentations, is only poorly characterized. We report here an insertional mutagenesis system that allows efficient random mutagenesis, easy characterization of the interrupted genes and construction of stable null mutations. This may become a powerful S. thermophilus tool for both genetic analysis and construction of 'food-grade' mutants of this biotechnologically relevant microorganism.  相似文献   

19.
beta-D-Galactosidase (EC 3.2.1.23) was extracted from Streptococcus thermophilus grown in deproteinized cheese whey. Cultural conditions optimum for maximum enzyme production were pH 7.0, 40 degrees C, and 24 h. Proteose peptone (2.0%, wt/vol) and corn steep liquor (2.8%, wt/vol) were highly stimulatory, increasing the enzyme units available in their absence from 660 U/liter of medium to 18,200 and 10,000 U/liter of medium, respectively, in their presence. There was an insignificant increase in the production of enzyme in the presence of added inorganic nitrogen and phosphorus sources. Enzymatic hydrolysis for recuction of lactose content in aqueous solution and in skim milk was studied.  相似文献   

20.
beta-D-Galactosidase (EC 3.2.1.23) was extracted from Streptococcus thermophilus grown in deproteinized cheese whey. Cultural conditions optimum for maximum enzyme production were pH 7.0, 40 degrees C, and 24 h. Proteose peptone (2.0%, wt/vol) and corn steep liquor (2.8%, wt/vol) were highly stimulatory, increasing the enzyme units available in their absence from 660 U/liter of medium to 18,200 and 10,000 U/liter of medium, respectively, in their presence. There was an insignificant increase in the production of enzyme in the presence of added inorganic nitrogen and phosphorus sources. Enzymatic hydrolysis for recuction of lactose content in aqueous solution and in skim milk was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号