首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Somatostatin (SRIH) analogs are commonly used to treat symptoms in medullary thyroid carcinoma (MTC), that expresses SRIH receptors (SSTR1 to SSTR5), as does the human MTC cell line TT. The aim of this work was to evaluate whether SRIH, SSTR2 and SSTR5-selective agonists influence calcitonin (CT) secretion and gene expression in the TT cell line. CT secretion was evaluated by chemiluminescence, and gene expression was analyzed by Northern blot. TT cell line proliferation was also assessed by [(3)H] thymidine ([(3)H]thy) incorporation and viable cell number count. SRIH significantly (p < 0.05) reduced [(3)H]thy incorporation (approx. 50 %), viable cell number (approx. 20 %), CT secretion (-30 %) and CT gene expression (approx. 2-fold). Exposure to the SSTR2-selective agonist, BIM-23 120, and to the SSTR5-selective agonist, BIM-23 206, did not modify CT secretion and mRNA levels in TT cells. Thus, SRIH inhibits DNA synthesis, cell proliferation, CT secretion and CT gene expression in the TT cell line, while SSTR2 and 5 selective agonists, although influencing DNA synthesis and cell proliferation, do not modify CT gene expression, suggesting that SRIH may influence gene expression acting through SSTRs other than subtypes 2 and 5. Furthermore, these findings may explain the erratic response of MTC patients in terms of CT plasma levels to treatment with SRIH analogs, like octreotide and lanreotide, which interact mainly with SSTR2 and 5.  相似文献   

2.
The aim of the work was to investigate the effects of somatostatin analogs acting selectively on sst1 (BIM-23926), sst2 (BIM-23120) and sst5 (BIM-23206) receptor subtypes on the viability of "clinically non-functioning" pituitary adenomas in vitro. The effects of native SST (SST-14), a SST/DA chimera (BIM-23A387) and a D(2)-dopamine receptor agonist bromocriptine (BC) were also examined. The study was performed on 10 surgically removed pituitary macroadenomas, diagnosed before surgery as "non-functioning". A part of each tumor was mechanically dispersed and digested with collagenase to isolate the tumoral cells. Another part of each tumor was fixed, embedded in paraffin and immunostained to reveal the pituitary hormones and SST receptor subtypes (sst1, sst2A, sst2B, sst3, sst4, sst5). The tumoral cell suspensions were incubated for 24 h with the substances mentioned above. The quantity of viable cells was estimated using the EZ4U system. The results were compared with the immunohistochemical evaluation of the hormonal profile of adenoma and the sst receptor subtype immunoreactivities present. The findings indicate that selective sst1, sst2 and sst5 receptors agonists, SST/DA chimera and D(2)-dopamine receptor agonist bromocriptine affect the viability of some, but not all, "clinically non-functioning" pituitary adenomas in vitro. The most effective was bromocriptine. The investigated somatostatin analogs including SST/DA chimera exerted roughly similar inhibitory effects. Further studies are needed to fully evaluate the potential usefulness of these compounds in the pharmacological treatment of "non-functioning" pituitary tumors.  相似文献   

3.
The aim of the study was to examine the effect of somatostatin (SST) and its analogs on the release of chromogranin A (CgA) and alpha-subunit (alpha-SU) from clinically non-functioning pituitary adenomas incubated in vitro. Seven pituitary macroadenomas surgically removed were investigated. All of the tumors were diagnosed before surgery as non-functioning, but they expressed either gonadotropins or their subunits as detected by immunohistochemistry. Two tumors additionally expressed prolactin and growth hormone. All adenomas also expressed chromogranin A (CgA) and at least 3 of 5 subtypes of somatostatin receptors. The cells isolated from the examined tumors were exposed in vitro to either native SST-14 or the following receptor-specific SST analogs: BIM-23926 (agonist of sst1 receptor), BIM-23120 (agonist of sst2 receptor), BIM-23206 (agonist of sst5 receptor) and BIM23A387 (somatostatin/dopamine chimera). The concentration of CgA was measured by means of ELISA method and of alpha-SU was measured by an immunoradiometric method. It was found that the exposure on SST-14 resulted in the decrease of CgA and alpha-SU release from tumor cells in majority of samples, and the effect on CgA was positively correlated with the expression of sst3 and also with the sst2A/sst2B expressions ratio. The inhibitory effect of SST-14 on CgA and alpha-SU seems also to correlate negatively with the expression of sst2B. CgA inhibition also correlates positively with sst5 expression. Among the other compounds studied, only the sst2 agonist decreased the release in all the investigated samples. The remaining substances (agonists of sst1 and sst5 and SST/DA chimera) produced the divergent changes (increased or decreased release, depending on the sample). The data suggest that the inhibition of CgA (and possibly of alpha-SU) release by SST is mediated via subtypes sst2A, sst3 and sst5, whereas sst2B subtype may induce the opposite effect.  相似文献   

4.
To study somatostatin/dopamine (SS/D) synergy in a human cell system constitutively expressing SS and D receptors (SSR and DR, respectively), we characterized the expression of SSR and DR subtypes in the non-small-cell lung cancer line Calu-6, and then we evaluated the effect on cell proliferation of SS/D chimeric molecules (BIM-23A387 and BIM-23A370), which bind with high affinity both sst(2) and D(2)R, and compared the results with those obtained by using SS-14 and subtype-selective SS analogs (SSA) and D agonists (DA). Because Calu-6 cells produce insulin-like growth factor (IGF) and IGF-binding protein (IGFBP) peptides, which play a role in the autocrine/paracrine control of cell growth, we also investigated the effects of chimeric compounds on secretion and expression of IGF system components. Relative high levels of sst(2) and the long isoform of the D(2)R were detected by real-time RT-PCR and Western blot in Calu-6, together with sst(5) and to a lesser extent sst(3) and D(4)R. BIM-23A387 and BIM-23A370 significantly inhibited growth of Calu-6, whereas IGF-IGFBP secretion or expression was unaffected, suggesting a direct inhibitory effect. The inhibition of cell growth, measured by both [(3)H]thymidine incorporation and cell count, was significantly lower when individual SSA and DA control peptides or subtype-specific SSA and DA were tested. BIM-23A370 was more potent than BIM-23A387 (P < 0.001). These findings show that SS/D chimeras can inhibit Calu-6 proliferation in an IGF-independent manner and suggest that this enhanced potency might be because of the induction of SSR/DR dimerization. The Calu-6 cell line, constitutively expressing SSR and DR, provides a suitable model to elucidate the mechanism of action of SSA and DA on regulation of cell growth and to characterize the interaction between SSR and DR.  相似文献   

5.
6.
Somatostatin (SST) regulates growth hormone (GH) secretion from pituitary somatotrophs by interacting with members of the SST family of G-protein-coupled receptors (sst1-5). We have used potent, nonpeptidyl SST agonists with sst2 and sst5 selectivity to determine whether these receptor subtypes are involved in regulating growth hormone releasing hormone (GHRH) stimulated secretion. GHRH stimulated GH release from pituitary cells in a dose-dependent manner, and this secretion was inhibited by Tyr(11)-SST-14, a nonselective SST analog. A sst2 selective agonist, L-779,976, potently inhibited GHRH-stimulated GH release. In addition, L-817, 818, a potent sst5 receptor selective agonist, also inhibited GH secretion, but was approximately 10-fold less potent (P < 0.01, ANOVA) in inhibiting GH release than either Tyr(11)-SST-14 or L-779, 976. These results show that both sst2 and sst5 receptor subtypes regulate GHRH-stimulated GH release from rat pituitary cells.  相似文献   

7.
Somatostatin inhibits adrenocorticotropin (ACTH) secretion from pituitary tumor cells. To assess the contribution of somatostatin receptor subtype 5 (SST5) to somatostatin receptor subtype 2 (SST2) action in these cells, we assessed multipathway responses to novel highly monoreceptor-selective peptide agonists and multireceptor agonists, including octreotide and somatostatin-28. Octreotide and somatostatin-28 cell membrane binding affinities correlated with their respective SST2-selective peptide ligand. Although octreotide had similar inhibiting potency (picomolar) for cAMP accumulation and ACTH secretion as an SST2-selective agonist, somatostatin-28 exhibited a higher potency (femtomolar). Baseline spontaneous calcium oscillations assessed by fluorescent confocal microscopy revealed two distinct effects: SST2 activation reduced oscillations at femtomolar concentrations reflected by high inhibiting potency of averaged normalized oscillation amplitude, whereas SST5 activation induces brief oscillation pauses and increased oscillation amplitude. Octreotide exhibits an integrated effect of both receptors; however, somatostatin-28 exhibited a complex response with two separate inhibitory potencies. SST2 internalization was visualized with SST2-selective agonist at lower concentrations than for octreotide or somatostatin-28, whereas SST5 did not internalize. Using monoreceptor-selective peptide agonists, the results indicate that, in AtT-20 cells, SST5 regulates the dominant SST2 action, attenuating SST2 effects on intracellular calcium oscillation and internalization. This may explain superior somatostatin-28 potency and provides a rationale for somatostatin ligand design to treat ACTH-secreting pituitary tumors.  相似文献   

8.
Anterior pituitary hormone secretion is under tonic suppression by hypothalamic somatostatin signaling through somatostatin receptor subtypes (SSTs). Because some hormonal axes are known to be abnormally regulated by ligand-independent constitutively active G protein-coupled receptors, we tested pituitary SSTs for selective constitutive signaling. We therefore differentially silenced endogenous SST2, SST3, and SST5 in somatostatin-sensitive ACTH-secreting mouse AtT-20 pituitary corticotroph cells using small inhibitory RNA (siRNA) and analyzed downstream SSTs-regulated pathways. Transfection with siRNA reduced specific receptor subtype mRNA expression up to 82%. Specificity of receptor silencing was validated against negative controls with different gene-selective siRNAs, concordance of mRNA and cAMP changes, reduced potency of receptor-selective agonists, and phenotype rescue by overexpression of the silenced receptor. Mouse SST3 > SST5 > SST2 knockdown increased basal cAMP accumulation (up to 200%) and ACTH secretion (up to 60%). SST2- and SST5-selective agonist potencies were reduced by SST3- and SST5-silencing, respectively. SST5 > SST2 = SST3 silencing also increased basal levels of ERK1/2 phosphorylation. SST3- and SST5-knockdown increased cAMP was only partially blocked by pertussis toxin. The results show that SST2, SST3, and SST5 exhibit constitutive activity in mouse pituitary corticotroph cells, restraining adenylate cyclase and MAPK activation and ACTH secretion. SST3 mainly inhibits cAMP accumulation and ACTH secretion, whereas SST5 predominantly suppresses MAPK pathway activation. Therefore, SST receptor subtypes control pituitary cell function not only through somatostatin binding to variably expressed cell membrane receptor subtypes, but also by differential ligand-independent receptor-selective constitutive action.  相似文献   

9.
Indomethacin, a non-steroidal anti-inflammatory drug (NSAID), has been reported to inhibit the growth of medullary thyroid carcinoma (MTC) cells in vitro. However, the mechanism of inhibition of MTC cell growth by indomethacin and its potency have yet to be revealed. We examined the effect of indomethacin on three different MTC cell lines (TT cells, DRO 81-1 cells and HRO 85-1 cells) and two non-MTC cells. The mechanism of indomethacin action in MTC cells was investigated by analyzing intracellular prostaglandin level, apoptosis, and cell cycle in TT cells. Indomethacin inhibited cell growth of all three MTC cell lines but not normal thyroid cells or anaplastic thyroid carcinoma cells. Indomethacin at 10 microM or greater showed a dose response inhibition of cell growth. Indomethacin at 25 muM, a putative therapeutic serum indomethacin level, showed potency similar to 100 to 200 nM sunitinib, a receptor tyrosine kinase inhibitor. To examine whether prostaglandin depletion might determine the inhibition of MTC cell growth, we created different prostaglandin E2 (PGE2) levels in TT cells using three different NSAIDs. A profound PGE2 depletion by indomethacin-ester, a potent cyclooxygenase (COX) II inhibitor, showed the least inhibition of cell growth. Indomethacin did not increase apoptosis of TT cells. Indomethacin, but not naproxen or indomethacin-ester, reduced cell cycle progression into S phase; this was unrelated to the degree of PGE2 depletion. The expression of phosphorylated retinoblastoma (pRb) protein that shifts cells from G(1) to S phase was reduced after exposure to indomethacin. In conclusion, indomethacin has specific anti-tumor effect on MTC cells, probably by reducing cell cycle progression into S phase rather than by prostaglandin depletion. Since no drug therapy is currently available for MTC, indomethacin may be one of the therapeutic candidates.  相似文献   

10.
A 52-yr-old woman presented with hypertension, elevated urinary vanillylmandelic acid, metanephrines, normetanephrines, and plasma chromogranin A (CgA), but normal urinary catecholamine levels. Abdominal ultrasonography and subsequent MRI imaging showed a 3 cm nodular lesion of the right adrenal gland also visualized by 123I-meta-iodobenzylguanidine scintigraphy consistent with a pheochromocytoma (PC). Her OctreoScan was negative. The patient underwent right adrenalectomy and histological examination showed a PC. The adrenal medulla tissue was examined for somatostatin (SRIH) receptor subtypes 1 to 5 (SSTR1 to 5) expression by RT-PCR. Cultured tumor cells were treated with either SRIH, Lanreotide (Lan), or an SSTR2 (BIM-23 120) or SSTR5 (BIM-23 206) selective agonist. CgA secretion was measured in the medium by ELISA and catecholamine levels by HPLC after 6h. Cell viability was assessed after 48h. RT-PCR analysis showed that SSTR1, 2, 3 and 4 were expressed. CgA secretion was significantly reduced by SRIH (- 80 %), Lan (- 35 %), and the SSTR2 selective agonist (- 65 %). Norepinephrine secretion was reduced by SRIH (- 66 %), Lan (- 40 %), and BIM-23 120 (- 70 %). Epinephrine and dopamine secretion was also inhibited by treatment with SRIH (- 90 % and - 93 %, respectively) and BIM-23 120 (- 33 % and - 75 %, respectively) but not by Lan. Cell viability was also significantly reduced by SRIH (- 30 %), Lan (- 10 %), and the SSTR2 selective agonist (- 20 %). The SSTR5 selective agonist did not modify either CgA and catecholamine secretion or cell viability. Our data show that SSTRs may be present in a PC although OctreoScan is negative in vivo, and that SRIH and its analogs may reduce both differentiated and proliferative functions in chromaffin cells in vitro. These findings suggest that SRIH analogs with enhanced SSTR2 affinity might be useful in the medical therapy of PC, even when an OctreoScan is negative.  相似文献   

11.
Somatostatin (SST) inhibits growth hormone (GH) secretion and regulates multiple processes by signaling through its receptors sst1-5. Differential expression of SST/ssts may contribute to sex-specific GH pattern and fasting-induced GH rise. To further delineate the tissue-specific roles of SST and sst1-5 in these processes, their expression patterns were evaluated in hypothalamus, pituitary, and stomach of male and female mice under fed/fasted conditions in the presence (wild type) or absence (SST-knockout) of endogenous SST. Under fed conditions, hypothalamic/stomach SST/ssts expression did not differ between sexes, whereas male pituitary expressed more SST and sst2A/2B/3/5A/5TMD2/5TMD1 and less sst1, and male pituitary cell cultures were more responsive to SST inhibitory actions on GH release compared with females. This suggests that local pituitary SST/ssts can contribute to the sexually dimorphic pattern of GH release. Fasting (48 h) reduced stomach sst2A/B and hypothalamic SST/sst2A expression in both sexes, whereas it caused a generalized downregulation of pituitary sst subtypes in male and of sst2A only in females. Thus, fasting can reduce SST sensitivity across tissues and SST input to the pituitary, thereby jointly contributing to enhance GH release. In SST-knockout mice, lack of SST differentially altered sst subtype expression levels in both sexes, supporting an important role for SST in sex-dependent control of GH axis. Evaluation of SST, IGF-I, and glucocorticoid effects on hypothalamic and pituitary cell cultures revealed that these hormones could directly account for alterations in sst2/5 expression in the physiological states examined. Taken together, these results indicate that changes in SST output and sensitivity can contribute critically to precisely define, in a tissue-dependent manner, the sex-specific metabolic regulation of the GH axis.  相似文献   

12.
Gastrin regulates ECL cell histamine release and is a critical determinant of acid secretion. ECL cell secretion and proliferation is inhibited by gastrin antagonists and somatostatin but little is known about the role of dopamine agonists in this process. Since the ECL cell exhibits all three classes of receptor we evaluated and compared the effects of the gastrin receptor antagonist, (YF476), lanreotide (SST agonist) and novel dopaminergic agents (BIM53061 and BIM27A760) on ECL cell histamine secretion and proliferation. Highly enriched (>98%) ECL cell preparations prepared from rat gastric mucosa using a FACS approach were studied. Real-time PCR confirmed presence of the CCK2, SS2 and SS5 and D1 receptors on ECL cells. YF476 inhibited histamine secretion and proliferation with IC(50)s of 1.25 nM and 1.3 x 10(-11) M respectively, values 10-1000x more potent than L365,260. Lanreotide inhibited secretion and proliferation (2.2 nM, 1.9 x 10(-10) M) and increased YF476-inhibited proliferation a further 5-fold. The dopamine agonist, BIM53061, inhibited gastrin-mediated ECL cell secretion and proliferation (17 nM, 6 x 10(-10) M) as did the novel dopamine/somatostatin chimera BIM23A760 (22 nM, 4.9 x 10(-10) M). Our studies demonstrate that the gastrin receptor antagonist, YF476, is the most potent inhibitor of ECL cell histamine secretion and proliferation. Lanreotide, a dopamine agonist and a dopamine/somatostatin chimera inhibited ECL cell function but were 10-1000x less potent than YF476. Agents that selectively target the CCK2 receptor may provide alternative therapeutic strategies for gastrin-mediated gastrointestinal cell secretion and proliferation such as evident in the hypergastrinemic gastric carcinoids associated with low acid states.  相似文献   

13.
2-methoxy-5-(2,3,4-trimethoxyphenyl) 2,4,6-cycloheptatrien-1-one (MTC) is a synthetic colchicine analogue, lacking the B ring of the alkaloid (Fitzgerald: Biochem. Pharmacol. 25:1381-1387, 1976). MTC has been shown to bind reversibly to the colchicine binding site of tubulin and to inhibit microtubule assembly in vitro (Andreu et al: Biochemistry 23:1742-1752, 1984; Bane et al: J. Biol. Chem. 259:7391-7398, 1984). Its action on different cultured cell lines (PtK2, Pk15, and SV-3T3) has now been studied. 0.2 X 10(-6) M MTC stopped Pk15 and SV-3T3 cell growth, inducing an accumulation of mitoses in a few hours. Removal of MTC from the culture medium rapidly restored normal mitotic index and growth rates. Partial depolymerization of the cytoplasmic microtubules of PtK2 cells was observed at concentrations ranging from 2 to 5 X 10(-7) M. Maximal microtubule network depolymerization was obtained after 4 h of treatment with 2 to 5 X 10(-6) M MTC or at a higher MTC concentration (2 X 10(-5) M) for less than 2 h. Removal of 2 X 10(-5) M MTC (the highest MTC concentration used) from the culture medium resulted in almost complete microtubule polymerization after 10 min of drug recovery and a normal microtubule network in 20-30 min. MTC constitutes an antimitotic drug directed to the colchicine site. It is water-soluble, shows a fast and reversible action, and may therefore be employed as a convenient tool to study cellular microtubule-dependent functions.  相似文献   

14.
BIM-23627 is a synthetic peptide with "in vitro" and "in vivo" properties consistent with a pure sst2 antagonist. The aim of the present study was to evaluate the effects of long-term administration of BIM-23627 and the combined effects of BIM-23627 and dexamethasone (DEX) on the somatotropic axis, including growth, epididymal fat accumulation, glucose homeostasis and insulin activity, in young male rats. Beginning on day 23 of age, 16 animals were treated daily with saline or DEX (40 microg/kg/daily). Each group was subdivided into two paired groups and treated with either vehicle or BIM-23627 (0.5 mg/kg, t.i.d.). The treatment period lasted 31 days. The animals were killed by decapitation; trunk blood and pituitaries were collected for the determination of hormone concentrations and GH mRNA expression, respectively. Based on plasma GH and IGF-I concentrations and GH mRNA expression in the pituitary, BIM-23627 was able to counteract the inhibitory effects of DEX on the somatotropic axis; however, only a partial reversal of somatic growth inhibition was observed. DEX-treated rats remained euglycemic, but their insulin levels were significantly increased, indicating an incipient insulin resistance. Although BIM-23627 itself tended to increase insulin concentration in saline-treated rats, its administration to DEX-treated rats reduced insulin levels (saline: 25+/-3; DEX: 55+/-16*; DEX+BIM-23627: 34+/-5; BIM-23627: 38+/-7 microIU/ml; *P<0.05 vs. saline), apparently improving the degree of insulin sensitivity. DEX administration significantly reduced circulating ghrelin, whereas the sst2 antagonist had no significant effect. An inverse correlation was found between ghrelin concentrations and plasma insulin levels. Both rats receiving DEX and rats receiving BIM-23627 had decreased plasma concentration of total testosterone (P<0.05); however, the effects of DEX and BIM-23627 were not additive. In conclusion, BIM-23627 may represent a new pharmacological agent to reduce the suppression of the GH-IGF-I axis in long-term GC treated patients and enhance insulin sensitivity. Further studies are required in order to fully optimize the SSTR-2 antagonist-induced reversal of DEX-induced somatic growth inhibition.  相似文献   

15.
A combination of basic research observations concerning the interaction of somatostatin (SST) and dopamine (DA) receptors, and clinical reports of enhanced efficacy of combined SST and DA analogue treatment in suppressing GH hypersecretion, lead to the concept of creating chimeric molecules combining structural features of both compound classes. The resulting SST/DA chimeras retain the ability to interact with receptors of both families and display greatly enhanced potency and efficacy, as compared with that of individual SST or DA receptor agonists. In vitro studies with pituitary adenoma cells from acromegalic patients have demonstrated that the chimeric molecules have exceptional activity with regard to suppression of GH and prolactin secretion. Similarly, potent suppression of ACTH secretion from Cushing's-causing corticotroph tumors, and suppression of nonfunctioning pituitary adenoma proliferation has been observed. The chimeric SST/DA compounds are also quite potent and efficacious in suppressing both GH and IGF1 in vivo when tested in nonhuman primates, with no effect on either insulin secretion or glycemic control. Initial clinical studies examining acute, subcutaneous administration of the chimeric SST/DA compound, BIM-23A760, revealed both prolonged circulating half-life and extended duration of biological effect. With chronic administration, however, BIM-23A760 was found to produce a metabolite with dopaminergic activity that gradually accumulates and interferes with the activity of the parent compound. Consequently, efforts are currently underway to produce a second-generation chimera for treatment of neuroendocrine disease.  相似文献   

16.
The discovery of a novel 3H-pyrido[2,3-d]pyrimidin-4-one series as potent and biased sst2 agonists is described. This class of molecules exhibits excellent sst2 potency and selectivity against sst1, sst3, and sst5 receptors, and they are significantly more potent at inhibiting cAMP production than inducing internalization. The orally bioavailable 6-(3-chloro-5-methylphenyl)-3-(3-fluoro-5-hydroxyphenyl)-5-({methyl[(2S)-pyrrolidin-2-ylmethyl]amino}methyl)-3H,4H-pyrido[2,3-d]pyrimidin-4-one (36) also suppresses GH secretion in GHRH-challenged rats in a dose-dependent manner.  相似文献   

17.
Abstract: Previous studies have suggested that activation of D2-like dopamine receptors inhibits catecholamine secretion from adrenal chromaffin cells. The purpose of this study was to determine whether the activation of D1-like receptors on chromaffin cells affects either catecholamine release from the cells or the inhibition of secretion by D2-like dopamine receptors. Both D1- and D2-selective agonists inhibited secretion elicited by dimethylphenylpiperazinium (DMPP), veratridine, and high K+ levels. The D1-selective agonists 6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (Cl-APB) and SKF-38393 inhibited DMPP-stimulated catecholamine secretion in a concentration-dependent manner; 50% inhibition was obtained with ~10 µM Cl-APB and ~100 µM SKF-38393. Of the D2-selective agonists, bromocriptine was a more potent inhibitor of DMPP-stimulated catecholamine release than was quinpirole. The inhibition of secretion caused by Cl-APB or SKF-38393 was additive with the inhibition caused by bromocriptine. Pertussis toxin treatment (50 ng/ml, 18 h) attenuated the inhibitory effect of D2-selective, but not D1-selective, dopamine agonists. In addition, forskolin-stimulated adenylyl cyclase activity was inhibited by D2-selective, but not D1-selective, agonists. Neither D1- nor D2-selective agonists stimulated adenylyl cyclase activity in the cells, although cyclase activity was stimulated by forskolin, carbachol, and vasoactive intestinal peptide. DMPP-stimulated Ca2+ uptake was inhibited by both D1- and D2-selective dopamine agonists. PCR analysis was used to determine which of the dopamine receptor subtypes within the D1-like and D2-like subfamilies was responsible for the observed inhibition. PCR analysis indicated that mRNA for only D4 and D5 dopamine receptor subtypes was present in chromaffin cells. These combined data suggest that D1- and D2-selective agonists inhibit Ca2+ uptake and catecholamine secretion by activating D4 and D5 dopamine receptors on chromaffin cells.  相似文献   

18.
In a series of human corticotroph adenomas, we recently found predominant mRNA expression of somatostatin (SS) receptor subtype 5 (sst5). After 72 h, the multiligand SS analog SOM230, which has a very high sst5 binding affinity, but not Octreotide (OCT), significantly inhibited basal ACTH release. To further explore the role of sst5 in the regulation of ACTH release, we conducted additional studies with mouse AtT-20 cells. SOM230 showed a 7-fold higher ligand binding affinity and a 19-fold higher potency in stimulating guanosine 5'-O-(3-thiotriphosphate) binding in AtT-20 cell membranes compared with OCT. SOM230 potently suppressed CRH-induced ACTH release, which was not affected by 48-h dexamethasone (DEX) pretreatment. However, DEX attenuated the inhibitory effects of OCT on ACTH release, whereas it increased the inhibitory potency of BIM-23268, an sst5-specific analog, on ACTH release. Quantitative PCR analysis showed that DEX lowered sst(2A+2B) mRNA expression significantly after 24 and 48 h, whereas sst5 mRNA levels were not significantly affected by DEX treatment. Moreover, Scatchard analyses showed that DEX suppressed maximum binding capacity (B(max)) by 72% when 125I-Tyr3-labeled OCT was used as radioligand, whereas B(max) declined only by 17% when AtT-20 cells were treated with [125I-Tyr11]SS-14. These data suggest that the sst5 protein, compared with sst2, is more resistant to glucocorticoids. Finally, after SS analog preincubation, compared with OCT both SOM230 and BIM-23268 showed a significantly higher inhibitory effect on CRH-induced ACTH release. In conclusion, our data support the concept that the sst5 receptor might be a target for new therapeutic agents to treat Cushing's disease.  相似文献   

19.
Endozepines, a family of regulatory peptides related to diazepam-binding inhibitor (DBI), are synthesized and released by astroglial cells. Because rat astrocytes express various subtypes of somatostatin receptors (sst), we have investigated the effect of somatostatin on DBI mRNA level and endozepine secretion in rat astrocytes in secondary culture. Somatostatin reduced in a concentration-dependent manner the level of DBI mRNA in cultured astrocytes. This inhibitory effect was mimicked by the selective sst4 receptor agonist L803-087 but not by the selective sst1, sst2 and sst3 receptor agonists L779-591, L779-976 and L797-778, respectively. Somatostatin was unable to further reduce DBI mRNA level in the presence of the MEK inhibitor U0126. Somatostatin and the sst1, sst2 and sst4 receptor agonists induced a concentration-dependent inhibition of endozepine release. Somatostatin and the sst1, sst2 and sst4 receptor agonists also inhibited cAMP formation dose-dependently. In addition, somatostatin reduced forskolin-induced endozepine release. H89 mimicked the inhibitory effect of somatostatin on endozepine secretion. In contrast the PLC inhibitor U73122, the PKC activator PMA and the PKC inhibitor calphostin C had no effect on somatostatin-induced inhibition of endozepine release. The present data demonstrate that somatostatin reduces DBI mRNA level mainly through activation of sst4 receptors negatively coupled to the MAPK pathway, and inhibits endozepine release through activation of sst1, sst2 and sst4 receptors negatively coupled to the adenylyl cyclase/PKA pathway.  相似文献   

20.
The aim of the study was to determine the inhibitory effects of somatostatin analogues with relative specificity to somatostatin receptor subtype 2 (SSTR2) (BIM-23197), subtype 5 (SSTR5) (BIM-23268), and their combination on GH and PRL secretion in acromegalic adenomas in vitro. Three types of answer were observed: 1. In one resistant adenoma no inhibition was achieved. 2. The GH secretion in six adenomas was suppressed significantly more (p < 0.01 or p < 0.001 using Mann-Whitney U-test in concentration range of 10(-12) to 10(-8) mol/l) with SSTR2 specific analogue BIM-23197 with no additive effect of compounds combination. 3. In three adenomas the potency of BIM-23197 and BIM-23268 was almost equal and the combination of these SSTR2 and SSTR5 specific compounds had statistically significant additive effect (p < 0.05 or p < 0.01 in concentration range of 10(-12) to 10(-8) mol/l). PRL secretion of five adenomas was more suppressed with SSTR5 specific BIM-23268 (statistically significant in concentrations 10(-10) to 10(-8) mol/l). In conclusion the somatostatin analogue BIM-23268 had an additive effect on suppression of GH secretion in a subset of adenomas, where both SSTR2 and SSTR5 were involved. This effect was not observed in the majority of tumours, where the inhibitory effect seems to be mediated via SSTR2 only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号