首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incubation of tritium-labeled morphine and cold glutathione (GSH) or cold morphine and tritiated GSH with liver microsomal preparations obtained from phenobarbital-treated rats led to the identification by high performance liquid chromatography (HPLC) of a glutathionylmorphine adduct. Liquid secondary ion mass spectral analysis established the molecular weight of the metabolite to be 590 which corresponds to the mass of a mono-GSH-morphine adduct. High resolution (360 and 500 MHz) 1H-NMR experiments have led to the tentative assignment of the structure of this metabolite as 10-alpha-S-glutathionylmorphine. Based on both in vivo and in vitro data, the formation of this product appears to be mediated by cytochrome P-450 and to involve a reactive intermediate that may be responsible for the observed covalent binding of radiolabeled morphine to proteins and, at least in part, for the morphine-induced depletion of GSH in the rat.  相似文献   

2.
Aerobic microsomal incubations containing either lipoxygenase or carbon tetrachloride and NADPH apparently produce the same free radical, as determined by spin trapping. The spectrum of the radical trapped in the presence of CCl4 and NADPH is consistent with a carbon-centered dienyl lipid radical adduct. This species had previously been identified as the trichloromethyl radical adduct.  相似文献   

3.
The breakdown of cumene hydroperoxide and peroxidized fatty acids by iron is shown, by use of the spin trap 5,5-dimethyl-l-pyrroline-N-oxide, to be sensitive to (a) the oxidation state of the metal and (b) the nature of the chelating ligands. The initial step in the Fe2+-catalysed breakdown is the production of an alkoxyl radical by one-electron reduction, and this type of radical has been successfully trapped from each substrate. Subsequent reactions of this alkoxyl species produce both carbon-centred and peroxyl radicals, depending on the concentrations of the reagents present. The use of the same spin trap in microsomal systems undergoing either NADPH-supported or Fe2+-induced peroxidation led to the detection of low concentrations of radical adducts, among which are signals that are believed to be due to lipid alkoxyl radicals. Reaction of polyunsaturated fatty acid hydroperoxides with both Fe2+ and lipoxygenase under anaerobic conditions gives rise to signals not only from the alkoxy-radical adduct, but also from a further species which is tentatively identified as being due to an acyl [RC(O).]-radical adduct; chemical studies lend support to this assignment.  相似文献   

4.
Increased catechol thioether formation is associated with Parkinson's disease. In this study, we examined whether catechol thioethers, having a lower oxidation potential than their parent catechols, would cause greater oxidative damage than their parent catechols. We synthesized 5'-S-glutathionyl, cysteinyl, and N-acetylcysteinyl derivatives of dopamine and dopac, encompassing the known catechol thioethers of the mercapturate pathway. Cyclic voltametry studies showed that catechol thioethers had higher reduction potentials than their parent catechols. A higher reduction potential did not correlate with an increase in oxidative damage, measured by metal-catalyzed DNA strand breakage. 5'-S-Glutathionyldopamine and the cysteinyl adducts of dopamine and dopac mediated less oxidative damage than their parent catechols. In contrast, both N-acetylcysteinyl analogs were equipotent to dopamine. Oxygen consumption corresponded to DNA damage except for 5'-S-glutathionyldopamine. The glutathionyl and cysteinyl adducts of dopamine inhibited dopamine-mediated DNA damage indicating that these adducts may have antioxidant properties. 5'-S-Glutathionyldopamine potentiated H2O2-mediated damage whereas 5-S-cysteinyldopamine was inhibitory. Our results show that the ability of catechol thioethers to cause oxidative damage in vitro is not based simply upon the reduction potential but rather, reflects a complex relationship among structures of the parent catechol and thiol adduct, metal catalyst, and oxidant.  相似文献   

5.
When added to aerobic rabbit liver microsomal fractions fortified with an NADPH-generating system, pyridine initially produces a type II difference spectrum such as is observed with other aromatic amines. There is a time-dependent conversion of this perturbation into a new spectral species characterized by an absorbance maximum at 442 nm and a minor peak at 389 nm. Experiments with inhibitors of the cytochrome P-450-dependent electron-transport chain suggest that these species originate from binding to the haemoprotein of metabolic intermediate(s) derived from the amine substrate. Analysis of the incubation mixtures by t.l.c., high-pressure liquid chromatography, u.v.- and mass-spectrometry reveals the presence of a single metabolite arising from cytochrome P-450-catalysed oxidation of the heteroaromatic tertiary amine, which was identified as pyridine N-oxide, obviously accounting for adduct formation. This view is supported by comparative studies on the spectral changes generated by exogenous amine oxide with NADPH-reduced cytochrome P-450. Moreover, dithiothreitol, a potent N-oxidase inhibitor, strongly suppresses development of the 442 nm and 389 nm complexes. The ability of forming low-spin adducts with ferrous cytochrome P-450 absorbing around 440 nm appears to be an inherent property of different types of N-oxides. Considering the dipole character of the N+-O- function, a co-ordinate iron-oxygen bond is proposed to be formed in these complexes.  相似文献   

6.
Studies of the oxygenation of linoleic acid by soybean lipoxygenase utilizing electron spin resonance spectroscopy and oxygen uptake have been undertaken. The spin trap, alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone (4-POBN) was included in the lipoxygenase system to capture short-lived free radicals. Correlation of radical adduct formation rates with oxygen uptake studies indicated that the major portion of radical adduct formation occurred when the system was nearly anaerobic. Incubations containing [17O]oxygen with nuclear spin of 5/2 did not have additional ESR lines as would be expected if an oxygen-centered 4-POBN-lipid peroxyl radical adduct were formed indicating that the trapped radical must be reassigned as a carbon-centered species. To establish the presence of [17O2]oxygen in our incubations, a portion of the gas from the lipoxygenase/linoleate experiments was used to prepare the 4-POBN-superoxide radical adduct utilizing a superoxide producing microsomal/paraquat/NADPH system.  相似文献   

7.
A radical formed during oxidative metabolism of hydrazine in rat liver microsomes was spin-trapped with α-phenyl-t-butylnitrone. The trapped species was identified as hydrazine radical by comparison of its ESR parameters and mass spectrum with those of the adduct formed during CuCl2 catalyzed oxidation of hydrazine. The requirement for oxygen and NADPH in the microsomal oxidation and the occurrence of a typical binding spectrum by difference spectroscopy suggest the involvement of the participation of the cytochrome P-450 enzyme system in the formation of hydrazine radical which must be a precursor of diimide during microsomal oxidation of hydrazine.  相似文献   

8.
2-Hydroxy-3-butynoic acid is a suicide substrate for Mycobacterium smegmatis lactate oxidase. Inactivation occurs by covalent modification of enzyme-bound FMN and does not involve labeling of the apoprotein. The spectrum of the enzyme bound adduct suggests that it is a 4a, 5-dihydroflavin derivative. When this adduct is released from the enzyme, a complex mixture of unstable compounds is obtained. When the initially formed enzyme-bound adduct is reduced with NaBH4, a major stable species can be resolved from the enzyme and can be isolated and purified. The structure was established by appropriate isotope substitutions. Fourier transform NMR spectroscopy, chemical reactivity, and synthesis of a model compound. The structure of the isolated adduct is structure II, Scheme II. The structure proposed for the adduct initially formed on the enzyme is structure VII, Scheme II.  相似文献   

9.
A comparison between [14C]aflatoxin B1 (AFB1) and [14C]aflatoxin G1 (AFG1) binding to rat liver and kidney cellular macromolecules has shown AFG1-DNA and-ribosomal RNA binding to be lower in both organs. For both mycotoxins more was bound to nucleic acids than to protein. Two hours after intraperitoneal injection (60 microgram/100 g) of [14C] AFB1, 40 ng, 151 ng/mg. Loss of radioactivity bound to liver DNA for both [14C]AFB1 and protein respectively and for [14C]AFG1 the respective figures were 10, 7 and 1 ng/mg. Loss of liver bound radioactivity to DNA for both [14C]AFG1 and [14C]AFG1 appeared to be biphasic indicating that an enzymic DNA repair process may be operating. In vitro binding studies also showed less AFG1 was bound to exogenous DNA after microsomal activation than AFB1. This difference was not a result of differences in the chemical reactivity of the "ultimate" electrophilic species, the respective expoxides, since chemical activation studies using 3-chloroperbenzoic acid showed similar amounts of AFG1 and AFB1 to be converted to the epoxides and to bind to DNA. Studies on the distribution coefficients of the two mycotoxins showed AFB1 to be more lipophilic than AFG1 and this may be an important factor in determining the weaker carcinogenicity of the latter compound. Characterisation of the major AFG1-DNA adduct formed in vitro, in vivo and after peracid oxidation showed it to have the structure trans-9,10-dihydro-9-(7-guanyl)-10-hydroxy-aflatoxin G1. This adduct is similar to that obtained from AFB1 by activation in vivo, in vitro and after peracid oxidation.  相似文献   

10.
[1,2-14C]Oct-l-yne was used to investigate metabolic activation of the ethynyl substituent in vitro. Activation of octyne by liver microsomal cytochrome P-450-dependent enzymes gave intermediate(s) that bound covalently to protein, DNA and to haem. The time course and extent of covalent binding of octyne to haem and to protein were similar. However, two different activating mechanisms are probably involved. Whereas covalent binding to protein or to DNA was inhibited by nucleophiles such as N-acetylcysteine, that to haem was little affected. When N-acetylcysteine was included in the reaction mixtures, two major octyne-N-acetylcysteine adducts were isolated and purified by high-pressure liquid chromatography. G.l.c.-mass spectrometry and n.m.r. suggest that these are the cis-trans isomers of S-3-oxo-oct-1-enyl-N-acetylcysteine. Oct-1-yn-3-one reacted non-enzymically with N-acetylcysteine at pH 7.4 and 37 degrees C with a t1/2 of about 6 s also to yield S-3-oxo-oct-l-enyl-N-acetylcysteine. The same product was formed when microsomal fractions were incubated with oct-1-yn-3-ol, N-acetylcysteine and NAD(P)+. Octyn-3-one did not appear to react with haem or protoporphyrin IX. 5. A mechanism for the metabolic activation of oct-1-yne is proposed, consisting in (a) microsomal hydroxylation of the carbon atom alpha to the acetylenic bond and (b) oxidation to yield octyn-3-one as the reactive species.  相似文献   

11.
A novel fluorophore was isolated from human lenses using high performance liquid chromatography (HPLC). The new fluorophore was well separated from 3-hydroxykynurenine glucoside (3-OHKG) and its deaminated isoform, 4-(2-amino-3-hydroxyphenyl)-4-oxobutanoic acid O-glucoside, which are known UV filter compounds. The new compound exhibited UV absorbance maxima at 260 and 365 nm, was fluorescent (Ex(360 nm)/Em(500 nm)), and increased in concentration with age. Further analysis of the purified compound by microbore HPLC with in-line electrospray ionization mass spectrometry revealed a molecular mass of 676 Da. This mass corresponds to that of an adduct of GSH with a deaminated form of 3-OHKG. This adduct was synthesized using 3-OHKG and GSH as starting materials. The synthetic glutathionyl-3-hydroxykynurenine glucoside (GSH-3-OHKG) adduct had the same HPLC elution time, thin-layer chromatography R(F) value, UV absorbance maxima, fluorescence characteristics, and mass spectrum as the lens-derived fluorophore. Furthermore, the (1)H and (13)C NMR spectra of the synthetic adduct were entirely consistent with the proposed structure of GSH-3-OHKG. These data indicate that GSH-3-OHKG is present as a novel fluorophore in aged human lenses. The GSH-3-OHKG adduct was found to be less reactive with beta-glucosidase compared with 3-OHKG, and this could be due to a folded conformation of the adduct that was suggested by molecular modeling.  相似文献   

12.
1. Unfractionated RNA from reticulocyte ribosomes was hydrolysed with pancreatic ribonuclease at 25 degrees . The molecular weight decreased rapidly to about 3s when about 6% of the residues were soluble in 0.5n-perchloric acid. In the early stages 60-80% of the hydrolysed linkages were ;hidden'. The denaturation spectrum was affected. Continued hydrolysis led to slow changes in S value, in the electrophoresis pattern in polyacrylamide gels and in the denaturation spectrum. 2. Hydrolysis of RNA with alkali to fragments of between 2.8s and 5.9s led to changes in the denaturation spectrum similar to those observed in the early stages of enzymic hydrolysis. 3. A theory was developed to relate changes in secondary structure with main-chain scission. 4. The results agree with the ;hairpin-loop' model for RNA. The denaturation studies are consistent with the presence of more than one species of hairpin loop that differ in their denaturation spectra. The average length of the hairpin loop was estimated to be 10-20 residues and an upper limit of 35 residues was established. 5. It is inferred, on the basis of studies with model compounds, that the stability of single-stranded stacked structures is hardly dependent on salt concentration. 6. The denaturation spectrum of the fragments obtained on hydrolysis became less dependent on ionic strength, suggesting that double-helical structures revert to a single-stranded stacked form on denaturation.  相似文献   

13.
E.s.r. spin trapping using the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) was used to detect peroxyl, alkoxyl and carbon-centred radicals produced by reaction of t-butyl hydroperoxide (tBuOOH) with rat liver microsomal fraction. The similarity of the hyperfine coupling constants of the peroxyl and alkoxyl radical adducts to those obtained previously with isolated enzymes suggests that these species are the tBuOO. and tBuO. adducts. The effects of metal-ion chelators, heat denaturation, enzyme inhibitors and reducing equivalents demonstrate that these species arise from reaction of tBuOOH with a haem enzyme such as cytochrome P-450 or cytochrome b5. In the absence of NADPH or NADH the previously undetected peroxyl radical adduct is the major species observed. In the presence of these reducing equivalents the alkoxyl and carbon-centred radical adducts predominate, which is in accord with product studies on similar systems. These results demonstrate that both reductive and oxidative decomposition of tBuOOH can occur in rat liver microsomal fraction with the reductive pathway favoured in the presence of NADH or NADPH.  相似文献   

14.
Incubation of prostaglandin H synthase-1 (PGHS-1) under anaerobic conditions with peroxide and arachidonic acid leads to two major radical species: a pentadienyl radical and a radical with a narrow EPR spectrum. The proportions of the two radicals are sensitive to temperature, favoring the narrow radical species at 22 °C. The EPR characteristics of this latter radical are somewhat similar to the previously reported narrow-singlet tyrosine radical NS1a and are insensitive to deuterium labeling of AA. To probe the origin and structure of this radical, we combined EPR analysis with nitric oxide (NO) trapping of tyrosine and substrate derived radicals for both PGHS-1 and -2. Formation of 3-nitrotyrosine in the proteins was analyzed by immunoblotting, whereas NO adducts to AA and AA metabolites were analyzed by mass spectrometry and by chromatography of 14C-labeled products. The results indicate that both nitrated tyrosine residues and NO-AA adducts formed upon NO trapping. The predominant NO-AA adduct was an oxime at C11 of AA with three conjugated double bonds, as indicated by absorption at 275 nm and by mass spectral analysis. This adduct amounted to 10% and 20% of the heme concentration of PGHS-1 and -2, respectively. For PGHS-1, the yield of NO-AA adduct matched the yield of the narrow radical signal obtained in parallel EPR experiments. High frequency EPR characterization of this narrow radical, reported in an accompanying paper, supports assignment to a new tyrosyl radical, NS1c, rather than an AA-based radical. To reconcile the results from EPR and NO-trapping studies, we propose that NS1c is in equilibrium with an AA pentadienyl radical, and that the latter reacts preferentially with NO.  相似文献   

15.
16.
The aerobic metabolism of benzphetamine by liver microsomes, during a cytochrome P-450-catalyzed mixed-function oxidation reaction, results in the formation of an easily detected spectral complex with an absorption band maximum at 456 nm. Electron paramagnetic resonance studies, as well as studies with the chemical reductant, sodium dithionite, or the oxidant, potassium ferricyanide, indicate that the spectral complex results from the formation of a product adduct with reduced cytochrome P-450. The spectral properties of this product complex of cytochrome P-450 have been compared to those observed with carbon monoxide, metyrapone, and ethylisocyanide. The reaction of these reagents to specific pools of microsomal cytochrome P-450 permits the identification of at least two major and two minor types of cytochrome P-450 in liver microsomes prepared from phenobarbital-treated rats.  相似文献   

17.
Recent studies have shown that a cytochrome P-450 present in microsomes of semi-anaerobically grown cells of Saccharomyces cerevisiae is functional in the 14 alpha-demethylation of lanosterol (4,4,14 alpha-trimethyl-5 alpha-cholesta-8,24-dien-3 beta-ol), but the occurrence of the same cytochrome P-450 in microsomes of aerobically grown yeast cells has not yet been reported. In this study, the microsomal fraction from aerobically grown cells was found to catalyze the lanosterol demethylation in the presence of NADPH and O2 and that this activity was sensitive to CO. In Ouchterlony double diffusion test, antibodies to the yeast cytochrome P-450 formed a single precipitin line with the microsomal fraction as well as with the purified yeast cytochrome P-450 and the two precipitin lines fused with each other. Furthermore, the antibodies inhibited the lanosterol demethylation activity of the microsomal fraction from aerobically grown cells. The quadratic-derivative absorption spectrum of the microsomal fraction measured in the presence of both Na2S2O4 and CO showed an absorption band at 450 nm which is attributable to the reduced CO compound of cytochrome P-450. These facts led to the conclusion that cytochrome P-450 actually exists in aerobically grown yeast and participates in the lanosterol 14 alpha-demethylation which is essential for the ergosterol (5 alpha-ergosta-5,7,22-trien-3 beta-ol) biogenesis by yeast.  相似文献   

18.
EPR spin trapping using the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and 3,5-dibromo-4-nitrosobenzene sulphonic acid (DBNBS) has been employed to examine the generation of radicals produced on reaction of a number of primary, secondary and lipid hydroperoxides with rat liver microsomal fractions in both the presence and absence of reducing equivalents. Two major mechanisms of radical generation have been elucidated. In the absence of NADPH or NADH, oxidative degradation of the hydroperoxide occurs to give initially a peroxyl radical which in the majority of cases can be detected as a spin adduct to DMPO; these radicals can undergo further reactions which result in the generation of alkoxyl and carbon-centered radicals. In the presence of NADPH (and to a lesser extent NADH) alkoxyl radicals are generated directly via reductive cleavage of the hydroperoxide. These alkoxyl radicals undergo further fragmentation and rearrangement reactions to give carbon-centered species which can be identified by trapping with DBNBS. The type of transformation that occurs is highly dependent on the structure of the alkoxyl radical with species arising from beta-scission, 1,2-hydrogen shifts and ring closure reactions being identified; these processes are in accord with previous chemical studies and are characteristic of alkoxyl radicals present in free solution. Studies using specific enzyme inhibitors and metal-ion chelators suggest that most of the radical generation occurs via a catalytic process involving haem proteins and in particular cytochrome P-450. An unusual species (an acyl radical) is observed with lipid hydroperoxides; this is believed to arise via a cage reaction after beta-scission of an initial alkoxyl radical.  相似文献   

19.
The effect of cardiac glycosides to increase cardiac inotropy by altering Ca(2+) cycling is well known but still poorly understood. The studies described in this report focus on defining the effects of ouabain signaling on sarcoplasmic reticulum Ca(2+)-ATPase function. Rat cardiac myocytes treated with 50 microM ouabain demonstrated substantial increases in systolic and diastolic Ca(2+) concentrations. The recovery time constant for the Ca(2+) transient, tau(Ca(2+)), was significantly prolonged by ouabain. Exposure to 10 microM H(2)O(2), which causes an increase in intracellular reactive oxygen species similar to that of 50 microM ouabain, caused a similar increase in tau(Ca(2+)). Concurrent exposure to 10 mM N-acetylcysteine or an aqueous extract from green tea (50 mg/ml) both prevented the increases in tau(Ca(2+)) as well as the changes in systolic or diastolic Ca(2+) concentrations. We also observed that 50 microM ouabain induced increases in developed pressure in addition to diastolic dysfunction in the isolated perfused rat heart. Coadministration of ouabain with N-acetylcysteine prevented these increases. Analysis of sarcoplasmic reticulum Ca(2+)-ATPase protein revealed increases in both the oxidation and nitrotyrosine content in the ouabain-treated hearts. Liquid chromatography-mass spectrometric analysis confirmed that the sarcoplasmic reticulum Ca(2+)-ATPase protein from ouabain-treated hearts had modifications consistent with oxidative and nitrosative stress. These data suggest that ouabain induces oxidative changes of the sarcoplasmic reticulum Ca(2+)-ATPase structure and function that may, in turn, produce some of the associated changes in Ca(2+) cycling and physiological function.  相似文献   

20.
Rats were treated with CCl4 and the spin trapping agent alpha-phenyl-N-t-butyl nitrone (PBN), followed by ESR investigations on samples of heparinized blood. The major signal detected was the ascorbate semidione radical, but smaller concentrations of the carbon dioxide radical anion spin adduct of PBN could also be detected. The ESR signals were more intense when experiments were conducted with plasma, rather than blood. The spin adducts detected were not associated with the red blood cells, and their apparent concentrations increased when the cells were removed by centrifugation. The addition of ascorbate oxidase to the samples markedly diminished the intensity of the ascorbate semidione radical. When plasma samples from CCl4-treated rats were extracted into toluene, the ESR spectrum of the trichloromethyl adduct of PBN was observed in the extract. Because the spectrum of this adduct was not observed in direct ESR studies of plasma, it is possible that immobilization occurred in the presence of plasma proteins. Evidence to support this hypothesis was developed by adding bovine serum albumin (BSA) to an aqueous solution of the trichloromethyl radical adduct of PBN. As the BSA concentration was increased, the intensity of the ESR spectrum was markedly diminished, and displayed features of an immobilized adduct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号