首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen   总被引:18,自引:0,他引:18  
The ribonucleoside analog ribavirin (1-beta-D-ribofuranosyl-1,2, 4-triazole-3-carboxamide) shows antiviral activity against a variety of RNA viruses and is used in combination with interferon-alpha to treat hepatitis C virus infection. Here we show in vitro use of ribavirin triphosphate by a model viral RNA polymerase, poliovirus 3Dpol. Ribavirin incorporation is mutagenic, as it templates incorporation of cytidine and uridine with equal efficiency. Ribavirin reduces infectious poliovirus production to as little as 0. 00001% in cell culture. The antiviral activity of ribavirin correlates directly with its mutagenic activity. These data indicate that ribavirin forces the virus into 'error catastrophe'. Thus, mutagenic ribonucleosides may represent an important class of anti-RNA virus agents.  相似文献   

2.
Ribavirin is one of the few nucleoside analogues currently used in the clinic to treat RNA virus infections, but its mechanism of action remains poorly understood at the molecular level. Here, we show that ribavirin 5'-triphosphate inhibits the activity of the dengue virus 2'-O-methyltransferase NS5 domain (NS5MTase(DV)). Along with several other guanosine 5'-triphosphate analogues such as acyclovir, 5-ethynyl-1-beta-d-ribofuranosylimidazole-4-carboxamide (EICAR), and a series of ribose-modified ribavirin analogues, ribavirin 5'-triphosphate competes with GTP to bind to NS5MTase(DV). A structural view of the binding of ribavirin 5'-triphosphate to this enzyme was obtained by determining the crystal structure of a ternary complex consisting of NS5MTase(DV), ribavirin 5'-triphosphate, and S-adenosyl-l-homocysteine at a resolution of 2.6 A. These detailed atomic interactions provide the first structural insights into the inhibition of a viral enzyme by ribavirin 5'-triphosphate, as well as the basis for rational drug design of antiviral agents with improved specificity against the emerging flaviviruses.  相似文献   

3.
Ribavirin is a guanosine ribonucleoside analog that displays broad-spectrum anti-viral activity and is currently used for the treatment of some viral infections. Ribavirin has recently been proposed to also be a mimic of the 7-methyl guanosine cap found at the 5' end of mRNAs. To obtain supporting functional data for this hypothesis, we assessed the ability of ribavirin triphosphate to interfere with the interaction between eIF4E and 7-methyl guanosine capped mRNA. In chemical cross-linking assays, cap-affinity chromatography, and cap-dependent translation assays, ribavirin was unable to function as a cap analog.  相似文献   

4.
Ribavirin enhances the anti-human immunodeficiency virus activity of 2',3'-dideoxyinosine (ddIno) in MT-4, CEM and peripheral blood lymphocyte cells. Ribavirin causes an increase in the levels of IMP, the presumed phosphate donor for the conversion of ddIno to ddIMP by 5'-nucleotidase. Consequently, ribavirin stimulates the conversion of ddIno to its antivirally active metabolite ddATP. Ribavirin also causes a marked depletion of the guanine nucleotide pools. The increase in IMP pool levels may result from (i) a direct inhibitory effect of ribavirin 5'-monophosphate on IMP dehydrogenase (which converts IMP to XMP) and (ii) an indirect inhibition of adenylosuccinate synthetase by the decreased GTP and dGTP pools (since GTP is an obligatory cofactor in the conversion of IMP to succinyl AMP). GTP depletion plays a key role in the accumulation of IMP and the resultant higher rate of ddIno phosphorylation to ddIMP and eventually ddATP. Our findings are in agreement with the observations that guanosine and 2'-deoxyguanosine, but not 2'-deoxyadenosine, reverse (i) the stimulatory effect of ribavirin on the anti-human immunodeficiency virus activity of ddIno and (ii) the accumulation of endogenous IMP pools as well as accumulation of [3H]IMP from exogenous [3H]hypoxanthine in ribavirin-treated cells.  相似文献   

5.
Ribavirin and EICAR are two antiviral agents that share a similar antiviral activity spectrum and are targeted at inosine 5'-monophosphate (IMP) dehydrogenase. Neither ribavirin nor EICAR inhibit the replication of human immunodeficiency virus (HIV) in peripheral blood lymphocyte cells (PBL) at subtoxic concentrations. However, both compounds markedly potentiate the anti-HIV activity of 2',3'-dideoxyinosine (DDI) in PBL cells without a marked increase of toxicity. Both the increased IMP levels and the decreased guanine nucleotide levels caused by ribavirin and EICAR may be responsible for their potentiating effect on the anti-HIV activity of DDI.  相似文献   

6.
7.
WL Liu  HC Yang  WC Su  CC Wang  HL Chen  HY Wang  WH Huang  DS Chen  MY Lai 《PloS one》2012,7(9):e43824

Background/Aims

Ribavirin significantly enhances the antiviral response of interferon-α (IFN-α) against Hepatitis C virus (HCV), but the underlying mechanisms remain poorly understood. Recently, p53 has been identified as an important factor involving the suppression of HCV replication in hepatocytes. We, therefore, decided to investigate whether and how ribavirin inhibits the replication of HCV by promoting the activity of p53.

Methods

HepG2 and HCV replicons (JFH1/HepG2) were utilized to study the relationship between ribavirin and p53. The effect of ribavirin on cell cycles was analyzed by flow cytometry. The activation of p53 and the signaling pathways were determined using immunoblotting. By knocking down ERK1/ERK2 and p53 utilizing RNA interference strategy, we further assessed the role of ERK1/2 and p53 in the suppression of HCV replication by ribavirin in a HCV replicon system.

Results

Using HepG2 and HCV replicons, we demonstrated that ribavirin caused the cell cycle arrest at G1 phase and stabilized and activated p53, which was associated with the antiviral activity of ribavirin. Compared to either ribavirin or IFN-α alone, ribavirin plus IFN-α resulted in greater p53 activation and HCV suppression. We further identified ERK1/2 that linked ribavirin signals to p53 activation. More importantly, knockdown of ERK1/2 and p53 partially mitigated the inhibitory effects of ribavirin on the HCV replication, indicating that ERK1/2-p53 pathway was involved in the anti-HCV effects of ribavirin.

Conclusion

Ribavirin stimulates ERK1/2 and subsequently promotes p53 activity which at least partly contributes to the enhanced antiviral response of IFN-α plus ribavirin against HCV.  相似文献   

8.
To prove whether error catastrophe/lethal mutagenesis is the primary antiviral mechanism of action of ribavirin against foot-and-mouth disease virus (FMDV). Ribavirin passage experiments were performed and supernatants of Rp1 to Rp5 were harvested. Morphological alterations as well as the levels of viral RNAs, proteins, and infectious particles in the BHK-21 cells infected using the supernatants of Rp1 to Rp5 and control were measured by microscope, real-time RT-PCR, western-blotting and plaque assays, respectively. The mutation frequency was measured by sequencing the complete P1- and 3D-encoding region of FMDV after a single round of virus infection from ribavirin-treated or untreated FMDV-infected cells. Ribavirin treatment for FMDV caused dramatically inhibition of multiplication in cell cultures. The levels of viral RNAs, proteins, and infectious particles in the BHK-21 cells infected were more greatly reduced along with the passage from Rp1 to Rp5, moreover, nucleocapsid protein could not be detected and no recovery of infectious virus in the supernatant or detection of intracellular viral RNA was observed at the Rp5-infected cells. A high mutation rate, giving rise to an 8-and 11-fold increase in mutagenesis and resulting in some amino acid substitutions, was found in viral RNA synthesized at a single round of virus infection in the presence of ribavirin of 1000 microM and caused a 99.7% loss in viral infectivity in contrast with parallel untreated control virus. These results suggest that the antiviral molecular mechanism of ribavirin is based on the lethal mutagenesis/error catastrophe, that is, the ribavirin is not merely an antiviral reagent but also an effective mutagen.  相似文献   

9.
Ribavirin is used as a component of combination therapies for the treatment of chronic hepatitis C virus (HCV) infection together with pegylated interferon and/or direct-acting antiviral drugs. Its mechanism of action, however, is not clear. Direct antiviral activity and immunomodulatory functions have been implicated. Plasmacytoid dendritic cells (pDCs) are the principal source of type 1 interferon during viral infection. The interaction of pDCs with HCV-infected hepatocytes is the subject of intense recent investigation, but the effect of ribavirin on pDC activation has not been evaluated. In this study we showed that ribavirin augments toll-like receptors 7 and 9-mediated IFNα/β expression from pDCs and up-regulated numerous interferon-stimulated genes. Using the H77S.3 HCV infection and replication system, we showed that ribavirin enhanced the ability of activated pDCs to inhibit HCV replication, correlated with elevated induction of IFNα. Our findings provide novel evidence that ribavirin contributes to HCV inhibition by augmenting pDCs-derived type 1 IFN production.  相似文献   

10.
Ribavirin is a synthetic nucleoside analog that is used for the treatment of hepatitis C virus (HCV) infection. Its primary toxicity is hemolytic anemia, which sometimes necessitates dose reduction or discontinuation of therapy. Selective delivery of ribavirin into liver cells would be desirable to enhance its antiviral activity and avoid systemic side effects. One approach to liver-specific targeting is conjugation of the ribavirin with asialoglycoprotein that is taken up specifically by liver cells. Human uridine-cytidine kinase-1 (UCK-1) was used for ribavirin phosphorylation to its monophosphate form. 1-Ethyl-3-diisopropylaminocarbodiimide (EDC) was used as a coupling agent. The best results were obtained using direct conjugation protocol with a molar ratio of 6.5 ribavirin monophosphate (RMP) molecules per one asialoorosomucoid (AsOR) molecule. Our findings show that ribavirin is a potential substrate of UCK-1, and RMP formed could be chemically coupled to AsOR to form a conjugate for liver specific targeting.  相似文献   

11.
The infectious salmon anemia virus (ISAV), which belongs to the Orthomyxoviridae family, has been responsible for major losses in the salmon industry, with mortalities close to 100% in areas where Atlantic salmon (Salmo salar) is grown. This work studied the effect of ribavirin (1-β-d-ribofuranosyl-1,2,3-triazole-3-carbaxaide), a broad-spectrum antiviral compound with proven ability to inhibit the replicative cycle of the DNA and RNA viruses. The results show that ribavirin was able to inhibit the infectivity of ISAV in in vitro assays. In these assays, a significant inhibition of the replicative viral cycle was observed with a 50% inhibitory concentration (IC50) of 0.02 μg/ml and an IC90 of 0.4 μg/ml of ribavirin. After ribavirin treatment, viral proteins were not detectable and a reduction of viral mRNA association with ribosomes was observed. Ribavirin does not affect the levels of EF1a, nor its association with polysomes, suggesting that the inhibition of RNA synthesis occurs specifically for the virus mRNAs and not for cellular mRNAs. Moreover, ribavirin caused a significant reduction in genomic and viral RNA messenger levels. The study of the inhibitory mechanism showed that it was not reversed by the addition of guanosine. Furthermore, in vivo assays showed a reduction in the mortality of Salmo salar by more than 90% in fish infected with ISAV and treated with ribavirin without adverse effects. In fact, these results show that ribavirin is an antiviral that could be used to prevent ISAV replication either in vitro or in vivo.  相似文献   

12.
Ribavirin is administered in combination with interferon-alpha for treatment of hepatitis C virus (HCV) infection. Recently, we demonstrated that the antiviral activity of ribavirin can result from the ability of a viral RNA polymerase to utilize ribavirin triphosphate and to incorporate this nucleotide with reduced specificity, thereby mutagenizing the genome and decreasing the yield of infectious virus (Crotty, S., Maag, D., Arnold, J. J., Zhong, W., Lau, J. Y., Hong, Z., Andino, R., and Cameron, C. E. (2000) Nat. Med. 6, 1375-1379). In this study, we performed a quantitative analysis of a novel HCV RNA polymerase derivative that is capable of utilizing stably annealed primer-template substrates and exploited this derivative to evaluate whether lethal mutagenesis of the HCV genome is a possible mechanism for the anti-HCV activity of ribavirin. These studies demonstrate HCV RNA polymerase-catalyzed incorporation of ribavirin opposite cytidine and uridine. In addition, we demonstrate that templates containing ribavirin support CMP and UMP incorporation with equivalent efficiency. Surprisingly, templates containing ribavirin can also cause a significant block to RNA elongation. Together, these data suggest that ribavirin can exert a direct effect on HCV replication, which is mediated by the HCV RNA polymerase. We discuss the implications of this work on the development of nucleoside analogs for treatment of HCV infection.  相似文献   

13.
Pathogenic hantaviruses are a closely related group of rodent-borne viruses which are responsible for two distinct diseases in humans, hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome (HPS, otherwise known as hantavirus cardiopulmonary syndrome, HCPS). The antiviral effect of ribavirin against Old World hantaviruses, most notably Hantaan virus, is well documented; however, only a few studies have addressed its inhibitory effect on New World hantaviruses. In the present study, we demonstrate that ribavirin is highly active against Andes virus (ANDV), an important etiological agent of HPS, both in vitro and in vivo using a lethal hamster model of HPS. Treatment of ANDV infected Vero E6 cells with ribavirin resulted in dose-dependent reductions in viral RNA and protein as well as virus yields with a half maximal inhibitory concentration between 5 and 12.5 μg ml(-1). In hamsters, treatment with as little as 5 mg kg(-1) day(-1) was 100% effective at preventing lethal HPS disease when therapy was administered by intraperitoneal injection from day 1 through day 10 post-infection. Significant reductions were observed in ANDV RNA and antigen positive cells in lung and liver tissues. Ribavirin remained completely protective when administered by intraperitoneal injections up to three days post-infection. In addition, we show that daily oral ribavirin therapy initiated 1 day post-infection and continuing for ten days is also protective against lethal ANDV disease, even at doses of 5 mg kg(-1) day(-1). Our results suggest ribavirin treatment is beneficial for postexposure prophylaxis against HPS-causing hantaviruses and should be considered in scenarios where exposure to the virus is probable. The similarities between the results obtained in this study and those from previous clinical evaluations of ribavirin against HPS, further validate the hamster model of lethal HPS and demonstrate its usefulness in screening antiviral agents against this disease.  相似文献   

14.
Lethal mutagenesis, or virus extinction produced by enhanced mutation rates, is under investigation as an antiviral strategy that aims at counteracting the adaptive capacity of viral quasispecies, and avoiding selection of antiviral-escape mutants. To explore lethal mutagenesis of hepatitis C virus (HCV), it is important to establish whether ribavirin, the purine nucleoside analogue used in anti-HCV therapy, acts as a mutagenic agent during virus replication in cell culture. Here we report the effect of ribavirin during serial passages of HCV in human hepatoma Huh-7.5 cells, regarding viral progeny production and complexity of mutant spectra. Ribavirin produced an increase of mutant spectrum complexity and of the transition types associated with ribavirin mutagenesis, resulting in HCV extinction. Ribavirin-mediated depletion of intracellular GTP was not the major contributory factor to mutagenesis since mycophenolic acid evoked a similar decrease in GTP without an increase in mutant spectrum complexity. The intracellular concentration of the other nucleoside-triphosphates was elevated as a result of ribavirin treatment. Mycophenolic acid extinguished HCV without an intervening mutagenic activity. Ribavirin-mediated, but not mycophenolic acid-mediated, extinction of HCV occurred via a decrease of specific infectivity, a feature typical of lethal mutagenesis. We discuss some possibilities to explain disparate results on ribavirin mutagenesis of HCV.  相似文献   

15.
Ribavirin, the only small molecule available so far for treating hepatitis C virus infection, was recently used in an emergency context to treat patients with severe acute respiratory syndrome in the early stages of the disease. EICAR, one of the most potent congeners of ribavirin, has 10 to 100 times greater antiviral potency than ribavirin. The mechanisms underlying the antiviral effects of ribavirin and EICAR have not yet been definitely elucidated, but they seem to be similar. In order to study the mechanisms responsible for their antiviral effects using a photolabeling approach, we have developed photolabeling probes of ribavirin and EICAR, in which an azido group was introduced into the pseudobases of triazole and imidazole, respectively. The ribavirin photoprobes were obtained by directly coupling the azidotriazole to the protected ribose sugar, while the EICAR probe was prepared by diazotizing AICAR and subsequently substituting with NaN3. All these probes showed a fast, clear-cut photochemical reaction, which suggests that they are promising tools for use in photolabeling studies.  相似文献   

16.
Ribavirin, the only small molecule available so far for treating hepatitis C virus infection, was recently used in an emergency context to treat patients with severe acute respiratory syndrome in the early stages of the disease. EICAR, one of the most potent congeners of ribavirin, has 10 to 100 times greater antiviral potency than ribavirin. The mechanisms underlying the antiviral effects of ribavirin and EICAR have not yet been definitely elucidated, but they seem to be similar. In order to study the mechanisms responsible for their antiviral effects using a photolabeling approach, we have developed photolabeling probes of ribavirin and EICAR, in which an azido group was introduced into the pseudobases of triazole and imidazole, respectively. The ribavirin photoprobes were obtained by directly coupling the azidotriazole to the protected ribose sugar, while the EICAR probe was prepared by diazotizing AICAR and subsequently substituting with NaN3. All these probes showed a fast, clear-cut photochemical reaction, which suggests that they are promising tools for use in photolabeling studies.  相似文献   

17.
18.
Ribavirin is a broad spectrum antiviral nucleoside that displays activity against a variety of RNA and DNA viruses. Ribavirin is currently used in combination with interferon-alpha for the treatment of hepatitis C virus (HCV) infection and was recently shown to be directly incorporated by the HCV RNA polymerase into RNA products. This capacity ultimately leads to increased mutation rates and drastically reduces the viral fitness. As a first step toward elucidating the nature of the specific interaction between ribavirin and the HCV polymerase, we have utilized fluorescence spectroscopy to monitor precisely the binding of ribavirin triphosphate (RTP) to the viral polymerase. This spectroscopic approach allowed us to clearly separate the RTP binding activity from the concomitant catalytic steps. We report here the first detailed study of the binding kinetics and thermodynamic parameters involved in the interaction between RTP and an RNA polymerase. We demonstrate that RTP binds to the same active site as nucleotides. Furthermore, we provide evidence that the HCV polymerase cannot only bind to RTP but also to nonphosphorylated ribavirin, albeit with less affinity. By using various combinations of template-primers, we also demonstrate that base pairing is not involved in the initial binding of RTP to the HCV polymerase. Based on the results of circular dichroism and denaturation studies, we show that the RNA polymerase undergoes subtle conformational changes upon the binding of RTP, although the interaction does not significantly modify the stability of the protein. Finally, although metal ions are required for catalytic activity, they are not required for the initial binding of RTP to the polymerase. Such quantitative analyses are of primary importance for the rational design of new ribavirin analogues of potential therapeutic value and provide crucial insights on the interaction between RTP and the HCV RNA polymerase.  相似文献   

19.
Ribavirin (RBV) is a synthetic nucleoside analog with broad spectrum antiviral activity. Although RBV is approved for the treatment of hepatitis C virus, respiratory syncytial virus, and Lassa fever virus infections, its mechanism of action and therapeutic efficacy remains highly controversial. Recent reports show that the development of cell-based resistance after continuous RBV treatment via decreased RBV uptake can greatly limit its efficacy. Here, we examined whether certain cell types are naturally resistant to RBV even without prior drug exposure. Seven different cell lines from various host species were compared for RBV antiviral activity against two nonsegmented negative-strand RNA viruses, vesicular stomatitis virus (VSV, a rhabdovirus) and Sendai virus (SeV, a paramyxovirus). Our results show striking differences between cell types in their response to RBV, ranging from virtually no antiviral effect to very effective inhibition of viral replication. Despite differences in viral replication kinetics for VSV and SeV in the seven cell lines, the observed pattern of RBV resistance was very similar for both viruses, suggesting that cellular rather than viral determinants play a major role in this resistance. While none of the tested cell lines was defective in RBV uptake, dramatic variations were observed in the long-term accumulation of RBV in different cell types, and it correlated with the antiviral efficacy of RBV. While addition of guanosine neutralized RBV only in cells already highly resistant to RBV, actinomycin D almost completely reversed the RBV effect (but not uptake) in all cell lines. Together, our data suggest that RBV may inhibit the same virus via different mechanisms in different cell types depending on the intracellular RBV metabolism. Our results strongly point out the importance of using multiple cell lines of different origin when antiviral efficacy and potency are examined for new as well as established drugs in vitro.  相似文献   

20.
GB virus B (GBV-B) is the closest relative of hepatitis C virus (HCV) and is an attractive surrogate model for HCV antiviral studies. GBV-B induces an acute, resolving hepatitis in tamarins. Utilizing primary cultures of tamarin hepatocytes, we have previously developed a tissue culture system that exhibits high levels of GBV-B replication. In this report, we have extended the utility of this system for testing antiviral compounds. Treatment with human interferon provided only a marginal antiviral effect, while poly(I-C) yielded >3 and 4 log units of reduction of cell-associated and secreted viral RNA, respectively. Interestingly, treatment of GBV-B-infected hepatocytes with ribavirin resulted in an approximately 4-log decrease in viral RNA levels. Guanosine blocked the antiviral effect of ribavirin, suggesting that inhibition of IMP dehydrogenase (IMPDH) and reduction of intracellular GTP levels were essential for the antiviral effect. However, mycophenolic acid, another IMPDH inhibitor, had no antiviral effect. Virions harvested from ribavirin-treated cultures exhibited a dramatically reduced specific infectivity. These data suggest that incorporation of ribavirin triphosphate induces error-prone replication with concomitant reduction in infectivity and that reduction of GTP pools may be required for incorporation of ribavirin triphosphate. In contrast to the in vitro studies, no significant reduction in viremia was observed in vivo following treatment of tamarins with ribavirin during acute infection with GBV-B. These findings are consistent with the observation that ribavirin monotherapy for HCV infection decreases liver disease without a significant reduction in viremia. Our data suggest that nucleoside analogues that induce error-prone replication could be an attractive approach for the treatment of HCV infection if administered at sufficient levels to result in efficient incorporation by the viral polymerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号