首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 39/34-kilodalton (kDa) monomeric dispase fragment of von Willebrand factor (vWF) has been purified by heparin affinity chromatography. Detailed structural analysis of the individual 39- and 34-kDa fragments indicated that they had identical amino acid sequences extending from Leu-480/Val-481 to Gly-718 with an intramolecular disulfide bond between Cys-509 and Cys-695. In addition to the binding site for heparin, the 39/34-kDa fragment also contained binding sites for collagen and for platelet membrane glycoprotein (GP) Ib. Unlike native vWF, the 39/34-kDa fragment bound to GP Ib without the requirement for a modulator but showed increased binding in the presence of botrocetin. The 39/34-kDa vWF fragment was cross-linked to intact human platelets by using the membrane-impermeable, homobifunctional cross-linking reagent bis(sulfosuccinimidyl) suberate. Two distinct cross-linked species of similar molecular weight (220/200 kDa, nonreduced; 190/175 kDa, reduced) were identified by SDS-polyacrylamide gel electrophoresis and autoradiography, consistent with the cross-linking of the 125I-labeled 39/34-kDa vWF fragment to GP Ib. The formation of these cross-linked species was enhanced 1.5-2.5-fold in the presence of the modulator botrocetin. The platelet membrane protein involved in cross-linking was shown unequivocally to be GP Ib since (i) neither cross-linked species was formed with Bernard-Soulier syndrome platelets, which genetically lack the GP Ib-IX complex, (ii) both cross-linked species were specifically immunoprecipitated by anti-GP Ib polyclonal and monoclonal antibodies, and (iii) the formation of the cross-linked species was completely inhibited only by those anti-GP Ib-IX complex monoclonal antibodies that inhibited vWF-GP Ib-IX complex interaction. Proteolysis of cross-linked platelets with endoproteinase Lys-C, which preferentially cleaves off the N-terminal peptide domain on the alpha-chain of GP Ib, indicated that the 39/34-kDa vWF fragment was cross-linked exclusively to this region of the GP Ib-IX complex.  相似文献   

2.
Platelet function is inhibited by agents such as prostaglandin E1 (PGE1) that elevate the cytoplasmic concentration of cyclic AMP. Inhibition presumably results from the cyclic AMP-stimulated phosphorylation of intracellular proteins. Polypeptides that become phosphorylated are actin-binding protein, P51 (Mr = 51,000), P36 (Mr = 36,000), P24 (Mr = 24,000), and P22 (Mr = 22,000). Recently, we identified P24 as the beta-chain of glycoprotein (GP) Ib, a component of the plasma membrane GP Ib.IX complex. The existence of Bernard-Soulier syndrome, a hereditary disorder in which platelets selectively lack the GP Ib.IX complex, enabled us to examine whether the phosphorylation of GP Ib beta (P24) is responsible for any of the inhibitory effects of elevated cyclic AMP on platelet function. Exposure of control platelets to PGE1 increased phosphorylation of actin-binding protein, P51, P36, GP Ib beta, and P22. Prostaglandin E1 induced the same phosphorylation reactions in Bernard-Soulier platelets, except that of GP Ib beta, which is absent. In control platelets, PGE1 inhibited collagen-induced phosphorylation of myosin light chain, phosphorylation of P47 (an unidentified Mr 47,000 cytoplasmic protein that is phosphorylated by protein kinase C in stimulated platelets), aggregation, and the secretion of granule contents. Despite the absence of GP Ib beta, PGE1 also inhibited these collagen-induced responses in Bernard-Soulier platelets. However, while PGE1 inhibited collagen-induced polymerization of actin in control platelets, it did not inhibit actin polymerization in Bernard-Soulier platelets. These results suggest that cyclic AMP-induced phosphorylation of GP Ib inhibits collagen-induced actin polymerization in platelets. Because actin polymerization is required for at least some of the functional responses of platelets to an agonist, phosphorylation of Gp Ib beta may be one way in which cyclic AMP inhibits platelet function.  相似文献   

3.
The platelet membrane glycoprotein (GP) Ib-IX complex is a major site of attachment of the platelet membrane skeleton to the plasma membrane. This association is mediated by the interaction of actin-binding protein with the GP Ib-IX complex. The aim of the present work was to identify domains on the GP Ib-IX complex that interact with actin-binding protein. Synthetic peptides corresponding to sequences of the GP Ib alpha-chain and beta-chain cytoplasmic domains were analyzed for their ability to bind to purified actin-binding protein. Two overlapping peptides encompassing a sequence (Thr-536-Phe-568) from the central region of the cytoplasmic domain of GP Ib alpha were the most effective in binding 125I-actin-binding protein, as assessed by a microtiter well approach and peptide affinity chromatography. One of the active peptides (Thr-536-Leu-554) was chosen to evaluate the likelihood that the central region of the cytoplasmic domain of GP Ib alpha is involved in binding of the intact complex to actin-binding protein. This peptide could be specifically cross-linked to purified actin-binding protein in solution. Rabbit polyclonal antibody against this peptide inhibited the binding of purified actin-binding protein to the purified GP Ib-IX complex. Finally, as in intact platelets, the calpain-induced hydrolytic fragments of purified actin-binding protein (M(r) = 200,000 and M(r) = 91,000) showed little binding to the GP Ib alpha peptide. Taken together, these results provided evidence that a region between Thr-536 and Phe-568 of the cytoplasmic domain of GP Ib alpha participates in the interaction of the GP Ib-IX complex with actin-binding protein.  相似文献   

4.
The glycoprotein (GP) Ib-IX complex is a major component of the platelet membrane which mediates adhesion of platelets to exposed subendothelium. GP Ib is a heterodimer with a large alpha chain (Mr = 135,000-145,000) and small beta chain (Mr = 22,000-27,000) linked by a disulfide bond(s). GP Ib is bound in a noncovalent 1:1 complex with GP IX (Mr = 17,000-22,000). We labeled isolated human platelets with [3H] palmitate or surface-labeled platelet membrane glycoproteins with sodium periodate-[3H]sodium borohydride and immunoprecipitated the GP Ib-IX complex from radiolabeled platelet lysates using a mouse monoclonal antibody (SZ.1) which recognizes the intact complex. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitates from [3H]palmitate-labeled platelets revealed two radiolabeled bands under reducing conditions at 24 and 19 kDa and two bands under nonreducing conditions at 170 and 19 kDa. As demonstrated by the parallel analysis of immunoprecipitates from periodate-[3H]sodium borohydride-labeled platelets, the [3H]palmitate-labeled bands obtained under reducing conditions corresponded to GP Ib beta and GP IX and the ones obtained under nonreducing conditions to intact GP Ib and GP IX, respectively. Using alkaline methanolysis followed by high pressure liquid chromatography analysis of the methanolysis products, we demonstrated that the radioactivity associated with the GP Ib-IX complex from [3H]palmitate-labeled platelets was, in fact, covalently bound [3H]palmitate in ester linkage to protein. The protein-fatty acid linkage was also disrupted by hydroxylamine at neutral pH. Thus, this study demonstrates that GP Ib beta and GP IX in human platelets are both fatty acid-acylated with palmitate through thioester linkages.  相似文献   

5.
Lack of expression of glycoprotein (GP) Ib-IX-V complex in platelets often results from mutations in its three subunits: GP Ibalpha, GP Ibbeta, or GP IX. The requirement of all three subunits in the efficient surface expression of the receptor complex has been reproduced in Chinese hamster ovary cells. Here, we probed the role of the transmembrane domains in expression of the GP Ib-IX complex and potential interactions between these domains. Replacing the transmembrane domains of either GP Ibalpha or GP Ibbeta, but not that of GP IX, with unrelated sequences markedly diminished surface expression of the GP Ib-IX complex in transiently transfected Chinese hamster ovary cells. Replacement of the Ibbeta transmembrane domain produced the largest effect. Furthermore, several single-site mutations in the Ibbeta transmembrane domain were found to significantly decrease overall expression as well as surface expression of GP Ibalpha, probably by perturbing the interaction between the Ibalpha and Ibbeta transmembrane domains and in turn reducing the stability of GP Ibalpha in the cell. Mutations S503V and S503L in the Ibalpha transmembrane domain partly reversed the expression-decreasing effect of mutation H139L, but not the others, in the Ibbeta transmembrane domain, suggesting a specific interaction between these two polar residues. Together, our results have demonstrated the importance of the Ibbeta transmembrane domain, through its interaction with the Ibalpha counterpart, to the proper assembly and efficient surface expression of the GP Ib-IX complex.  相似文献   

6.
M C Berndt  X P Du  W J Booth 《Biochemistry》1988,27(2):633-640
Whether the human platelet membrane glycoprotein (GP) Ib-IX complex is the receptor for ristocetin-dependent binding of von Willebrand factor (vWF) has been examined by reconstitution with the purified components using a solid-phase bead assay. Purified GP Ib-IX complex was bound and orientated on the beads via a monoclonal antibody, FMC 25, directed against the membrane-associated region of the complex. Specific binding of 125I-labeled vWF to the GP Ib-IX complex coated beads was strictly ristocetin dependent with maximal binding occurring at ristocetin concentrations greater than or equal to 1 mg/mL. Ristocetin-dependent specific binding of 125I-labeled vWF was saturable. The observed binding was specific to the interaction between vWF and the GP Ib-IX complex since there was no ristocetin-dependent specific binding of vWF if the physicochemically related platelet membrane glycoprotein, GP IIb, was substituted for the GP Ib-IX complex in a corresponding bead assay. Further, neither bovine serum albumin nor other adhesive glycoproteins, such as fibrinogen or fibronectin, specifically bound to the GP Ib-IX complex in the presence of ristocetin. Ristocetin-dependent binding of vWF to platelets and to GP Ib-IX complex coated beads was inhibited by monoclonal antibodies against a 45,000 molecular weight N-terminal region of GP Ib but not by monoclonal antibodies directed against other regions of the GP Ib-IX complex. Similar correspondence between platelets and purified GP Ib-IX complex with respect to the ristocetin-dependent binding of vWF was obtained with anti-vWF monoclonal antibodies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Platelet function is inhibited by prostaglandin E1, prostaglandin I2, or forskolin, agents that increase the intracellular concentration of cyclic AMP. The inhibition appears to result from cyclic AMP-stimulated phosphorylation of specific intracellular proteins. One of the major increases in phosphorylation occurs in a polypeptide of Mr = 24,000 (P24). In this study, an effort was made to identify P24. Platelets prelabeled with [32P]phosphate were incubated with prostaglandin E1, prostaglandin I2, or forskolin. Proteins that became phosphorylated were detected by autoradiography of sodium dodecyl sulfate-polyacrylamide gels. Several lines of evidence indicated that P24 was the beta-subunit of the plasma membrane glycoprotein (GP) Ib, a glycoprotein that is essential for the adhesion of platelets to damaged subendothelium, for the rapid response of platelets to thrombin, and for the attachment of the membrane skeleton to the cytoplasmic face of the plasma membrane. P24 co-migrated with GP Ib beta on reduced gels (Mr = 24,000) and also on nonreduced gels (when GP Ib beta is disulfide-linked to GP Ib alpha and migrates with Mr = 170,000). Like GP Ib beta, P24 was associated with actin filaments in Triton X-100 lysates. Like GP Ib beta, it was selectively associated with filaments of the membrane skeleton and was released from filaments when the Ca2+-dependent protease was active. Antibodies against GP Ib immunoprecipitated P24 from platelet lysates. Finally, exposure of Bernard-Soulier platelets (which lack GP Ib) to prostaglandin E1 resulted in phosphorylation of other polypeptides, but not of P24. These studies show that P24, one of the major polypeptides phosphorylated when platelets are exposed to agents that inhibit platelet function by increasing the concentration of cyclic AMP, is the beta-subunit of GP Ib.  相似文献   

8.
As the receptor on the platelet surface for von Willebrand factor, glycoprotein (GP) Ib-IX complex is critically involved in hemostasis and thrombosis. How the complex is assembled from GP Ibα, GP Ibβ and GP IX subunits, all of which are type I transmembrane proteins, is not entirely clear. Genetic and mutational analyses have identified the transmembrane (TM) domains of these subunits as active participants in assembly of the complex. In this study, peptides containing the transmembrane domain of each subunit have been produced and their interaction with one another characterized. Only the Ibβ TM sequence, but not the Ibα and IX counterparts, can form homo-oligomers in SDS-PAGE and TOXCAT assays. Following up on our earlier observation that a Ibβ-Ibα-Ibβ peptide complex (αβ2) linked through native juxtamembrane disulfide bonds could be produced from isolated Ibα and Ibβ TM peptides in detergent micelles, we show here that addition of the IX TM peptide facilitates formation of the native αβ2 complex, reproducing the same effect by the IX subunit in cells expressing the GP Ib-IX complex. Specific fluorescence resonance energy transfer was observed between donor-labeled αβ2 peptide complex and acceptor-conjugated IX TM peptide in micelles. Finally, the mutation D135K in the IX TM peptide could hamper both the formation of the αβ2 complex and the energy transfer, consistent with its reported effect in the full-length complex. Overall, our results have demonstrated directly the native-like heteromeric interaction among the isolated Ibα, Ibβ and IX TM peptides, which provides support for the four-helix bundle model of the TM domains in the GP Ib-IX complex and paves the way for further structural analysis. The methods developed in this study may be applicable to other studies of heteromeric interaction among multiple TM helices.  相似文献   

9.
Interaction of von Willebrand factor (vWF) with its platelet receptor only occurs in vitro in the presence of a modulator such as ristocetin. We have recently confirmed that the human platelet membrane glycoprotein (GP) Ib-IX complex is the receptor involved in the ristocetin-dependent binding of vWF by reconstitution with the purified components [Berndt, M.C., Du, X., & Booth, W.J. (1988) Biochemistry 27, 633-640]. We have now developed a similar solid-phase reconstitution assay using an alternate modulator, botrocetin, for the competitive analysis of functional domains in both vWF and the GP Ib-IX complex. Botrocetin was purified from Bothrops jararaca venom by ammonium sulfate fractionation and subsequent DEAE-cellulose and hydroxylapatite chromatography. The purified protein was a 25-kilodalton (kDa) disulfide-linked dimer with apparent subunit molecular weights of 14,000 and 14,500. Binding studies with immobilized botrocetin demonstrated that botrocetin bound to vWF and to a 52/48-kDa region of vWF that contains the GP Ib binding domain, but not to glycocalicin, a proteolytic fragment of GP Ib that contains the vWF binding site. Binding of 125I-labeled vWF to GP Ib-IX complex coated beads and to platelets was strictly botrocetin-dependent with half-maximal binding at a botrocetin concentration of congruent to 0.27 microM. Botrocetin-dependent binding of vWF was specific, saturable, and comparable to that observed with ristocetin. An anti-vWF monoclonal antibody, 3F8, inhibited ristocetin- but not botrocetin-dependent binding of vWF, suggesting the presence of distinct ristocetin and botrocetin modulator sites on vWF. The botrocetin reconstitution assay was at least an order of magnitude more sensitive than the corresponding ristocetin assay for the competitive analysis of functional domains on both vWF and the GP Ib-IX complex and has confirmed the localization of the vWF-binding domain to the 45-kDa N-terminal region of GP Ib.  相似文献   

10.
The localization of the platelet glycoprotein GP Ib-IX complex (GP Ibα, GP Ibβ, and GP IX) to membrane lipid domain, also known as glycosphingolipid-enriched membranes (GEMs or raft) lipid domain, is essential for the GP Ib-IX complex mediated platelet adhesion to von Willebrand factor (vWf) and subsequent platelet activation. To date, the mechanism for the complex association with the GEMs remains unclear. Although the palmitate modifications of GP Ibβ and GP IX were thought to be critical for the complex presence in the GEMs, we found that the removal of the putative palmitoylation sites of GP Ibβ and GP IX had no effects on the localization of the GP Ib-IX complex to the GEMs. Instead, the disruption of GP Ibα disulfide linkage with GP Ibβ markedly decreased the amount of the GEM-associated GP Ibα without altering the GEM association of GP Ibβ and GP IX. Furthermore, partial dissociation with the GEMs greatly inhibited GP Ibα interaction with vWf at high shear instead of in static condition or under low shear stress. Thus, for the first time, we demonstrated that GP Ibβ/GP IX mediates the disulfide-linked GP Ibα localization to the GEMs, which is critical for vWf interaction at high shear.  相似文献   

11.
Identification of a membrane skeleton in platelets   总被引:10,自引:2,他引:8       下载免费PDF全文
Platelets have previously been shown to contain actin filaments that are linked, through actin-binding protein, to the glycoprotein (GP) Ib-IX complex, GP Ia, GP IIa, and an unidentified GP of Mr 250,000 on the plasma membrane. The objective of the present study was to use a morphological approach to examine the distribution of these membrane-bound filaments within platelets. Preliminary experiments showed that the Triton X-100 lysis buffers used previously to solubilize platelets completely disrupt the three-dimensional organization of the cytoskeletons. Conditions were established that minimized these postlysis changes. The cytoskeletons remained as platelet-shaped structures. These structures consisted of a network of long actin filaments and a more amorphous layer that outlined the periphery. When Ca2+ was present, the long actin filaments were lost but the amorphous layer at the periphery remained; conditions were established in which this amorphous layer retained the outline of the platelet from which it originated. Immunocytochemical experiments showed that the GP Ib-IX complex and actin-binding protein were associated with the amorphous layer. Analysis of the amorphous material on SDS-polyacrylamide gels showed that it contained actin, actin-binding protein, and all actin-bound GP Ib-IX. Although actin filaments could not be visualized in thin section, the actin presumably was in a filamentous form because it was solubilized by DNase I and bound phalloidin. These studies show that platelets contain a membrane skeleton and suggest that it is distinct from the network of cytoplasmic actin filaments. This membrane skeleton exists as a submembranous lining that, by analogy to the erythrocyte membrane skeleton, may stabilize the plasma membrane and contribute to determining its shape.  相似文献   

12.
The interaction of platelet membrane glycoprotein (GP) Ib-IX complex with the cytoplasmic membrane skeleton is potentially of major importance in regulating platelet function. Indirect evidence suggested that this interaction is mediated by actin-binding protein, but it is not known whether GP Ib-IX and actin-binding protein associate directly. To examine more closely the nature of this association, purified GP Ib-IX complex was specifically bound and oriented on the surface of impermeable polymer beads via a monoclonal antibody, AK 2, directed against the extracytoplasmic domain of GP Ib alpha (glycocalicin). Binding was specific since 1) it was abolished by excess unlabeled actin-binding protein; 2) there was no detectable specific binding of radiolabeled actin-binding protein to beads coated with glycocalicin, the major extracytoplasmic proteolytic fragment of GP Ib alpha; and 3) unlike actin-binding protein, there was no specific binding of bovine serum albumin or human platelet vinculin to the GP Ib-IX complex-coated beads. Binding of actin-binding protein to the GP Ib-IX complex-coated beads, but not to the glycocalicin-coated beads, was saturable and reversible (apparent Kd = 1 x 10(-7) M). These experiments provide direct evidence that actin-binding protein can bind to the cytoplasmic domain of a membrane glycoprotein. Because actin-binding protein is found submembranously in cells other than the platelet, it is possible that this protein may link actin filaments to the plasma membrane in those cells.  相似文献   

13.
Human platelet glycoprotein Ib (GP Ib) is a major integral membrane protein that has been identified as the platelet-binding site mediating the factor VIII/von Willebrand-factor-dependent adhesion of platelets to vascular subendothelium. Recent evidence suggests that GP Ib is normally complexed with another platelet membrane protein, GP IX. In this study, human platelet plasma membranes were selectively solubilized with a buffer containing 0.1% (v/v) Triton X-100. The GP Ib complex (GP Ib plus GP IX) was purified to homogeneity in approximately 30% yield by immunoaffinity chromatography of the membrane extract using the anti-(glycoprotein Ib complex) murine monoclonal antibody, WM 23, coupled to agarose. GP Ib and GP IX were subsequently isolated as purified components by immunoaffinity chromatography of the GP Ib complex using a second anti-(glycoprotein Ib complex) monoclonal antibody, FMC 25, coupled to agarose. As assessed by dodecyl sulphate/polyacrylamide gel electrophoresis, purified GP Ib was identical to the molecule on intact platelets and had an apparent relative molecular mass of 170 000 under nonreducing conditions and 135 000 (alpha subunit) and 25 000 (beta subunit) under reducing conditions. GP IX had an apparent Mr of 22 000 under both nonreducing and reducing conditions. Purified Gb Ib complex and GP Ib inhibited the ristocetin-mediated, human factor VIII/von Willebrand-factor-dependent and bovine factor VIII/von Willebrand-factor-dependent agglutination of washed human platelets suggesting the proteins had been isolated in functionally active form. GP Ib alpha had a similar amino acid composition to that previously reported for its proteolytic degradation product, glycocalicin. The amino acid compositions of GP Ib beta and GP IX were similar but showed marked differences in the levels of glutamic acid, alanine, histidine and arginine. The N-termini of GP Ib alpha and GP IX were blocked; GP Ib beta had the N-terminal sequence, Ile-Pro-Ala-Pro-. On crossed immunoelectrophoresis, both GP Ib and GP IX were found to occur in the same immunoprecipitin arc(s) whether the platelets had been solubilized in the absence or presence of the calcium-dependent protease inhibitor, leupeptin. Binding studies in platelet-rich plasma indicated a similar number of binding sites (means +/- SD) for three anti-(glycoprotein Ib complex) monoclonal antibodies: AN 51, epitope on GP Ib alpha (22 000 +/- 2700, n = 3), WM 23, epitope on GP Ib alpha (21 000 +/- 3400, n = 3), FMC 25, epitope on GP IX (20 100 +/- 2700, n = 3), and FMC 25 (Fab')2 (27 100 +/- 800, n = 2).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Glycoproteins present on the surface of blood platelets are fundamental to normal blood platelet behaviour. We have used monoclonal antibodies and flow cytofluorimetry to study the expression of glycoproteins on single platelets from normal subjects, and from patients with Glanzmann's thrombasthenia and the Bernard-Soulier syndrome. We show that normal platelets are heterogeneous in that individual cells display markedly different numbers of glycoprotein IIb/IIIa complex and glycoprotein Ib molecules. We also show that the two congenital bleeding disorders are associated with markedly reduced numbers of glycoprotein IIb/IIIa complex or glycoprotein Ib molecules on all the platelets rather than the difference residing in a sub-population.  相似文献   

15.
Immunological methods were developed for the diagnosis of platelet membrane glycoprotein (GP) deficiencies. The number of membrane GP on platelet surface was determined as the binding of 125I-labeled monoclonal antibodies (mAB) directed against individual platelet GP. Total amount of GP in platelet lysate was assessed by immunoblotting with specific polyclonal antibodies. Methods were applied for patients with different thrombocytopathies. Binding of mAB VM16a, directed against GP IIb-IIIa was strongly decreased in patients with Glanzmann's thrombasthenia (0.5-14.5% of normal) and binding of anti-GP Ib mAB VM16d--in patient with Bernard-Soulier syndrome (0.5% of control) indicating the deficiencies of corresponding GP. In patient with gray platelet syndrome binding of both antibodies was not decreased but even increased. It was shown by immunoblotting that platelets from the patient with gray platelet syndrome contained normal amount of GP IIa, but strongly decreased amount of GMP-140 (14.5% of control)--membrane GP of platelet--granules.  相似文献   

16.
As the first step in hemostasis, the binding of von Willebrand factor (vWF) to the platelet membrane glycoprotein (GP) Ib-IX complex is essential for platelet adhesion at high-shear blood flow. This interaction in vivo requires the prior binding of vWF to the subendothelial matrix, a process which exposes a normally cryptic binding site on vWF for the GP Ib-IX complex. This process can be mimicked in vitro by modulators such as ristocetin or the snake venom protein botrocetin or by desialation of vWF. We have previously localized the GP Ib binding site on vWF to a monomeric dispase fragment which extends from Leu-480/Val-481 to Gly-718 in the primary sequence of mature vWF [Andrews, R. K., Gorman, J. J., Booth, W. J., Corino, G. L., Castaldi, P. A., & Berndt, M. C. (1989) Biochemistry 28, 8326-8336]. This fragment also contains a distinct binding site for botrocetin. Analysis of synthetic peptides corresponding to hydrophilic stretches of sequence within this fragment indicated that the sequence Asp-514-Glu-542 represents a major adhesive sequence involved in receptor recognition. This peptide inhibited both the ristocetin- and botrocetin-mediated binding of vWF to either platelets or purified GP Ib-IX complex (IC50 approximately 50-200 microM) as well as the asialo-vWF- and bovine vWF-dependent agglutination of platelets. Both the N- and C-terminal halves of the peptide were inhibitory but less so than the intact peptide. This peptide also inhibited botrocetin binding to vWF, suggesting that botrocetin modulates vWF-GP Ib interaction by binding in close proximity to the vWF adhesion sequence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We have obtained evidence that selective inhibition of high affinity thrombin-binding sites located in the amino-terminal domain of the membrane glycoprotein (GP) Ib alpha results in impaired platelet activation, as shown by abrogation or reduction of the following responses induced in normal platelets by exposure to less than 1 nM alpha-thrombin: (i) increase in intracellular ionized calcium concentration ([Ca2+]i), (ii) release of dense granule content, (iii) binding of fibrinogen, (iv) aggregation. An anti-GP Ib monoclonal antibody, LJ-Ib 10, which does not inhibit von Willebrand factor binding to platelets, obliterated the high affinity alpha-thrombin-binding sites on normal platelets. Isotherms of alpha-thrombin binding to normal platelets treated with saturating amounts of the antibody were virtually identical to those obtained with platelets from a patient with classical Bernard-Soulier syndrome. In parallel with decreased binding of the agonist, this antibody caused 50% inhibition of the maximal extent of platelet aggregation and 90% inhibition of ATP release induced by 0.3 nM alpha-thrombin. By inhibiting alpha-thrombin binding to GP Ib, the antibody prevented the activation of platelets exposed to low concentrations of the agonist, as demonstrated by abrogation of the increase in intraplatelet ionized calcium concentration induced in control platelets by 0.18 nM alpha-thrombin; under these conditions, fibrinogen binding was inhibited by 84%. Therefore, there is a correlation between occupancy of the high affinity sites for alpha-thrombin on GP Ib alpha and platelet activation, secretion, and aggregation, suggesting that GP Ib alpha is part of an alpha-thrombin receptor relevant for platelet function.  相似文献   

18.
The human platelet receptor(s) for quinine/quinidine-dependent antibodies   总被引:1,自引:0,他引:1  
Substantial evidence now exists to associate platelet membrane glycoprotein Ib (GP Ib) with a receptor for quinine/quinidine-dependent platelet-specific antibodies. A direct relationship between GP Ib and this receptor activity has been difficult to establish for several reasons, including: the apparent existence of additional receptor activity not directly attributable to the presence of GP Ib; the variable reactivity of different sera observed by some investigators; the instability of receptor activity in semi-purified, soluble form; and differences in methods used by various laboratories to identify and quantitate either quinine/quinidine-dependent antibodies or platelet receptor activity. Moreover, little attention has been paid to the possibility that the Bernard-Soulier syndrome may represent a more heterogeneous collection of functional and molecular platelet abnormalities than hitherto supposed. As more patients are identified and studied, this possibility can also be addressed. A role for factor VIII-related antigen (VIIIR:Ag) in platelet destruction and/or clearance by drug-antibody complexes remains controversial. The observation that VIIIR:Ag is required for platelet activation in vitro (serotonin release, aggregation and increased platelet factor 3 availability) has been made, yet recent evidence indicates that VIIIR:Ag is not required for binding of antibody to platelets in the presence of drug or for complement-mediated lysis of platelets by antibody and drug. Evidence that VIIIR:Ag participates as part of the initial immunogenic complex is intriguing, yet still unconfirmed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Human platelet glycoprotein V (Mr 82,000) is a surface glycoprotein and a substrate for thrombin, undergoing proteolytic cleavage by thrombin and releasing a soluble fragment, glycoprotein Vfl (Mr 69,000). It does not appear to be the receptor for thrombin's agonist effect on platelets. A congenital platelet disorder, Bernard-Soulier syndrome, is marked by a deficiency of glycoprotein V and two other surface glycoproteins, Ib-IX. The latter two, Ib-IX, constitute the platelet receptor for von Willebrand factor, mediate arterial platelet adhesion, and contain unique 24-amino acid sequences, termed "leucine-rich glycoprotein" segments. The segments relate to adhesive function and distinguish the leucine-rich glycoprotein family. Surface glycoprotein V is not physically associated with Ib-IX nor does it bind to von Willebrand factor. To date, no common denominator has been found that explains the combined deficiency of glycoproteins V and Ib-IX in Bernard-Soulier syndrome. This study describes the isolation of glycoprotein V/anti-glycoprotein V antibody and the analysis of three glycoprotein V peptides that contain "leucine-rich" sequences. Therefore, glycoprotein V shares the "leucine-rich" structure with platelet glycoproteins Ib-IX and belongs to the family of leucine-rich glycoproteins.  相似文献   

20.
Experiments with the transmembrane (TM) domains of the glycoprotein (GP) Ib-IX complex have indicated that the associations between the TM domains of these subunits play an important role in the proper assembly of the complex. As a first step toward understanding these associations, we previously found that the Ibβ TM domain dimerized strongly in Escherichia coli cell membranes and led to Ibβ TM-CYTO (cytoplasmic domain) dimerization in the SDS-PAGE assay, while neither Ibα nor IX TM-CYTO was able to dimerize. In this study, we used the TOXCAT assay to probe the Ibβ TM domain dimerization interface by Ala- and Leu-scanning mutagenesis. Our results show that this interface is based on a leucine zipper-like heptad repeat pattern of amino acids. Mutating either one of polar residues Gln129 or His139 to Leu or Ala disrupted Ibβ TM dimerization dramatically, indicating that polar residues might form part of the leucine zipper-based dimerization interface. Furthermore, these specific mutational effects in the TOXCAT assay were confirmed in the thiol-disulfide exchange and SDS-PAGE assays. The computational modeling studies further revealed that the most likely leucine zipper interface involves hydrogen bonding of Gln129 and electrostatic interaction of the His139 side chain. Correlation of computer modeling results with experimental mutagenesis studies on the Ibβ TM domain may provide insights for understanding the role of the association of TM domains on the assembly of GP Ib-IX complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号