首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The apnoeic response following interruption of the air flow at different levels of the inspiratory capacity (deltaVL) was studied in conscious children and adults. Changes in mouth pressure were used to measured the duration of the apnoe. The total duration of the interrupted breath (T1) was compared to mean value of the ventilatory period of the five preceding breaths (T0). A monoexponential regression could be fitted to the relationship between T1/T0 ratio and change in lung volume (deltaVL) measured at the onset of interruption: T1/T0=k-exp (S-deltaVL), S begin the sensitivity of the response to lung inflation. When T1/T0=1, the intrathoracic lung volume was called threshold volume (VTh.L.). The parameters S and VTh.L. were used for characterization of the individual importance of the Breuer-Hering inspiratory-inhibitory reflex (B.H. reflex). The high reproducibility of the T1/T0 vs. deltaVL relationship in many subjects showed the light influence of voluntary control on apnoea's duration. In each subject, S and VTh.L. were compared with ventilatory variables measured during eupnoea. A fast pattern of breathing (i.e. small inspired volume and short inspiratory duration) was associated with high value of S and low VTh.L. Moreover VTh.L. was near the tidal volume range in subjects where the B.H. reflex was the more potent. Thus, vagal afferents relating to this reflex could modulate the eupnoeic pattern of some subjects.  相似文献   

2.
The mechanisms by which chronic cervical spinal cord injury alters respiratory function and plasticity are not well understood. We speculated that spinal hemisection at C(2) would alter the respiratory pattern controlled by vagal mechanisms. Expired volume (V(E)) and respiratory rate (RR) were measured in anesthetized control and C(2)-hemisected rats at 1 and 2 mo postinjury. C(2) hemisection altered the pattern of breathing at both postinjury time intervals. Injured rats utilized a higher RR and lower V(E) to maintain the same minute ventilation as control rats. After bilateral vagotomy, the pattern of breathing in injured rats was not different from controls. The frequency of augmented breaths was higher in injured rats at 2 mo postinjury before vagotomy; however, the V(E) of augmented breaths was not different between groups. In conclusion, C(2) hemisection alters the pattern of breathing at 1 and 2 mo postinjury via vagal mechanisms.  相似文献   

3.
This study tests three hypotheses regarding mechanisms that produce rapid shallow breathing during a severe inspiratory resistive load (IRL): 1) an intact vagal afferent pathway is necessary; 2) diaphragm fatigue contributes to tachypnea; and 3) hypoxia may alter the pattern of respiration. We imposed a severe IRL on pentobarbital sodium-anesthetized dogs, followed by bilateral vagotomy, then by supplemental O2. IRL alone produced rapid shallow breathing associated with hypercapnia and hypoxia. After the vagotomy, the breathing pattern became slow and deep, restoring arterial PCO2 but not arterial PO2 toward the control values. Relief of hypoxia had no effect, and at no time was there any evidence of fatigue of the diaphragm as measured by the response to phrenic nerve stimulation. We conclude that an intact afferent vagal pathway is necessary for the tachypnea resulting from a severe IRL, neither hypoxia nor diaphragm fatigue played a role, and, although we cannot rule out stimulation of vagal afferents, the simplest explanation for the increased frequency in our experiments is increased respiratory drive due to hypercapnia.  相似文献   

4.
Recovery of breathing pattern after 15 min of cerebral ischemia in rabbits   总被引:1,自引:0,他引:1  
The study was undertaken to ascertain the neural control of breathing and vagal reflexes during and after cerebral ischemia. The experiments were performed on anesthetized, paralyzed, and artificially ventilated rabbits. Cerebral ischemia was induced by reversible intrathoracic occlusion of the brachiocephalic trunk and the left subclavian and both internal thoracic arteries for 15 min. The effect of cerebral ischemia on breathing pattern was assessed by monitoring the integrated activities of phrenic and recurrent laryngeal nerves. Ischemia produced enhancement of breathing followed by apnea and gasping. During enhanced breathing as well as during gasping, the inspiratory-inhibiting effect of lung inflation (Breuer-Hering reflex) was abolished. When brain circulation was restored, respiratory activity started with gasps, which later were intermingled with eupneic type of inspirations. During the onset of a eupneic breath, lung inflation produced inspiratory facilitation but never an inhibition. However, after 30 min of recovery from cerebral ischemia, the Breuer-Hering reflex was restored. Results show that precise analysis of vagal reflexes and respiratory pattern during ischemia and resuscitation may be used as an indicator of resumption of autonomic activity in the brain stem.  相似文献   

5.
Inhibition of breathing associated with gallbladder stimulation in dogs   总被引:2,自引:0,他引:2  
The effect of mechanical stimulation of the gallbladder on breathing was studied in anesthetized spontaneously breathing dogs. Measurements of tidal volume, breathing frequency, rib cage and abdominal diameter, transdiaphragmatic pressure, and electrical activity of the diaphragm were made while traction or compression was applied to the gallbladder for periods of 30 s. Both forms of mechanical stimulation produced similar changes, including large decreases in tidal volume, respiratory rate, electrical activity of the diaphragm, and transdiaphragmatic pressure swings. Inspiratory rib cage expansion was little affected, but abdominal expansion was greatly reduced, and swings in gastric pressure were reduced more than swings in pleural pressure, indicating a selective decrease in diaphragmatic activity. Recovery of all measured parameters returned toward control values, despite continued traction or compression. Some inhibition persisted after the stimulus was withdrawn. The very brief interval between stimulus and response suggested that the mechanism was a neural reflex. The afferents involved are unknown but are not purely vagal in nature, since qualitatively similar results were seen in animals after vagotomy. The alteration in breathing frequency indicates that at least part of the reflex is supraspinally mediated. The change in pattern of breathing closely resembles that seen in subjects after abdominal surgery and supports the theory that reflex inhibition of breathing contributes to postoperative pulmonary complications seen in those subjects.  相似文献   

6.
The purposes of the present study were to determine the changes in functional residual capacity (FRC) during inspiratory loading and to examine their mechanisms. We studied seven normal subjects seated in a body plethysmograph. In both graded inspiratory elastic (35, 48, and 68 cmH2O/l) and resistive (21, 86, and 192 cmH2O.l-1.s) loading, FRC invariably decreased from control FRC and phasic expiratory activity increased. The reduction in FRC was greater with greater loads. A single inspiratory effort against an inspiratory occlusion at three different target mouth pressures (-25, -50, and -75 cmH2O) and durations (1, 2, and 5 s) also resulted in a decrease in FRC with an increase in expiratory electromyogram activity in the following expiration. The decrease in FRC was greater with greater target pressure and duration. This decrease in FRC is qualitatively similar to that during inspiratory loaded breathing, and we suspect that the same mechanisms are at work. Because neither vagal nor chemoreceptor reflex can account for these responses, we suspect conscious awareness of breathing or behavioral control to be responsible. In an additional study, the sensation of discomfort of breathing during elastic loading decreased with a decrease in FRC. These results suggest that the reduced FRC may be due to behavioral control of breathing to reduce the sensation of dyspnea during inspiratory loading.  相似文献   

7.
Pulmonary vascular congestion or pulmonary embolism in humans produces shallow tachypnea, and indirect experimental evidence suggests that this characteristic breathing pattern may result from activation of vagal unmyelinated afferents from the lung. We have investigated, in decerebrate cats, reflex changes in breathing pattern and in the activation of the diaphragm, posterior cricoarytenoid, and thyroarytenoid muscles caused by activating C-fiber afferents in the vagus nerve. The right vagus nerve was sectioned distal to the origin of the recurrent laryngeal nerve, eliminating vagal afferent traffic although preserving motor innervation of the larynx on that side. The left cervical vagus was stimulated electrically, and efferent activation of the laryngeal muscles was avoided by cutting the left recurrent laryngeal nerve. Transmission to the brain of vagal afferent traffic resulting from this stimulation was controlled by graded cold block of the nerve cranial to the site of application of the stimulus. Activation of C-fibers, when A-fibers were blocked, significantly decreased respiratory period and amplitude of diaphragm inspiratory burst. In addition, this selective activation of vagal C-fibers augmented postinspiratory activity of the diaphragm and recruited phasic expiratory bursts in the thyroarytenoid. We conclude that, in unanesthetized decerebrate cats, afferent traffic of vagal C-fibers initiates a pontomedullary reflex that increases respiratory frequency, decreases tidal volume, and augments braking of expiratory airflow.  相似文献   

8.
We reasoned that, if the lung inflation reflex contributes importantly to apnea-induced sympathetic activation, such activation would be attenuated in bilateral lung transplant recipients (LTX). We measured muscle sympathetic nerve activity (MSNA; intraneural electrodes), heart rate, mean arterial pressure, tidal volume, end-tidal Pco(2), and arterial oxygen saturation in seven LTX and seven healthy control subjects (Con) before, during, and after 20-s end-expiratory breath holds. Our evidence for denervation in LTX was 1) greatly attenuated respiratory sinus arrhythmia and 2) absence of cough reflex below the level of the carina. During apnea, the temporal pattern and the peak increase in MSNA were virtually identical in LTX and Con (347 +/- 99 and 359 +/- 46% of baseline, respectively; P > 0.05). In contrast, the amount of MSNA present in the first 5 s after resumption of breathing was greater in LTX vs. Con (101 +/- 4 vs. 38 +/- 7% of baseline, respectively; P < 0.05). There were no between-group differences in apnea-induced hypoxemia or hypercapnia, hemodynamic, or ventilatory responses. Thus cessation of the rhythmic sympathoinhibitory feedback that normally accompanies eupneic breathing does not contribute importantly to sympathetic excitation during apnea. In contrast, vagal afferent input elicited by hyperventilation-induced lung stretch plays an important role in the profound, rapid sympathetic inhibition that occurs after resumption of breathing after apnea.  相似文献   

9.
The basic ventilation values - tidal volume (VT), breathing frequency (f), minute ventilation (VE) and the duration of inspiration (TI) and expiration (TE) -- were determined in adult male rats. The range of these values is given and the pattern of breathing is defined as the relationship between VE and VT, which in the rat is linear throughout its entire range. The role of TI and TE in changing f in the rat were evaluated. The breathing pattern of the rat was compared with data for the rabbit and man, using percentual expression of the basic values. A shift of the breathing pattern to higher f values was observed in rats with experimental lung diseases. In these rats, the inhalation of 100% O2 shifted the pattern of breathing markedly to lower VE values, though not to values comparable with the controls. Bilateral cervical vagotomy was followed by a pronouced decrease in f, an increase in VT and T1 persisted even after vagotomy, however; it can be assumed that this relationship is effected either by means of receptors in the chest muscles, or by the direct action of CO2 which is used to stimulate breathing, on the bulbopontine pacemaker.  相似文献   

10.
The quasi-monoclonal mouse has limited B cell diversity, whose major (approximately 80%) B cell Ag receptors are comprised of the knockin V(H) 17.2.25 (V(H)T)-encoded H chain and the lambda1 or lambda2 L chain, thereby being specific for 4-hydroxy-3-nitrophenylacetyl. The p-nitrophenylacetyl (pNP) was found to be a low affinity analog of nitrophenylacetyl. We examined affinity maturation of anti-pNP IgG by analyzing mAbs obtained from quasi-monoclonal mice that were immunized with this low affinity Ag. The results are: 1) Although V(H)T/lambda1 and V(H)T/lambda2 IgM were equally produced, V(H)T/lambda2 IgG almost exclusively underwent affinity maturation toward pNP. 2) A common mutation in complementarity-determining region 3 of V(H)T (T313A) mainly contributed to generating the specificity for pNP. 3) Because mutated V(H)T-encoded gamma-chains could form lambda1-bearing IgG in Chinese hamster ovary cells, apparent absence of V(H)T/lambda1 anti-pNP IgG may not be due to the incompatibility between the gamma-chains and the lambda1-chain, but may be explained by the fact that V(H)T/lambda1 B cells showed 50- to 100-fold lower affinity for pNP than V(H)T/lambda2 B cells. 4) Interestingly, a pNP-specific IgM mAb that shared common mutations including T313A with high affinity anti-pNP IgG was isolated, suggesting that a part of hypermutation coupled with positive selection can occur before isotype switching. Thus, even weak B cell receptor engagement can elicit an IgM response, whereas only B cells that received signals stronger than a threshold may be committed to an affinity maturation process.  相似文献   

11.
The pattern of breathing following the breaking-point of sixty breath-holds has been studied in five healthy adults and compared with the pattern during recovery from CO2-rebreathing. The volume and direction of the first respiratory movement, and the VT, V relation for the first four complete breaths was measured. Only when breath-holds were terminated with an inspiration was the accumulated drive to breathe reflected in an increased volume of the first respiratory movement: terminating expirations simply returned the chest to the resting respiratory level. The volume of the first inspiration was not influenced by the intervention of a terminating expiration, suggesting that expiratory movements do not dissipate the non-chemical component of the drive to breathe. In three of the five subjects the tidal volumes for given levels of ventilation were greater following breath-holding than following rebreathing. This altered pattern of breathing has been interpreted in terms of an insiratory-augmenting reflex.  相似文献   

12.
The afferent pathways mediating respiratory load perception are still largely unknown. To assess the role of lung vagal afferents in respiratory sensation, detection of inspiratory resistive loads was compared between 10 double-lung transplant (DLT) recipients with normal lung function and 12 healthy control (Nor) subjects. Despite a similar unloaded and loaded breathing pattern, the DLT group had a significantly higher detection threshold (2.91 +/- 0.5 vs. 1.55 +/- 0.3 cmH(2)O. l(-1). s) and Weber fraction (0.50 +/- 0.1 vs. 0.30 +/- 0.1) compared with the Nor group. These results suggest that inspiratory resistive load detection occurs in the absence of vagal afferent feedback from the lung but that lung vagal afferents contribute to inspiratory resistive load detection response in humans. Lung vagal afferents are not essential to the regulation of resting breathing and load compensation responses.  相似文献   

13.
Mechanical work rate of breathing was measured in five normal subjects during voluntary eucapnic hyperventilation at rates of approximately 10, 20, 40, 60, and 80 l/min before and after inhalation of 1 mg of ipratropium bromide, an anticholinergic agent. Chest wall recoil pressure was measured over a range of lung volumes in each subject and was used as the reference pressure in the calculation of work rate. There was little change in elastic or resistive work rate at rest when vagal tone was reduced by ipratropium. The mean work at 40, 60, and 80 l/min was 8.9, 17.2, and 34.0 cmH2O.l-1.s before and 5.6, 12.4 and 25.8 cmH2O.l-1.s after ipratropium. This suggests that vagal tone significantly influences the work of breathing at high ventilatory rates, such as occur during strenuous exercise.  相似文献   

14.
Evidence of the Hering-Breuer reflex has been found in humans during anesthesia and sleep but not during wakefulness. Cortical influences, present during wakefulness, may mask the effects of this reflex in awake humans. We hypothesized that, if lung volume were increased in awake subjects unaware of the stimulus, vagal feedback would modulate breathing on a breath-to-breath basis. To test this hypothesis, we employed proportional assist ventilation in a pseudorandom sequence to unload the respiratory system above and below the perceptual threshold in 17 normal subjects. Tidal volume, integrated respiratory muscle pressure per breath, and inspiratory time were recorded. Both sub- and suprathreshold stimulation evoked a significant increase in tidal volume and inspiratory flow rate, but a significant decrease in inspiratory time was present only during the application of a subthreshold stimulus. We conclude that vagal feedback modulates respiratory timing on a breath-by-breath basis in awake humans, as long as there is no awareness of the stimulus.  相似文献   

15.
The quasimonoclonal (QM) mouse provides an intelligible model to analyze the B cell selection as the competition between two major 4-hydroxy-3-nitrophenylacetyl-specific B cell populations whose BCR are comprised of the knockin V(H)17.2.25 (V(H)T)-encoded H chain and the lambda1 or lambda2 L chain. In this study, we show the QM system is useful to examine how BCR signals guide a subset of B cells to the marginal zone (MZ). Compared with the control C57BL/6 mice, the QM mice had approximately 2.7-fold increased number of B cells exhibiting the MZ B cell phenotype and a larger MZ area in the spleen. Interestingly, V(H)T/lambda2 B cells significantly predominated over V(H)T/lambda1 B cells in MZ-(V(H)T/lambda1:V(H)T/lambda2 approximately 3:7) and transitional 2-B cell subsets, while these two populations were comparable in immature, transitional 1, and mature counterparts. Thus, the biased use of lambda2 in the MZ B cells may be the result of selection in the periphery. The enlargement of MZ B cell compartment and the preferred recruitment of the V(H)T/lambda2 B cells were further augmented by doubling the V(H)T gene, but dampened by the dysfunction of Bruton's tyrosine kinase, suggesting a positive role of BCR signaling in this selection. Comparison of Ag specificity between V(H)T/lambda1 and V(H)T/lambda2 IgM mAbs revealed a polyreactive nature of the V(H)T/lambda2 BCR, including the reactivity with ssDNA. Taken together, it is suggested that polyreactivity (including self-reactivity) of BCR is crucial in driving B cells to differentiate into the MZ phenotype.  相似文献   

16.
We investigated the breathing patterns of 17 subjects anesthetized with enflurane before and after partial muscle paralysis produced by pancuronium bromide. In the face of significant muscle weakness produced by pancuronium, breathing patterns are characterized by decreases in both tidal volume and respiratory frequency. The decreased tidal volume corresponded to the decrease in occlusion pressure, indicating that the decreased tidal volume results solely from a decreased contractile force of the respiratory muscles. The decreased respiratory frequency was due to prolongation of both inspiratory and expiratory time without changing the ratio of the inspiratory time to the total breath time. Withdrawal of phasic vagal influence by airway occlusion before partial muscle paralysis revealed that an active Breuer-Hering inflation reflex was operative in only 8 of all 17 subjects. Since the contribution of the Breuer-Hering inflation reflex alone does not seem to account for the consistent decrease in respiratory frequency, some other mechanisms modulating respiratory frequency might be involved in the characteristic breathing patterns during partial muscle paralysis under enflurane anesthesia.  相似文献   

17.
Healthy subjects under rhythmic breathing have heart interbeat intervals with a respiratory band in the frequency domain that can be an index of vagal activity. Diabetes Mellitus Type II (DM) affects the autonomic nervous system of patients, thus it can be expected changes on the vagal activity. Here, the influence of DM on the breathing modulation of the heart rate is evaluated by analyzing in the frequency domain heart interbeat interval (IBI) records obtained from 30 recently diagnosed, 15 long standing DM patients, and 30 control subjects during standardized clinical tests of controlled breathing at 0.1 Hz, supine rest and standing upright. Fourier spectral analysis of IBI records quantifies heart rate variability in different regions: low-frequencies (LF, 0.04–0.15 Hz), high-frequencies (HF, 0.15–0.4 Hz), and a controlled breathing peak (RP, centered around 0.1 Hz). Two new parameters are introduced: the frequency radius rf (square root of the sum of LF and HF squared) and β (power of RP divided by the sum of LF and HF). As diabetes evolves, the controlled breathing peak loses power and shifts to smaller frequencies, indicating that heart rate modulation is slower in diabetic patients than in controls. In contrast to the traditional parameters LF, HF and LF/HF, which do not show significant differences between the three populations in neither of the clinical tests, the new parameters rf and β, distinguish between control and diabetic subjects in the case of controlled breathing. Sympathetic activity that is driven by the baroreceptor reflex associated with the 0.1 Hz breathing modulations is affected in DM patients. Diabetes produces not only a rigid heartbeat with less autonomic induced variability (rf diminishes), but also alters the coupling between breathing and heart rate (reduced β), due to a progressive decline of vagal and sympathetic activity.  相似文献   

18.
The effects of a filtering device and an air-line apparatus on breathing pattern were studied in healthy men with different physical characteristics and work capacity. The subjects comprised nine construction workers aged 35-44, and nine firemen aged 21-35. The construction workers' mean maximal oxygen consumption (VO2max) was 34.5 ml min-1 kg-1, the firemen's 66.9 ml min-1 kg-1. Breathing pattern was analyzed for its components, inspiratory time, expiratory time, breathing frequency, tidal volume, and pulmonary ventilation at rest, during two submaximal treadmill walks when the subjects' absolute work load was equal, and during recovery. Neither the filtering device nor the air-line apparatus had a significant effect on breathing pattern when compared with the control values measured twice with a low-resistance breathing valve. A significantly longer expiratory time, lower breathing frequency, and smaller pulmonary ventilation were found for the firemen with the breathing valve and the industrial respirators. The breathing pattern of the construction workers and the firemen differed, but the alterations were not induced by the use of the filtering device or the air-line apparatus when studied at aerobic work levels up to 60% VO2max.  相似文献   

19.
The aim of this work was to define the relationship between membrane conductance for NO (Dm) and physical activity by using either the steady state NO transfer (T(LNO)SS) or the single breath method (T(LNO)SB), making the hypothesis that NO transfer is only limited by the membrane. Alterations in T(LNO)SS with lung volume during tidal ventilation were measured in six subjects at rest and during steady exercise at 30, 60, and 80% of maximal aerobic power (MAP). A fast responding chemoluminescent NO analyser was used. Two calculation methods were used by sampling NO: (1) at mid-tidal volume, (2) in the middle of the alveolar plateau. T(LNO)SB at rest and maximal oxygen consumption (V(.-)O(2)max) were also measured in 18 other subjects. At rest T(LNO)SS with method 2 was 192% of the value given by method 1. T(LNO)SS with method 1 increased by 50% with 80% MAP as it did not change with method 2. Method 2 seemed inaccurate. T(LNO)SB at rest, which is closely related to Dm, was correlated to age and V(.-)O(2)max, T(LNO)SB=182-1.2 age+24.3 V(.-)O(2) max(l min(-1)) (p<0.01, r(2)=0.72). The T(LNO)SS and T(LNO)SB versus lung volume relationships suggest an influence of the breathing pattern on Dm. Dm can be estimated either by these two NO transfer methods, however the use of the T(LNO)SS method is highly sensitive to the alveolar sampling level. Dm increase during exercise is a function of MAP. Dm at rest decreases with age as it increases with MAP.  相似文献   

20.
This study compared the effect of lung congestion with and without left heart (LH) distension on breathing frequency (fr) and discriminated among responses mediated by myelinated and nonmyelinated vagal afferents. Cardiopulmonary bypass perfusion of anesthetized dogs was used to isolate reflexes. The following three groups were prepared: 1) lung vessels pressurized by pumping into the main pulmonary artery (MPA); 2) lungs and fibrillating LH pressurized by pumping into MPA while draining from LH; 3) lungs congested by occluding several pulmonary veins while holding cardiac output constant. Congestion of lungs alone in groups 1 and 3 depressed fr. Congestion of lungs and distension of LH (group 2) caused transient depression of fr but a steady-state excitation. Cooling cervical vagi to 8 degrees C prevented depression of fr by congestion in all groups. In groups 1 and 2, in which MPA pressure was higher than in group 3, congestion during vagal cooling stimulated breathing. I conclude that lung congestion may stimulate fr via C-fiber afferents, but this may be overcome by a depressor effect via myelinated afferents. Simultaneous LH distension may reflexly stimulate breathing and overcome the lung depressor reflex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号