首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A weak Ca2+ binding site in the bacterial serine protease subtilisin BPN' (EC 3.4.21.14) was chosen as a model to explore the feasibility of stabilizing a protein by increasing the binding affinity at a metal ion binding site. The existence of this weak Ca2+ binding site was first discovered through a study of the rate of thermal inactivation of wild-type subtilisin BPN' at 65 degrees C as a function of the free [Ca2+]. Increasing the [Ca2+] in the range 0.10-100 mM caused a 100-fold decrease in the rate of thermal inactivation. The data were found to closely fit a theoretical titration curve for a single Ca2+ specific binding site with an apparent log Ka = 1.49. A series of refined X-ray crystal structures (R less than or equal to 0.15, 1.7 A) of subtilisin in the presence of 0.0, 25.0, and 40.0 mM CaCl2 has allowed a detailed structural characterization of this Ca2+ binding site. Negatively charged side chains were introduced in the vicinity of the bound Ca2+ by changing Pro 172 and Gly 131 to Asp residues through site-directed and random mutagenesis techniques, respectively. These changes were found to increase the affinity of the Ca2+ binding site by 3.4- and 2-fold, respectively, when compared with the wild-type protein (ionic strength = 0.10). X-ray studies of these new variants of subtilisin revealed the carboxylate side chains to be 6.8 and 13.2 A, respectively, from the bound Ca2+. These distances and the degree of enhanced binding are consistent with simple electrostatic theory.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Osteoclast activity is thought to be regulated by calcitonin, as well as by the level of ionised calcium generated locally as a result of bone resorption. The exposure of isolated osteoclasts to elevated ambient calcium levels has been shown to lower resorptive activity and to reduce rates of enzyme release. We have attempted to determine whether these effects are mediated by a divalent cation-sensitive "calcium receptor," as has been reported for the parathyroid chief cells. Thus, we compared the effect of alkaline earth metal cations on osteoclast function using a morphometric measure of bone resorption and a spectrophotometric method for measuring the activity of the released enzyme, acid phosphatase. The exposure of resorbing osteoclasts to between 5 and 20 mM extracellular ionised calcium ([Ca2+]e) inhibited bone resorption and enzyme release to an extent similar to that seen with 0.1 to 10 microM ionomycin. The effect of combining submaximal concentrations of [Ca2+]e (15 mM) and ionomycin (0.1 microM) resulted in additivity, suggesting that the influence of [Ca2+]e on bone resorption was mediated by elevated intracellular calcium levels ([Ca2+]i). The other cations studied (Mg2+, Ba2+) were effective and elicited similar effects, although some required higher concentrations. Thus, whilst Ca2+ and Mg2+ were effective at 10 to 15 mM levels, Ba2+ was effective only at high (20 mM) concentrations. These findings are consistent with an influence of [Ca2+]e on osteoclast activity through an action on a surface membrane "calcium receptor" that can also bind other divalent cations, rather than by passive changes of [Ca2+]i with [Ca2+]e elevation.  相似文献   

3.
The calcium ion dependence of calcium transport by isolated sarcoplasmic reticulum vesicles from rabbit skeletal muscle has been investigated by means of the Calcium-stat method, in which transport may be measured in the micromolar free calcium ion concentration range, in the absence of calcium buffers. At pH 7.2 and 20 degrees C, ATP, in the range 1 to 10 mM, decreased [Ca2+]0.5 from 2.0 microM to 0.3 microM and decreased Vmax of oxalate-supported transport from 0.5 to 1.3 mumol min-1 mg-1. Simultaneous measurements of transport and of ATPase activity in the range 0.8 to 10 microM free Ca2+ showed a ratio of 2.1 calcium ions translocated/molecule of ATP hydrolyzed. Transport, in the presence of 5 mM ATP, ceased when calcium ion concentration fell to 0.6 to 1.2 microM, whilst ATPase activity of 90 nmol of ATP hydrolyzed min-1 mg-1 persisted. The data obtained by the Calcium-stat method differed from those described previously using calcium buffers, in that they showed lower apparent affinities of the transport site for calcium ions, more marked sigmoidal behavior, an effect of ATP concentration on Ca2+ concentration dependence and lower ATPase activity in the absence of transport. The calcium complex of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (CaEGTA) had no effect when transport was stimulated maximally at saturating free Ca2+ concentrations. However, at calcium ion levels below [Ca2+]0.5, 70 microM CaEGTA stimulated transport to rates of 20 to 45% of Vmax. Half-maximal stimulation of transport occurred at 19 microM CaEGTA. CaEGTA, 50 microM, decreased [Ca2+]0.5, determined at 5 mM ATP, from 1.3 microM to 0.45 microM. It is proposed that a ternary complex, E . Ca2+ . EGTA4-, is formed as an intermediate species during CaEGTA-stimulated calcium transport by sarcoplasmic reticulum membranes and stimulates the calcium pump at limiting free Ca2+ ion concentration.  相似文献   

4.
P Volpe  B J Simon 《FEBS letters》1991,278(2):274-278
Calsequestrin (CS) is the major Ca2+ binding protein contained in the lumen of sarcoplasmic reticulum (SR). Ca2+ binding properties and tissue concentration of CS of frog skeletal muscle were measured. At equilibrium, maximal Ca2+ binding capacity of purified CS was about 1.2 mumol Ca2+/mg protein. Apparent Kds for Ca2+ were around 50 microM in the absence of salts, around 0.9 mM in the presence of 100 mM KCl, and around 1.1 mM under 'physiological' conditions. Quantitation of CS in homogenates was accomplished by three methods (Stains-all staining, immunoblotting and 45Ca ligand overlay). Frog muscle contained about 0.5 mg of CS/g wet weight, that is 6.1 mM CS inside the SR. At rest the in situ free [Ca2+] of SR was calculated to be 3.6 mM, and, thus, CS is largely saturated with Ca2+. Moreover, computer simulations of Ca2+ release indicated that about 75% of Ca2+ released during a twitch is free in the SR and does not unbind from CS.  相似文献   

5.
The effects of sarcoplasmic reticulum lumenal (trans) Ca2+ on cytosolic (cis) ATP-activated rabbit skeletal muscle Ca2+ release channels (ryanodine receptors) were examined using the planar lipid bilayer method. Single channels were recorded in symmetric 0.25 M KCl media with K+ as the major current carrier. With nanomolar [Ca2+] in both bilayer chambers, the addition of 2 mM cytosolic ATP greatly increased the number of short channel openings. As lumenal [Ca2+] was increased from < 0.1 microM to approximately 250 microM, increasing channel activities and events with long open time constants were seen at negative holding potentials. Channel activity remained low at positive holding potentials. Further increase in lumenal [Ca2+] to 1, 5, and 10 mM resulted in a decrease in channel activities at negative holding potentials and increased activities at positive holding potentials. A voltage-dependent activation by 50 microM lumenal Ca2+ was also observed when the channel was minimally activated by < 1 microM cytosolic Ca2+ in the absence of ATP. With microM cytosolic Ca2+ in the presence or absence of 2 mM ATP, single-channel activities showed no or only a weak voltage dependence. Other divalent cations (Mg2+, Ba2+) could not replace lumenal Ca2+. On the contrary, cytosolic ATP-activated channel activities were decreased as lumenal Ca2+ fluxes were reduced by the addition of 1-5 mM BaCl2 or MgCl2 to the lumenal side, which contained 50 microM Ca2+. An increase in [KCl] from 0.25 M to 1 M also reduced single-channel activities. Addition of the "fast" Ca2+ buffer 1,2-bis(2-aminophenoxy)ethanetetraacetic acid (BAPTA) to the cls chamber increased cytosolic ATP-, lumenal Ca(2+)-activated channel activities to a nearly maximum level. These results suggested that lumenal Ca2+ flowing through the skeletal muscle Ca2+ release channel may regulate channel activity by having access to cytosolic Ca2+ activation and Ca2+ inactivation sites that are located in "BAPTA-inaccessible" and "BAPTA-accessible" spaces, respectively.  相似文献   

6.
Vesicular sarcolemmal preparations isolated from rat hearts were characterized by high total ATPase (4.32 +/- 0.57 mumol/min per mg), adenylate cyclase (121 +/- 11 pmol/min per mg) and creatine kinase (1.73 +/- 0.35 mumol/min per mg) activities as well as Na-Ca exchange specific to sodium. ATPase activity was inhibited with digitoxigenin by 50-70% and was not changed by ouabain, ionophore A23187 or oligomycin. Sarcolemmal vesicles bound [3H]digitoxigenin and [3H]ouabain in isotonic medium in the presence of Pi and Mg2+. The number of binding sites for hydrophobic digitoxigenin (N = 237 pmol/mg) was several-times higher than that for hydrophilic ouabain (N = 32.7 pmol/mg). These data show that sarcolemmal preparations were not significantly contaminated by mitochondria and sarcoplasmic reticulum and consisted mostly of inside-out vesicles. Incubation of these vesicles with 45Ca2+ (0.5-10 mM) led to penetration of the latter into the vesicles with the following binding characteristics: number of binding sites (N = 20.5 +/- 4.6 nmol/mg, Kd approximately equal to 2.0 mM). Ca2+ binding to the inner surface of vesicles was proved by the following facts: (1) Ca2+ ionophore A23187 increased slightly total intravesicular Ca2+ content but markedly accelerated Ca2+ efflux along its concentration gradient; (2) gramicidin and osmotic shock showed a similar accelerating effect. Ca2+ efflux from the vesicles along its concentration gradient ([Ca2+]i/[Ca2+]e = 2.0 mM/0.1 microM) was inhibited by Mn2+, Co2+, and verapamil when they acted inside the vesicles. The rate of Ca2+ efflux was hyperbolically dependent on intravesicular Ca2+ concentration (Km approximately equal to 2.9 mM). These data reveal that Ca2+ efflux from sarcolemmal vesicles is controlled by Ca2+ binding to the sarcolemmal membrane. Ca2+ efflux from the vesicles was stimulated 1.7--times after incubation of vesicles with 0.2 mM MgATP or MgADP and 15-times after treatment with 0.2 mM adenylyl beta, gamma-imidodiphosphate. Enhancement in the rate of Ca2+ efflux correlated with the increase in the intravesicular Ca2+ content. ATP-stimulated Ca2+ efflux was suppressed by verapamil and was nonmonotonically dependent upon the transmembrane potential created by the K+ concentration gradient in the presence of valinomycin, Ca2+ efflux being slower at extreme values of membrane potential (+/- 80 mV).  相似文献   

7.
The aim of this work was to determine the relationship between peak twitch amplitude and sarcoplasmic reticulum (SR) Ca2+ content during changes of stimulation frequency in isolated canine ventricle, and to estimate the extent to which these changes were dependent upon sarcolemmal Na(+)-Ca2+ exchange. In physiological [Na+]o, increased stimulation frequency in the 0.2-2-Hz range resulted in a positive inotropic effect characterized by an increase in peak twitch amplitude and a decrease in the duration of contraction, measured as changes in isometric force development or unloaded cell shortening in intact muscle and isolated single cells, respectively. Action potentials recorded from single cells indicated that the inotropic effect was associated with a progressive decrease of action potential duration and a marked reduction in average time spent by the cell near the resting potential during the stimulus train. The frequency-dependent increase of peak twitch force was correlated with an increase of Ca2+ uptake into and release from the SR. This was estimated indirectly using the phasic contractile response to rapid (less than 1 s) lowering of perfusate temperature from 37 degrees C to 0-2 degrees C and changes of twitch amplitude resulting from perturbations in the pattern of electrical stimulation. Lowering [Na+]o from 140 to 70 mM resulted in an increase of contractile strength, which was accompanied by a similar increase of apparent SR Ca2+ content, both of which could be abolished by exposure to ryanodine (1 x 10(-8) M), caffeine (3 x 10(-3) M), or nifedipine (2 x 10(-6) M). Increased stimulation frequency in 70 mM [Na+]o resulted in a negative contractile staircase, characterized by a graded decrease of peak isometric force development or unloaded cell shortening. SR Ca2+ content estimated under identical conditions remained unaltered. Rate constants derived from mechanical restitution studies implied that the depressant effect of increased stimulation frequency in 70 mM [Na+]o was not a consequence of a decreased rate of refilling of a releasable pool of Ca2+ within the cell. These results demonstrate that frequency-dependent changes of contractile strength and intracellular Ca2+ loading in 140 mM [Na+]o require the presence of a functional sarcolemmal Na(+)-Ca2+ exchange process. The possibility that the negative staircase in 70 mM [Na+]o is related to inhibition of Ca(2+)-induced release of Ca2+ from the SR by various cellular mechanisms is discussed.  相似文献   

8.
The effects of peptide inhibitors (bestatin and amastatin) and divalent cations (Ca2+ and Co2+) on the velocity of Asp1 liberation from angiotensin II (A-II) by human placental membrane fractions and binding of 125I A-II to human placental membranes were tested at 22 degrees C and 4 degrees C. Asp1 liberation was measured by high performance liquid chromatography. As expected, the degradation and binding of A-II were temperature sensitive, with both being at 4 degrees C than at 22 degrees C. While amastatin (10(-4) M) and bestatin 10(-6) M) significantly reduced the velocity of Asp1 liberation from A-II to about 45%, amastatin (10(-4) M) and bestatin (10(-4) M) increased 125I A-II binding to 125% and 130%, respectively. Ca2+ (10 mM) and Co2+ (10 mM) activated the velocity of Asp1 liberation from A-II to 140% and 120%, respectively at 22 degrees C. Ca2+ (10(-1) M) and Co2+ (10 mM) also enhanced 125I A-II binding about 130%. Previously we showed that the A-II degrading activity found in human placental membrane fractions is mainly due to aminopeptidases A and M. Since amastatin and bestatin are the specific inhibitors for aminopeptidases A and M, and since Ca2+ and Co2+ are the activators for aminopeptidase A and aminopeptidase M, respectively, it is conceivable that the enzymes regulate the levels of A-II and, therefore, that they may play an important role in the binding of A-II to human placental membrane fractions.  相似文献   

9.
Z W Yang  C F Kong  J A Babitch 《Biochemistry》1988,27(18):7045-7050
In our previous work [Yang, Z. W., & Babitch, J. A. (1988) Biochemistry (preceding paper in this issue)] divalent cations were found to be more effective promoters of astroglial filament formation than were monovalent cations. To determine if one or more divalent cation binding sites were the basis for this difference, glial fibrillary acidic protein (GFAP) was attached to nitrocellulose membranes and bathed in 1 microM 45CaCl2 in 60 mM KCl, 0.5 mM MgCl2, and 10 mM imidazole hydrochloride, pH 7.4. After removal of unbound 45Ca2+, GFAP was observed to bind calcium. Flow dialysis experiments showed that GFAP, dissolved in 2 mM Tris-HCl, pH 7.5, contained three classes of binding sites and 0.61 +/- 0.08 (SD), 1.7 +/- 0.4, and 4.6 +/- 0.2 sites per GFAP molecule with dissociation constants of 0.66 +/- 0.01 microM, 6.6 +/- 0.3 microM, and 44 +/- 1 microM, respectively. After addition of 0.5 mM MgSO4 to the flow dialysis solution, the high- and low-affinity sites were not observed while the remaining sites (1.95 +/- 0.15 per GFAP molecule) had a Kd = 2.16 +/- 0.25 microM. This showed that the high- and low-affinity sites are "Ca2+-Mg2+" sites while sites with intermediate affinity are calcium specific. To locate the calcium-binding regions, GFAP peptides were examined for calcium binding by calcium-45 autoradiography. The calcium-specific binding areas were localized in coil I. Computer-assisted analysis of the GFAP sequence revealed several EF-hand-like areas which could be the calcium binding sites. We conclude that divalent cations may play both structural and regulatory roles in astroglial intermediate filaments.  相似文献   

10.
The presence of a Na+/Ca2+ exchanger in bovine adrenal chromaffin cells was demonstrated by measuring the efflux of 45Ca2+ which had been preloaded into cells by a brief depolarization. The efflux of 45Ca2+ was dependent on extracellular Na+ (Na+o); 45Ca2+ efflux was significantly decreased by replacing Na+o with N-methylglucamine (NMG), or Li+. Replacement of Na+o by NMG increased the resting intracellular Ca2+ concentration ([Ca2+]i) of freshly isolated chromaffin cells. This could be reversed by adding Na+, suggesting that Na+/Ca2+ exchanger activity was involved in maintaining [Ca2+]i at its resting level. The initial rate of Na(+)-dependent [Ca2+]i recovery after Ca2+ loading by depolarization was dependent on the level of [Ca2+]i. There was an apparent linear relationship between the activity of the Na+/Ca2+ exchanger and [Ca2+]i both in the presence and absence of Na+o. When cells were treated with other stimuli, including 10 microM DMPP or 40 mM caffeine, the ability of the stimulated cells to decrease [Ca2+]i was significantly reduced upon replacing Na+o with NMG. Our data show that the Na+/Ca2+ exchanger is one of the major pathways for regulating [Ca2+]i in chromaffin cells in both resting and stimulated states.  相似文献   

11.
The possibility that protein kinase C modulates neurotransmitter release in brain was investigated by examining the effects of 12-O-tetradecanoylphorbol 13-acetate (TPA) on Ca2+ transport and endogenous dopamine release from rat striatal synaptosomes. TPA (0.16 and 1.6 microM) significantly increased dopamine release by 24 and 33%, respectively, after a 20-min preincubation with TPA followed by 60 s of depolarization with 30 mM KCl. Depolarization-induced 45Ca2+ uptake, measured simultaneously with dopamine release, was not significantly increased by TPA. Neither 45Ca2+ uptake nor dopamine release was altered under resting conditions. When the time course of K+-stimulated 45Ca2+ uptake and dopamine release was examined, TPA (1.6 microM) enhanced dopamine release after 15, 30, and 60 s, but not 1, 3, or 5 s, of depolarization. A slight increase in 45Ca2+ uptake after 60 s of depolarization was also seen. The addition of 30 mM KCl to synaptosomes which had been preloaded with the Ca2+-sensitive fluorophore fura-2 increased the cytosolic free Ca2+ concentration ([Ca2+]i) from 445 nM to 506 nM after 10 s of depolarization and remained elevated after 60 s. TPA had no effect on [Ca2+]i under depolarizing or resting conditions. Replacing extracellular Ca2+ with 100 microM EGTA reduced K+-stimulated (60 s) endogenous dopamine release by 53% and decreased [Ca2+]i to 120 nM. In Ca2+-free medium, 30 mM KCl did not produce an increase in the [Ca2+]i. TPA (1.6 microM) did not alter the [Ca2+]i under resting or depolarizing conditions, but did increase K+-stimulated dopamine release in Ca2+-free medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Fast Ca2+ uptake into K+-depolarized cultured bovine adrenal chromaffin cells has been isotopically measured in a time scale of 1-10 s. Depolarized cells retained as much as 80-fold 45Ca2+ taken up by resting cells; Ca2+ was not taken up by fibroblasts or endothelial-like cells. Because Ca2+ entry was inhibited by inorganic (La3+, Co2+, Mg2+) and organic (nifedipine) Ca2+ channel antagonists and enhanced by the Ca2+ channel activator Bay-K-8644, it seems clear that Ca2+ gains access to the chromaffin cell cytosol mainly through specific voltage-dependent Ca2+ channels. Ca2+ uptake evoked by 59 mM K+ was linear during the first 5 s of stimulation and continued to rise at a much slower rate up to 60 s. The rate of Ca2+ entry became steeper as the external [Ca2+] increased; initial rates of Ca2+ uptake varied from 0.06 fmol/cells . s at 0.125 mM Ca2+ to 2.85 fmol/cell . s at 7.5 mM Ca2+. The early 90Sr2+ uptake was linear but faster than Ca2+ uptake and later on was also saturated; 133Ba2+ was taken up still at a much faster rate and was linear for the entire depolarization period (2-60 s). Increased [K+] gradually depolarized chromaffin cells; Ca2+ and Sr2+ uptakes were not apparent below 30 mM K+ but were linear for 30 to 60 mM K+. In contrast, substantial Ba2+ uptake was seen even in K+-free solutions; and in 5.9 mM K+, Ba2+ uptake was as high as Ca2+ uptake obtained in 60 mM K+. Five to ten-second pulses of 45Ca2+, 90Sr2+, or 133Ba2+ given at different times after pre-depolarization of chromaffin cells served to analyze the kinetics of inactivation of the rates of entry of each divalent cation. Inactivation of Ca2+ uptake was faster than Sr2+, and Ba2+ uptake inactivated very little. Neither voltage changes nor Ca2+ ions passing through the channels seems to cause their inactivation; however, experiments aimed to manipulate the levels of internal Ca2+ using the cell-permeable chelator Quin-2 or the ionophore A23187 strongly suggest that intracellular Ca2+ levels determine the rates of inactivation of these channels.  相似文献   

13.
Glucose depolarizes the pancreatic beta-cell and induces membrane potential oscillations, but the nature of the underlying oscillatory conductance remains unknown. We have now investigated the effects of the Ca2+ ionophore ionomycin and high external Ca2+ concentration ([Ca2+]o) on glucose-induced electrical activity and whole islet intracellular free Ca2+ concentration ([Ca2+]i), under conditions where the K(ATP) channel was blocked (100 microM tolbutamide or 4 microM glibenclamide). Raising [Ca2+]o to 10.2 or 12.8 mM, but not to 5.1 or 7.7 mM, turned continuous electrical activity into bursting activity. High [Ca2+]o (12.8 mM) regenerated a pattern of fast [Ca2+]i oscillations overshooting the levels recorded in tolbutamide. Ionomycin (10 microM) raised the [Ca2+]i and synergized with 5.1 mM Ca2+ to hyperpolarize the beta-cell membrane. The data indicate that a [Ca2+]i-sensitive and sulphonylurea-insensitive oscillatory conductance underlies the beta-cell bursting activity.  相似文献   

14.
Glucose-induced changes in cytoplasmic pH (pHi) were investigated using pancreatic beta-cells isolated from obese hyperglycemic mice. Glucose, at concentrations above 3-5 mM, depolarized the beta-cell and increased pHi, cytoplasmic free Ca2+ ([Ca2+]i), and insulin release. This increase in pHi was dependent on the presence of extracellular Na+ and was inhibited by 5-(N-ethyl-N-isopropyl) amiloride, a blocker of Na+/H+ exchange. Stimulation of protein kinase C with phorbol ester also induced an alkalinization. However, when protein kinase C activity was down-regulated, glucose stimulation still induced alkalinization. At 20 mM glucose, 10 mM NH4Cl induced a marked rise in pHi, paralleled by repolarization, inhibition of electrical activity, and decreases in both [Ca2+]i and insulin release. Reduction in [Ca2+]i was prevented by 200 microM tolbutamide, but not by 10 mM tetraethylammonium. At 4 mM glucose, NH4Cl induced a transient increase in insulin release, without changing [Ca2+]i. Exposure of beta-cells to 10 mM sodium acetate caused a persistent decrease in pHi, an effect paralleled by a small transient increase in [Ca2+]i. Acidification per se did not change the beta-cell sensitivity to glucose, not excluding that the activity of the ATP-regulated K+ channels may be modulated by changes in pHi.  相似文献   

15.
Interactions of types I, II, and III protein kinase C (PKC) with phospholipids were investigated by following the changes in protein kinase activity and phorbol ester binding. The acidic phospholipids such as phosphatidylserine (PS), phosphatidic acid, phosphatidyl-glycerol, and cardiolipin, which are activators of PKC in the assay of protein phosphorylation, could differentially inactivate PKC I, II, and III during preincubation in the absence of divalent cation. The phospholipid-induced inactivation of PKC was concentration and time dependent and only affected the kinase activity without influencing phorbol ester binding. PKC I was the most susceptible to the phospholipid-induced inactivation, and PKC III was the least. The IC50 values of PS for PKC I, II, and III were 5, 45, and greater than 120 microM, respectively. Addition of divalent cation such as Ca2+ or Mg2+ suppressed the phospholipid-induced inactivation of PKC. In the absence of divalent cation, PKC I, II, and III all formed complexes with PS vesicles, although to a slightly different degree, as analyzed by molecule sieve chromatography. [3H]Phorbol 12,13-dibutyrate binding for PKC I, II, and III was recovered after chromatography; however, the kinase activities of all these enzymes were greatly reduced. In the presence of Ca2+, all three PKCs formed complexes with PS vesicles, and both the kinase and phorbol ester-binding activities of PKC II and III were recovered following chromatography. Under the same conditions, the phorbol ester-binding activity of PKC I was also recovered, but the kinase activity was not. The phospholipid-induced inactivation of PKC apparently results from a direct interaction of phospholipid with the catalytic domain of PKC; this interaction can be suppressed by divalent cations. In the presence of divalent cations, PS interacted preferentially with the regulatory domain of PKC and resulted in the activation of the kinase.  相似文献   

16.
The relationship between intrasynaptosomal total (CaT) and free ([Ca2+]i) calcium and 45Ca accumulation was studied under physiological and K(+)-depolarised conditions in rat cortical synaptosomes. Under physiological conditions, CaT (10.7 mM) was approximately 10,000 times higher than [Ca2+]i (118 nM), showing that there is a large reservoir of sequestered calcium in synaptosomes. 45Ca accumulation was rapid (initial rate, 3.4 nmol/mg protein/min), substantial (7 nmol/mg protein in 2 min), and depolarisation dependent, and reached equilibrium after 5 min. At equilibrium, only 10% of CaT was freely exchangeable. This pool was much larger than the free Ca2+ pool. CaT, [Ca2+]i, and 45Ca accumulations were directly related to the Ca2+ concentration in the buffer, suggesting that [Ca2+]i is not highly conserved but is maintained by simple equilibria between the various pools. Clonidine reduced 45Ca accumulation in a time- and dose-dependent manner. Maximum inhibition (40% at 100 microM) occurred at 2 min and the IC50 was 80 nM. The reduction caused by clonidine (1 microM) reached equilibrium after 5 min, but this equilibrium value was lower than in controls, suggesting that clonidine changes the exchangeable Ca2+ pool size. The effects of clonidine (1 microM) on [Ca2+]i (26% reduction) and on 45Ca accumulation (24% reduction) were most apparent under physiological conditions. However, while it was not dependent on depolarisation, it did not occur in physiological buffer containing low K+ concentration (0.1-1 mM). The inhibitory effect of clonidine on 45Ca accumulation is receptor mediated as it was antagonised by idazoxan (1 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The transient responses of sheep cardiac and rabbit skeletal ryanodine receptors (RyRs) to step changes in membrane potential and cytosolic [Ca2+] were measured. Both cardiac and skeletal RyRs have two voltage-dependent inactivation processes (tau approximately 1-3 s at +40 mV) that operate at opposite voltage extremes. Approximately one-half to two-thirds of RyRs inactivated when the bilayer voltage was stepped either way between positive and negative values. Inactivation was not detected (within 30 s) in RyRs with Po less than 0.2. Inactivation rates increased with intraburst open probability (Po) and in proportion to the probability of a long-lived, RyR open state (P(OL)) RyR inactivation depended on P(OL) and not on the particular activator (Ca2+ (microM), ATP, caffeine, and ryanodine), inhibitor (mM Ca2+ and Mg2+), or gating mode. The activity of one-half to two-thirds of RyRs declined (i.e., the RyRs inactivated) after [Ca2+] steps from subactivating (0.1 microM) to activating (1-100 microM) levels. This was due to the same inactivation mechanism responsible for inactivation after voltage steps. Both forms of inactivation had the same kinetics and similar dependencies on Po and voltage. Moreover, RyRs that failed to inactivate after voltage steps also did not inactivate after [Ca2+] steps. The inactivating response to [Ca2+] steps (0.1-1 microM) was not RyRs "adapting" to steady [Ca2+] after the step, because a subsequent step from 1 to 100 microM failed to reactivate RyRs.  相似文献   

18.
Rapid inactivation of Ca2+ release-activated Ca2+ (CRAC) channels was studied in Jurkat leukemic T lymphocytes using whole-cell patch clamp recording and [Ca2+]i measurement techniques. In the presence of 22 mM extracellular Ca2+, the Ca2+ current declined with a biexponential time course (time constants of 8-30 ms and 50-150 ms) during hyperpolarizing pulses to potentials more negative than -40 mV. Several lines of evidence suggest that the fast inactivation process is Ca2+ but not voltage dependent. First, the speed and extent of inactivation are enhanced by conditions that increase the rate of Ca2+ entry through open channels. Second, inactivation is substantially reduced when Ba2+ is present as the charge carrier. Third, inactivation is slowed by intracellular dialysis with BAPTA (12 mM), a rapid Ca2+ buffer, but not by raising the cytoplasmic concentration of EGTA, a slower chelator, from 1.2 to 12 mM. Recovery from fast inactivation is complete within 200 ms after repolarization to -12 mV. Rapid inactivation is unaffected by changes in the number of open CRAC channels or global [Ca2+]i. These results demonstrate that rapid inactivation of ICRAC results from the action of Ca2+ in close proximity to the intracellular mouths of individual channels, and that Ca2+ entry through one CRAC channel does not affect neighboring channels. A simple model for Ca2+ diffusion in the presence of a mobile buffer predicts multiple Ca2+ inactivation sites situated 3-4 nm from the intracellular mouth of the pore, consistent with a location on the CRAC channel itself.  相似文献   

19.
The contribution of Ca2+ channels and Na+/Ca2+ exchange to Ca2+ uptake in rat brain synaptosomes upon long- (t greater than or equal to 30 s) and short-term (t less than 30 s) depolarization by high K+ was studied by measuring the 45Ca content and free Ca2+ concentration (from Quin-2 fluorescence). At 37 degrees C, the system responsible for the K+-stimulated uptake of 45Ca (t greater than or equal to 30 s) and the Na+/Ca+ exchanger are characterized by a similar concentration dependence of external Ca2+ (Ca0(2+] and K0+ as well as by an equal sensitivity to verapamil (Ki = approximately 20-40 microM) and La2+ (Ki = approximately 50 microM). These data and the results from predepolarization suggest that the 45Ca entry into synaptosomes at t greater than or equal to 30 s is due to the activation of Na+/Ca+ exchange caused by its electrogenic component, while the insignificant contribution of Ca2+ channels can be accounted for by their inactivation. At low temperatures (2-4 degrees C) which decelerate the inactivation, the initial phase of 45Ca uptake is fully provided for by Ca2+ channels, showing a lower (as compared to the exchanger) affinity for Ca0(2+) (K0.5 greater than 1 mM)m a greater sensitivity to La3+ (Ki = approximately 0.2-0.3 microM) and verapamil (Ki = approximately 2-3 microM); these channels are fully inactivated by predepolarization with K0+, ouabain and batrachotoxin. The Ca2+ channels can be related to T-type channels, since they are not blocked by nicardipine and niphedipine.  相似文献   

20.
We tested the hypothesis that the myocardial effects of verapamil (VER) could be enhanced by decreasing the extracellular Ca2+ concentration ([Ca2+]o) in the isolated rabbit heart at 37 degrees C. After perfusion with standard Krebs - bicarbonate solution containing 1.27 mM Ca2+, for a 30-min period of stabilization and 15 min of control, groups of hearts were perfused for an additional 60 min with solutions containing one of the following: 1.27 mM Ca2+ (control group), 0.23 mM Ca2+ (low [Ca2+]o group), 1.27 mM Ca2+ plus 10(-7) M VER (VER group), or 0.23 mM Ca2+ plus 10(-7) M VER (combination, CBN group). These concentrations of [Ca2+]o and VER produce submaximal responses in our preparation. We found that the heart rate - LV pressure product (RPP) in the CBN group fell rapidly to 0 in the first 2-3 min of perfusion, this response being significantly lower than in the other two groups for the first 15 min. Electromechanical dissociation (EMD) appeared in one of six hearts at 60 min and in four of six hearts at 30 min in the low [Ca2+]o and VER groups, respectively, whereas it occurred in the CBN group in all hearts at 3 min. Depolarization rate (DR) fell by 10% in the low [Ca2+]o and VER groups versus a reduction of 45% in the CBN group (P less than 0.05) during the last 45 min of perfusion. The PR interval increased by 300% in the CBN group, a much greater and significant change (P less than 0.05) than in the hearts exposed to VER or low [Ca2+]o.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号