首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Sequential ordinal modeling with applications to survival data   总被引:2,自引:0,他引:2  
Albert JH  Chib S 《Biometrics》2001,57(3):829-836
This paper considers the class of sequential ordinal models in relation to other models for ordinal response data. Markov chain Monte Carlo (MCMC) algorithms, based on the approach of Albert and Chib (1993, Journal of the American Statistical Association 88, 669-679), are developed for the fitting of these models. The ideas and methods are illustrated in detail with a real data example on the length of hospital stay for patients undergoing heart surgery. A notable aspect of this analysis is the comparison, based on marginal likelihoods and training sample priors, of several nonnested models, such as the sequential model, the cumulative ordinal model, and Weibull and log-logistic models.  相似文献   

2.
Regression modeling of semicompeting risks data   总被引:1,自引:0,他引:1  
Peng L  Fine JP 《Biometrics》2007,63(1):96-108
Semicompeting risks data are often encountered in clinical trials with intermediate endpoints subject to dependent censoring from informative dropout. Unlike with competing risks data, dropout may not be dependently censored by the intermediate event. There has recently been increased attention to these data, in particular inferences about the marginal distribution of the intermediate event without covariates. In this article, we incorporate covariates and formulate their effects on the survival function of the intermediate event via a functional regression model. To accommodate informative censoring, a time-dependent copula model is proposed in the observable region of the data which is more flexible than standard parametric copula models for the dependence between the events. The model permits estimation of the marginal distribution under weaker assumptions than in previous work on competing risks data. New nonparametric estimators for the marginal and dependence models are derived from nonlinear estimating equations and are shown to be uniformly consistent and to converge weakly to Gaussian processes. Graphical model checking techniques are presented for the assumed models. Nonparametric tests are developed accordingly, as are inferences for parametric submodels for the time-varying covariate effects and copula parameters. A novel time-varying sensitivity analysis is developed using the estimation procedures. Simulations and an AIDS data analysis demonstrate the practical utility of the methodology.  相似文献   

3.
Behavioural research often produces data that have a complicated structure. For instance, data can represent repeated observations of the same individual and suffer from heteroscedasticity as well as other technical snags. The regression analysis of such data is often complicated by the fact that the observations (response variables) are mutually correlated. The correlation structure can be quite complex and might or might not be of direct interest to the user. In any case, one needs to take correlations into account (e.g. by means of random‐effect specification) in order to arrive at correct statistical inference (e.g. for construction of the appropriate test or confidence intervals). Over the last decade, such data have been more and more frequently analysed using repeated‐measures ANOVA and mixed‐effects models. Some researchers invoke the heavy machinery of mixed‐effects modelling to obtain the desired population‐level (marginal) inference, which can be achieved by using simpler tools – namely marginal models. This paper highlights marginal modelling (using generalized least squares [GLS] regression) as an alternative method. In various concrete situations, such marginal models can be based on fewer assumptions and directly generate estimates (population‐level parameters) which are of immediate interest to the behavioural researcher (such as population mean). Sometimes, they might be not only easier to interpret but also easier to specify than their competitors (e.g. mixed‐effects models). Using five examples from behavioural research, we demonstrate the use, advantages, limits and pitfalls of marginal and mixed‐effects models implemented within the functions of the ‘nlme’ package in R.  相似文献   

4.
He W  Lawless JF 《Biometrics》2003,59(4):837-848
This article presents methodology for multivariate proportional hazards (PH) regression models. The methods employ flexible piecewise constant or spline specifications for baseline hazard functions in either marginal or conditional PH models, along with assumptions about the association among lifetimes. Because the models are parametric, ordinary maximum likelihood can be applied; it is able to deal easily with such data features as interval censoring or sequentially observed lifetimes, unlike existing semiparametric methods. A bivariate Clayton model (1978, Biometrika 65, 141-151) is used to illustrate the approach taken. Because a parametric assumption about association is made, efficiency and robustness comparisons are made between estimation based on the bivariate Clayton model and "working independence" methods that specify only marginal distributions for each lifetime variable.  相似文献   

5.
Unlike zero‐inflated Poisson regression, marginalized zero‐inflated Poisson (MZIP) models for counts with excess zeros provide estimates with direct interpretations for the overall effects of covariates on the marginal mean. In the presence of missing covariates, MZIP and many other count data models are ordinarily fitted using complete case analysis methods due to lack of appropriate statistical methods and software. This article presents an estimation method for MZIP models with missing covariates. The method, which is applicable to other missing data problems, is illustrated and compared with complete case analysis by using simulations and dental data on the caries preventive effects of a school‐based fluoride mouthrinse program.  相似文献   

6.
Summary A class of nonignorable models is presented for handling nonmonotone missingness in categorical longitudinal responses. This class of models includes the traditional selection models and shared parameter models. This allows us to perform a broader than usual sensitivity analysis. In particular, instead of considering variations to a chosen nonignorable model, we study sensitivity between different missing data frameworks. An appealing feature of the developed class is that parameters with a marginal interpretation are obtained, while algebraically simple models are considered. Specifically, marginalized mixed‐effects models ( Heagerty, 1999 , Biometrics 55, 688–698) are used for the longitudinal process that model separately the marginal mean and the correlation structure. For the correlation structure, random effects are introduced and their distribution is modeled either parametrically or non‐parametrically to avoid potential misspecifications.  相似文献   

7.
The joint analysis of spatial and temporal processes poses computational challenges due to the data's high dimensionality. Furthermore, such data are commonly non‐Gaussian. In this paper, we introduce a copula‐based spatiotemporal model for analyzing spatiotemporal data and propose a semiparametric estimator. The proposed algorithm is computationally simple, since it models the marginal distribution and the spatiotemporal dependence separately. Instead of assuming a parametric distribution, the proposed method models the marginal distributions nonparametrically and thus offers more flexibility. The method also provides a convenient way to construct both point and interval predictions at new times and locations, based on the estimated conditional quantiles. Through a simulation study and an analysis of wind speeds observed along the border between Oregon and Washington, we show that our method produces more accurate point and interval predictions for skewed data than those based on normality assumptions.  相似文献   

8.
Within behavioural research, non‐normally distributed data with a complicated structure are common. For instance, data can represent repeated observations of quantities on the same individual. The regression analysis of such data is complicated both by the interdependency of the observations (response variables) and by their non‐normal distribution. Over the last decade, such data have been more and more frequently analysed using generalized mixed‐effect models. Some researchers invoke the heavy machinery of mixed‐effect modelling to obtain the desired population‐level (marginal) inference, which can be achieved by using simpler tools—namely by marginal models. This paper highlights marginal modelling (using generalized estimating equations [GEE]) as an alternative method. In various situations, GEE can be based on fewer assumptions and directly generate estimates (population‐level parameters) which are of immediate interest to the behavioural researcher (such as population means). Using four examples from behavioural research, we demonstrate the use, advantages, and limits of the GEE approach as implemented within the functions of the ‘geepack’ package in R.  相似文献   

9.
Within the pattern-mixture modeling framework for informative dropout, conditional linear models (CLMs) are a useful approach to deal with dropout that can occur at any point in continuous time (not just at observation times). However, in contrast with selection models, inferences about marginal covariate effects in CLMs are not readily available if nonidentity links are used in the mean structures. In this article, we propose a CLM for long series of longitudinal binary data with marginal covariate effects directly specified. The association between the binary responses and the dropout time is taken into account by modeling the conditional mean of the binary response as well as the dependence between the binary responses given the dropout time. Specifically, parameters in both the conditional mean and dependence models are assumed to be linear or quadratic functions of the dropout time; and the continuous dropout time distribution is left completely unspecified. Inference is fully Bayesian. We illustrate the proposed model using data from a longitudinal study of depression in HIV-infected women, where the strategy of sensitivity analysis based on the extrapolation method is also demonstrated.  相似文献   

10.
Shih JH  Lu SE 《Biometrics》2007,63(3):673-680
We consider the problem of estimating covariate effects in the marginal Cox proportional hazard model and multilevel associations for child mortality data collected from a vitamin A supplementation trial in Nepal, where the data are clustered within households and villages. For this purpose, a class of multivariate survival models that can be represented by a functional of marginal survival functions and accounts for hierarchical structure of clustering is exploited. Based on this class of models, an estimation strategy involving a within-cluster resampling procedure is proposed, and a model assessment approach is presented. The asymptotic theory for the proposed estimators and lack-of-fit test is established. The simulation study shows that the estimates are approximately unbiased, and the proposed test statistic is conservative under extremely heavy censoring but approaches the size otherwise. The analysis of the Nepal study data shows that the association of mortality is much greater within households than within villages.  相似文献   

11.
Variable selection is an essential part of any statistical analysis and yet has been somewhat neglected in the context of longitudinal data analysis. In this article, we propose a generalized version of Mallows's C(p) (GC(p)) suitable for use with both parametric and nonparametric models. GC(p) provides an estimate of a measure of model's adequacy for prediction. We examine its performance with popular marginal longitudinal models (fitted using GEE) and contrast results with what is typically done in practice: variable selection based on Wald-type or score-type tests. An application to real data further demonstrates the merits of our approach while at the same time emphasizing some important robust features inherent to GC(p).  相似文献   

12.
We propose models for longitudinal, or otherwise clustered, ordinal data. The association between subunit responses is characterized by dependence ratios (Ekholm, Smith, and McDonald, 1995, Biometrika 82, 847-854), which are extended from the binary to the multicategory case. The joint probabilities of the subunit responses are expressed as explicit functions of the marginal means and the dependence ratios of all orders, obtaining a computational advantage for likelihood-based inference. Equal emphasis is put on finding regression models for the univariate cumulative probabilities, and on deriving the dependence ratios from meaningful association-generating mechanisms. A data set on the effects of treatment with Fluvoxamine, which has been analyzed in parts before (Molenberghs, Kenward, and Lesaffre, 1997, Biometrika 84, 33-44), is analyzed in its entirety. Selection models are used for studying the sensitivity of the results to drop-out.  相似文献   

13.
Wang Z  Louis TA 《Biometrics》2004,60(4):884-891
Marginal models and conditional mixed-effects models are commonly used for clustered binary data. However, regression parameters and predictions in nonlinear mixed-effects models usually do not have a direct marginal interpretation, because the conditional functional form does not carry over to the margin. Because both marginal and conditional inferences are of interest, a unified approach is attractive. To this end, we investigate a parameterization of generalized linear mixed models with a structured random-intercept distribution that matches the conditional and marginal shapes. We model the marginal mean of response distribution and select the distribution of the random intercept to produce the match and also to model covariate-dependent random effects. We discuss the relation between this approach and some existing models and compare the approaches on two datasets.  相似文献   

14.
Daniels MJ  Hogan JW 《Biometrics》2000,56(4):1241-1248
Pattern mixture models are frequently used to analyze longitudinal data where missingness is induced by dropout. For measured responses, it is typical to model the complete data as a mixture of multivariate normal distributions, where mixing is done over the dropout distribution. Fully parameterized pattern mixture models are not identified by incomplete data; Little (1993, Journal of the American Statistical Association 88, 125-134) has characterized several identifying restrictions that can be used for model fitting. We propose a reparameterization of the pattern mixture model that allows investigation of sensitivity to assumptions about nonidentified parameters in both the mean and variance, allows consideration of a wide range of nonignorable missing-data mechanisms, and has intuitive appeal for eliciting plausible missing-data mechanisms. The parameterization makes clear an advantage of pattern mixture models over parametric selection models, namely that the missing-data mechanism can be varied without affecting the marginal distribution of the observed data. To illustrate the utility of the new parameterization, we analyze data from a recent clinical trial of growth hormone for maintaining muscle strength in the elderly. Dropout occurs at a high rate and is potentially informative. We undertake a detailed sensitivity analysis to understand the impact of missing-data assumptions on the inference about the effects of growth hormone on muscle strength.  相似文献   

15.
The choice of an appropriate family of linear models for the analysis of longitudinal data is often a matter of concern for practitioners. To attenuate such difficulties, we discuss some issues that emerge when analyzing this type of data via a practical example involving pretest–posttest longitudinal data. In particular, we consider log‐normal linear mixed models (LNLMM), generalized linear mixed models (GLMM), and models based on generalized estimating equations (GEE). We show how some special features of the data, like a nonconstant coefficient of variation, may be handled in the three approaches and evaluate their performance with respect to the magnitude of standard errors of interpretable and comparable parameters. We also show how different diagnostic tools may be employed to identify outliers and comment on available software. We conclude by noting that the results are similar, but that GEE‐based models may be preferable when the goal is to compare the marginal expected responses.  相似文献   

16.
O'Brien SM  Dunson DB 《Biometrics》2004,60(3):739-746
Bayesian analyses of multivariate binary or categorical outcomes typically rely on probit or mixed effects logistic regression models that do not have a marginal logistic structure for the individual outcomes. In addition, difficulties arise when simple noninformative priors are chosen for the covariance parameters. Motivated by these problems, we propose a new type of multivariate logistic distribution that can be used to construct a likelihood for multivariate logistic regression analysis of binary and categorical data. The model for individual outcomes has a marginal logistic structure, simplifying interpretation. We follow a Bayesian approach to estimation and inference, developing an efficient data augmentation algorithm for posterior computation. The method is illustrated with application to a neurotoxicology study.  相似文献   

17.
Global cross-ratio models for bivariate, discrete, ordered responses   总被引:5,自引:0,他引:5  
J R Dale 《Biometrics》1986,42(4):909-917
A family of statistical models is presented for bivariate, discrete response to a regressor when both components of the response have ordered categories. Association between components is expressed in terms of global cross-ratios, cross-product ratios of quadrant probabilities, for each double dichotomy of the response table of probabilities into quadrants (Pearson and Heron, 1913, Biometrika 9, 159-315). These models are extensions to the work of Plackett (1965, Journal of the American Statistical Association 60, 516-522) and Mantel and Brown (1973, Biometrics 29, 649-665). The marginal cumulative probabilities may satisfy linear logistic or other generalized linear models (McCullagh, 1980, Journal of the Royal Statistical Society, Series B 42, 109-142). An analysis of patients' postoperative pain level and medication frequency illustrates these methods.  相似文献   

18.
Xie W  Lewis PO  Fan Y  Kuo L  Chen MH 《Systematic biology》2011,60(2):150-160
The marginal likelihood is commonly used for comparing different evolutionary models in Bayesian phylogenetics and is the central quantity used in computing Bayes Factors for comparing model fit. A popular method for estimating marginal likelihoods, the harmonic mean (HM) method, can be easily computed from the output of a Markov chain Monte Carlo analysis but often greatly overestimates the marginal likelihood. The thermodynamic integration (TI) method is much more accurate than the HM method but requires more computation. In this paper, we introduce a new method, steppingstone sampling (SS), which uses importance sampling to estimate each ratio in a series (the "stepping stones") bridging the posterior and prior distributions. We compare the performance of the SS approach to the TI and HM methods in simulation and using real data. We conclude that the greatly increased accuracy of the SS and TI methods argues for their use instead of the HM method, despite the extra computation needed.  相似文献   

19.
We propose a general class of nonlinear transformation models for analyzing censored survival data, of which the nonlinear proportional hazards and proportional odds models are special cases. A cubic smoothing spline-based component-wise boosting algorithm is derived to estimate covariate effects nonparametrically using the gradient of the marginal likelihood, that is computed using importance sampling. The proposed method can be applied to survival data with high-dimensional covariates, including the case when the sample size is smaller than the number of predictors. Empirical performance of the proposed method is evaluated via simulations and analysis of a microarray survival data.  相似文献   

20.
Microarray studies, in order to identify genes associated with an outcome of interest, usually produce noisy measurements for a large number of gene expression features from a small number of subjects. One common approach to analyzing such high-dimensional data is to use linear errors-in-variables (EIV) models; however, current methods for fitting such models are computationally expensive. In this paper, we present two efficient screening procedures, namely, corrected penalized marginal screening (PMSc) and corrected sure independence screening (SISc), to reduce the number of variables for final model building. Both screening procedures are based on fitting corrected marginal regression models relating the outcome to each contaminated covariate separately, which can be computed efficiently even with a large number of features. Under mild conditions, we show that these procedures achieve screening consistency and reduce the number of features substantially, even when the number of covariates grows exponentially with sample size. In addition, if the true covariates are weakly correlated, we show that PMSc can achieve full variable selection consistency. Through a simulation study and an analysis of gene expression data for bone mineral density of Norwegian women, we demonstrate that the two new screening procedures make estimation of linear EIV models computationally scalable in high-dimensional settings, and improve finite sample estimation and selection performance compared with estimators that do not employ a screening stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号