首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyaluronan (HA) is a large glycosaminoglycan that is not only a structural component of extracellular matrices, but also interacts with cell surface receptors to promote cell proliferation, migration, and intracellular signaling. HA is a major component of the extracellular matrix of the distal subapical mesenchymal cells of the developing limb bud that are undergoing proliferation, directed migration, and patterning in response to the apical ectodermal ridge (AER), and has the functional potential to be involved in these processes. Here we show that the HA synthase Has2 is abundantly expressed by the distal subridge mesodermal cells of the chick limb bud and also by the AER itself. Has2 expression and HA production are downregulated in the proximal central core of the limb bud during the formation of the precartilage condensations of the skeletal elements, suggesting that downregulation of HA may be necessary for the close juxtaposition of cells and the resulting cell-cell interactions that trigger cartilage differentiation during condensation. Overexpression of Has2 in the mesoderm of the chick limb bud in vivo results in the formation of shortened and severely malformed limbs that lack one or more skeletal elements. Skeletal elements that do form in limbs overexpressing Has2 are reduced in length, exhibit abnormal morphology, and are positioned inappropriately. We also demonstrate that sustained HA production in micromass cultures of limb mesenchymal cells inhibits formation of precartilage condensations and subsequent chondrogenesis, indicating that downregulation of HA is indeed necessary for formation of the precartilage condensations that trigger cartilage differentiation. Taken together these results suggest involvement of HA in various aspects of limb morphogenesis.  相似文献   

2.
Chick embryos are good models for vertebrate development. The principles that underlie chick wing development have been discovered and there is increasing knowledge about the molecules involved. The importance of identifying molecules is that this provides a direct link to understanding the genetic basis of diversity in form. Chick wing development will be compared with limb development in other vertebrates. Possible mechanisms that could lead to variations in form, including limb reductions and limblessness, differences between fore- and hindlimbs, limb proportions, and interdigital webbing can be suggested.  相似文献   

3.
4.
5.
6.
The formation of supernumerary limbs and limb structures was studied by juxtaposing normally nonadjacent embryonic chick limb bud tissue. A “wedge” (ectoderm and mesoderm) of anterior or mid donor right wing bud (stage 21) was inserted in a slit made in a host right limb bud (stage 21) at the same position as its position of origin or to a more posterior position. The AER of the donor tissue and host wing bud were aligned with each other. Donor tissue was grafted with its dorsalventral polarity the same as the host's limb bud or reversed to that of the host's. Depending on the position of origin of the donor limb bud tissue and the position to which it was transplanted in a host, supernumerary wings or wing structures formed. Furthermore, depending on the orientation of the graft in the host, supernumerary limbs with either left or right asymmetry developed. The results of experiments performed here are considered in light of two current models which have been used to describe supernumerary limb formation: one based on local, short-range, cell-cell interactions and the other based on long-range positional signaling via a diffusible morphogen.  相似文献   

7.
Limb regeneration ability, which can be observed in amphibians, has been investigated as a representative phenomenon of organ regeneration. Recently, an alternative experimental system called the accessory limb model was developed to investigate early regulation of amphibian limb regeneration. The accessory limb model contributed to identification of limb regeneration inducers in urodele amphibians. Furthermore, the accessory limb model may be applied to other species to explore universality of regeneration mechanisms. This review aims to connect the insights recently gained to emboss universality of regeneration mechanisms among species. The defined molecules (BMP7 (or2) + FGF2 + FGF8) can transform skin wound healing to organ (limb) regeneration responses. The same molecules can initiate regeneration responses in some species.  相似文献   

8.
In both Drosophila wings and vertebrate limbs, signaling between dorsal and ventral cells establishes an organizer that promotes limb formation. Significant progress has been made recently towards characterizing the signaling interactions that occur at the dorsal—ventral limb border. Studies of chicks have indicated that, as in Drosophila, this signaling process requires the participation of Fringe. Studies of Drosophila have indicated that Fringe functions by inhibiting the ability of Notch to be activated by one ligand, Serrate, while potentiating the ability of Notch to be activated by another ligand, Delta. Recent studies of both Drosophila and vertebrates have also shed new light on the signaling activity of the dorsal—ventral boundary limb organizer, and have highlighted how this organizer is maintained by feedback mechanisms with neighboring cells.  相似文献   

9.
Morphogens in chick limb development   总被引:4,自引:0,他引:4  
Retinoic acid is a good candidate for a morphogen in chick limb bud development. The challenge now is to determine how retinoic acid interacts with limb bud cells and how the retinoic acid signal is integrated with other signals to mould and pattern the developing limb.  相似文献   

10.
《Organogenesis》2013,9(2):109-115
Secreted signaling molecules of the Wnt family have been found to play a central role in controlling embryonic development of a wide range of taxa from Hydra to humans. The most extensively studied Wnt signaling pathway is the canonical Wnt pathway, which controls gene expression by stabilizing β-catenin, and regulates a multitude of developmental processes. More recently, noncanonical Wnt pathways, which are β-catenin-independent, have been found to be important developmental regulators. Understanding the mechanisms of Wnt signaling is essential for the development of novel preventive and therapeutic approaches of human diseases. Limb development is a paradigm to study the principles of Wnt signaling in various developmental contexts. In the developing vertebrate limb, Wnt signaling has been shown to have important functions during limb bud initiation, limb outgrowth, early limb patterning, and later limb morphogenesis events. This review provides a brief overview on the diversity of Wnt-dependent signaling events during embryonic development of the vertebrate limb.  相似文献   

11.
Secreted signaling molecules of the Wnt family have been found to play a central role in controlling embryonic development of a wide range of taxa from Hydra to humans. The most extensively studied Wnt signaling pathway is the canonical Wnt pathway, which controls gene expression by stabilizing β-catenin, and regulates a multitude of developmental processes. More recently, noncanonical Wnt pathways, which are β-catenin-independent, have been found to be important developmental regulators. Understanding the mechanisms of Wnt signaling is essential for the development of novel preventive and therapeutic approaches of human diseases. Limb development is a paradigm to study the principles of Wnt signaling in various developmental contexts. In the developing vertebrate limb, Wnt signaling has been shown to have important functions during limb bud initiation, limb outgrowth, early limb patterning, and later limb morphogenesis events. This review provides a brief overview on the diversity of Wnt-dependent signaling events during embryonic development of the vertebrate limb.Key words: Wnts, limb initiation, outgrowth, patterning, morphogenesis  相似文献   

12.
13.
Several advances have been made in our understanding of the control of the growth and patterning of embryonic limbs. Development of the vertebrate limb is dependent on reciprocal interactions between the ectoderm and mesoderm that regulate the structure and function of the apical ectodermal ridge. One key component of this regulatory program appears to be the precise control of signaling by members of the bone morphogenetic protein family via multiple antagonistic interactions.  相似文献   

14.
15.
The existence of multipotent cells in the adult tissues and organs of those vertebrates that are capable of regeneration has been accepted for decades. Although studies of vertebrate limb regeneration have yet to identify many of the specific molecules involved in regeneration, numerous tissue grafting experiments and studies of cell lineage have contributed significantly to an understanding of the origin, activation, proliferation and cell-cell interactions of these progenitor cells. This has allowed the development of ideas about the regulation of pattern formation to restore the structure and function of lost tissues and organs. An understanding of the molecular mechanisms controlling these processes has lagged behind the dramatic advances achieved with other model organisms. However, given the intense, new research interest in stem cells over the past few years, there is good reason to be encouraged that insights about the biology of mammalian stem cells will accelerate progress in understanding the biology of regeneration in organisms that can regenerate. Advances in regeneration research will then feed back in terms of devising new strategies for therapies to induce regeneration in organisms such as humans that have traditionally been viewed as incapable of regeneration.  相似文献   

16.
Tomoregulin-1 (TMEFF1) was first identified as a gene implicated in pituitary secretion in Xenopus laevis. The predicted structure of TMEFF1 is that of a transmembrane protein with a highly conserved cytoplasmic tail, two follistatin domains and one modified EGF domain in its extracellular region. We report the cloning of the newt orthologue, and show that the expression of TMEFF1 is upregulated in the blastema during limb regeneration, and is also expressed in mouse embryonic limb development.  相似文献   

17.
Summary Non-encapsulated, fine beaded nerve endings were found histologically on some muscle fibres in a number of limb muscles in newts and axolotls. They were present in newt muscles that had been chronically de-efferented, and in which no efferent activity survived, and were therefore likely to be sensory. They were located only on muscle fibres on or near the outside surface of the muscle. These small-diameter muscle fibres were characterised histochemically by low lipid, SDH and phosphorylase content; ultrastructurally by low glycogen content, and relatively large myofilaments poorly delimited by a sparse SR. There were many of this type (Type 1) that did not support sensory endings. A few endings occurred on another larger-diameter type of fibre (Type 2) whose properties were opposite to those listed above for Type 1. There was virtually no specialization of muscle fibre structure beneath the sensory endings.Physiological experiments involving ramp-and-hold and sinusoidal stretch applied to the muscle whilst recording single-unit afferent responses in m.ext. dig. III of axolotls showed unit responses very similar to those known from muscle spindles, particularly those of the frog.We are grateful to the M.R.C. for an equipment grant (to R.M.A.P.R.), and to Mrs. Janis Taberner for her technical help. Part of this work was done during the tenure of a Nuffield-NRC Lectureship (Q.B.) which is gratefully acknowledged, as is financial support by Prof. J.R. Nussall during a visit to the University of Alberta at Edmonton.  相似文献   

18.
19.
Urodele amphibians can regenerate their limbs. During limb regeneration, dermal fibroblasts are transformed into undifferentiated cells called blastema cells. These dermis–blastema cells show multipotency. Such so-called endogenous reprogramming of cell differentiation is one of the main targets of amphibian limb regeneration studies. It is well recognized that nerve presence controls the initiation of limb regeneration. Accordingly, nerve factors have been sought in amphibian limb regeneration. To investigate it, a relatively new study system called the accessory limb model (ALM) was developed. Using ALM, two signaling cascades (Fgf and Gdf5 signaling) came under focus. In the present study, Growth and differentiation factor-5 (Gdf5) application to wounded skin initiated limb regeneration responses and resulted in induction of a blastema-like structure in the absence of a nerve. However, the Gdf5-induced structure showed defects as a regeneration blastema, such as absence of detectable Prrx1 expression by in situ hybridization. The defects could be remedied by additional Fibroblasts growth factor (Fgf) inputs. These two inputs (Gdf5 and Fgfs) were sufficient to substitute for the nerve functions in the induction of limb regeneration. Indeed, Fgf2, Fgf8, and Gdf5 applications with the contralateral skin graft resulted in limb formation without nerve supply. Furthermore, acquisition of cartilage differentiation potential of dermal fibroblasts was tested in an in vivo and in vitro combination assay. Dermal fibroblasts cultured with Gdf5 were difficult to participate in cartilage formation when the cultured cells were grafted into cartilage forming region. In contrast, dermal fibroblasts cultured with Fgf2 and Fgf8 became easier to participate into cartilage formation in the same procedure. These results contribute to our understanding of molecular mechanisms of the early phase of amphibian limb regeneration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号