共查询到20条相似文献,搜索用时 15 毫秒
1.
What morphological and functional factors allow for the unique and characteristic upright striding walk of the hominin lineage? Predictive models of locomotion that arise from considering mechanisms of energy loss indicate that collision-like losses at the transition between stance limbs are important determinants of bipedal gait. Theoretical predictions argue that these collisional losses can be reduced by having “functional extra legs” which are physically the heel and the toe part of a single anatomical foot. The ideal spacing for these “functional legs” are up to a quarter of a stride length, depending on the model employed. We evaluate the foot in the context of the dynamics of a bipedal system and compare predictions of optimal foot size against empirical data from modern humans, the Laetoli footprint trackways, and chimpanzees walking bipedally. The dynamics-based modeling approach provides substantial insight into how, and why, walking works as it does, even though current models are too simple to make predictions at a level adequate to anticipate specific morphology except at the most general level. 相似文献
2.
3.
Vereecke E D'Août K De Clercq D Van Elsacker L Aerts P 《American journal of physical anthropology》2003,120(4):373-383
We collected high-resolution plantar pressure distributions of seven bonobos during terrestrial bipedal and quadrupedal locomotion (N = 146). Functional foot length, degree of hallux abduction, and total contact time were determined, and plots, showing pressure as a function of time for six different foot regions, were generated. We also studied five adult humans for comparison (N = 13). Both locomotion types of the bonobo show a large variation in plantar pressure distributions, which could be due to the interference of instantaneous behavior with locomotion and differences in walking speed and body dimensions. The heel and the lateral midfoot typically touch down simultaneously at initial ground contact in bipedal and quadrupedal walking of bonobos, in contrast with the typical heel-strike of human bipedalism. The center of pressure follows a curved course during quadrupedalism, as a consequence of the medial weight transfer during mid-stance. Bipedal locomotion of bonobos is characterized by a more plantar positioning of the feet and by a shorter contact time than during quadrupedal walking, according to a smaller stride and step length at a higher frequency. We observed a varus position of the foot with an abducted hallux, which likely possesses an important sustaining and stabilizing function during terrestrial locomotion. 相似文献
4.
5.
6.
The large body mass and exclusively arboreal lifestyle of Sumatran orangutans identify them as a key species in understanding the dynamic between primates and their environment. Increased knowledge of primate locomotor ecology, coupled with recent developments in the standardization of positional mode classifications (Hunt et al. [1996] Primates 37:363-387), opened the way for sophisticated multivariate statistical approaches, clarifying complex associations between multiple influences on locomotion. In this study we present a log-linear modelling approach used to identify key associations between orangutan locomotion, canopy level, support use, and contextual behavior. Log-linear modelling is particularly appropriate because it is designed for categorical data, provides a systematic method for testing alternative hypotheses regarding interactions between variables, and allows interactions to be ranked numerically in terms of relative importance. Support diameter and type were found to have the strongest associations with locomotor repertoire, suggesting that orangutans have evolved distinct locomotor modes to solve a variety of complex habitat problems. However, height in the canopy and contextual behavior do not directly influence locomotion: instead, their effect is modified by support type and support diameter, respectively. Contrary to classic predictions, age-sex category has only limited influence on orangutan support use and locomotion, perhaps reflecting the presence of arboreal pathways which individuals of all age-sex categories follow. Effects are primarily related to a tendency for adult, parous females to adopt a more cautious approach to locomotion than adult males and immature subjects. 相似文献
7.
One trait that distinguishes the walking gaits of most primates from those of most mammalian nonprimates is the distribution of weight between the forelimbs and hindlimbs. Nonprimate mammals generally experience higher vertical peak substrate reaction forces on the forelimb than on the hindlimb. Primates, in contrast, generally experience higher vertical peak substrate reaction forces on the hindlimb than on the forelimb. It is currently unclear whether this unusual pattern of force distribution characterizes other primate gaits as well. The available kinetic data for galloping primates are limited and present an ambiguous picture about peak-force distribution among the limbs. The present study investigates whether the pattern of forelimb-to-hindlimb force distribution seen during walking in primates is also displayed during galloping. Six species of primates were video-recorded during walking and galloping across a runway or horizontal pole instrumented with a force-plate. The results show that while the force differences between forelimb and hindlimb are not significantly different from zero during galloping, the pattern of force distribution is generally the same during walking and galloping for most primate species. These patterns and statistical results are similar to data collected during walking on the ground. The pattern of limb differentiation exhibited by primates during walking and galloping stands in contrast to the pattern seen in most nonprimate mammals, in which forelimb forces are significantly higher. The data reported here and by Demes et al. ([1994] J. Hum. Evol. 26:353-374) suggest that a relative reduction of forelimb vertical peak forces is part of an overall difference in locomotor mechanics between most primates and most nonprimate mammals during both walking and galloping. 相似文献
8.
International Journal of Primatology - Did the anatomical and locomotor specializations of primates evolve in response to requirements of locomotion and foraging on thin branches? Laboratory... 相似文献
9.
10.
11.
Manduell KL Morrogh-Bernard HC Thorpe SK 《American journal of physical anthropology》2011,145(3):348-359
This study examined the locomotor behavior of wild Bornean orangutans (P. p. wurmbii) in an area of disturbed peat swamp forest (Sabangau Catchment, Indonesia) in relation to the height in the canopy, age-sex class, behavior (feeding or traveling), and the number of supports used to bear body mass. Backward elimination log-linear modeling was employed to expose the main influences on orangutan locomotion. Our results showed that the most important distinctions with regard to locomotion were between suspensory and compressive, or, orthograde (vertical trunk) and pronograde (horizontal trunk) behavior. Whether orangutans were traveling or feeding had the most important influence on locomotion whereby compressive locomotion had a strong association with feeding, suspensory locomotion had a strong association with travel in the peripheral strata using multiple supports, whereas vertical climb/descent and oscillation showed a strong association with travel on single supports in the core stratum. In contrast to theoretical predictions on positional behavior and body size, age-sex category had a limited influence on locomotion. The study revealed that torso orthograde suspension dominates orangutan locomotion, concurring with previous studies in dipterocarp forest. But, orangutans in the Sabangau exhibited substantially higher frequencies of oscillatory locomotion than observed at other sites, suggesting this behavior confers particular benefits for traversing the highly compliant arboreal environment typical of disturbed peat swamp forest. In addition, torso pronograde suspensory locomotion was observed at much lower levels than in the Sumatran species. Together these results highlight the necessity for further examination of differences between species, which control for habitat. 相似文献
12.
The unique slow-climbing quadrupedalism of Asian lorises has been the subject of numerous studies; however, qualitative observations of more rapid locomotion have occasionally been reported. Field studies of the red slender loris have revealed the habitual use of unexpectedly high-speed locomotion by the so-called \"sloth of the primate world.\" Novel video footage permitted the first quantitative kinematic analysis of rapid quadrupedalism in wild lorises. Observations revealed that this previously unexplored behavior is far from infrequent, with 26% of red slender loris locomotor activity being dedicated to high-velocity arboreal quadrupedalism. This locomotor pattern may represent a primitive retention of the rapid, scrambling quadrupedalism that is observed in other strepsirhines, or it may constitute a more recent specialization of this smallest loris taxon. 相似文献
13.
Channon AJ Crompton RH Günther MM D'Août K Vereecke EE 《American journal of physical anthropology》2010,143(3):403-416
Gibbons are skilled brachiators but they are also highly capable leapers, crossing distances in excess of 10 m in the wild. Despite this impressive performance capability, no detailed biomechanical studies of leaping in gibbons have been undertaken to date. We measured ground reaction forces and derived kinematic parameters from high-speed videos during gibbon leaps in a captive zoo environment. We identified four distinct leap types defined by the number of feet used during take-off and the orientation of the trunk, orthograde single-footed, orthograde two-footed, orthograde squat, and pronograde single-footed leaps. The center of mass trajectories of three of the four leap types were broadly similar, with the pronograde single-footed leaps exhibiting less vertical displacement of the center of mass than the other three types. Mechanical energy at take-off was similar in all four leap types. The ratio of kinetic energy to mechanical energy was highest in pronograde single-footed leaps and similar in the other three leap types. The highest mechanical work and power were generated during orthograde squat leaps. Take-off angle decreased with take-off velocity and the hind limbs showed a proximal to distal extension sequence during take-off. In the forelimbs, the shoulder joints were always flexed at take-off, while the kinematics of the distal joints (elbow and wrist joints) were variable between leaps. It is possible that gibbons may utilize more metabolically expensive orthograde squat leaps when a safe landing is uncertain, while more rapid (less expensive) pronograde single-footed leaps might be used during bouts of rapid locomotion when a safe landing is more certain. 相似文献
14.
Judith Janisch;Lydia C. Myers;Nicole Schapker;Jack Kirven;Liza J. Shapiro;Jesse W. Young; 《American journal of physical anthropology》2024,184(2):e24914
Despite qualitative observations of wild primates pumping branches before leaping across gaps in the canopy, most studies have suggested that support compliance increases the energetic cost of arboreal leaping, thus limiting leaping performance. In this study, we quantified branch pumping behavior and tree swaying in wild primates to test the hypothesis that these behaviors improve leaping performance. 相似文献
15.
Daniel Schmitt Laura T. Gruss Pierre Lemelin 《American journal of physical anthropology》2010,141(1):142-146
Primates display high forelimb compliance (increased elbow joint yield) compared to most other mammals. Forelimb compliance, which is especially marked among arboreal primates, moderates vertical oscillations of the body and peak vertical forces and may represent a basal adaptation of primates for locomotion on thin, flexible branches. However, Larney and Larson (Am J Phys Anthropol 125 [2004] 42–50) reported that marsupials have forelimb compliance comparable to or greater than that of most primates, but did not distinguish between arboreal and terrestrial marsupials. If forelimb compliance is functionally linked to locomotion on thin branches, then elbow yield should be highest in marsupials relying on arboreal substrates more often. To test this hypothesis, we compared forelimb compliance between two didelphid marsupials, Caluromys philander (an arboreal opossum relying heavily on thin branches) and Monodelphis domestica (an opossum that spends most of its time on the ground). Animals were videorecorded while walking on a runway or a horizontal 7‐mm pole. Caluromys showed higher elbow yield (greater changes in degrees of elbow flexion) on both substrates, similar to that reported for arboreal primates. Monodelphis was characterized by lower elbow yield that was intermediate between the values reported by Larney and Larson (Am J Phys Anthropol 125 [2004] 42–50) for more terrestrial primates and rodents. This finding adds evidence to a model suggesting a functional link between arboreality—particularly locomotion on thin, flexible branches—and forelimb compliance. These data add another convergent trait between arboreal primates, Caluromys, and other arboreal marsupials and support the argument that all primates evolved from a common ancestor that was a fine‐branch arborealist. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc. 相似文献
16.
Jason A. Nadell Sarah Elton Kris Kovarovic 《American journal of physical anthropology》2021,174(2):327-351
17.
18.
《Journal of morphology》2017,278(6):828-847
Caviomorph rodents represent a major adaptive radiation of Neotropical mammals. They occupy a variety of ecological niches, which is also reflected in their wide array of locomotor behaviors. It is expected that this radiation would be mirrored by an equivalent disparity of tarsal‐metatarsal morphology. Here, the tarsal‐metatarsal complex of Erethizontidae, Cuniculidae, Dasyproctidae, Caviidae, Chinchillidae, Octodontidae, Ctenomyidae, and Echimyidae was examined, in order to evaluate its anatomical variation and functional‐adaptive relevance in relation to locomotor behaviors. A qualitative study in functional morphology and a geometric morphometric analysis were performed. We recognized two distinct tarsal‐metatarsal patterns that represent the extremes of anatomical variation in the foot. The first, typically present in arboreal species, is characterized by features that facilitate movements at different levels of the tarsal‐metatarsal complex. The second pattern, typically present in cursorial caviomorphs, has a set of features that act to stabilize the joints, improve the interlocking of the tarsal bones, and restrict movements to the parasagittal plane. The morphological disparity recognized in this study seems to result from specific locomotor adaptations to climb, dig, run, jump and swim, as well as phylogenetic effects within and among the groups studies. 相似文献
19.
We observed grips by the hand during locomotor and manipulative behavior of captive chimpanzees to improve our ability to
interpret differences between chimpanzees and humans in hand morphology that are not easily explained by current behavioral
data. The study generated a new classification of grips,which takes into account three elements of precision and power gripping that appear to distinguish between the chimpanzees
and humans, and which have not been explored previously in relation to hand morphology. These elements are (1) the relative
force of the precision grips (pinch versus hold), (2) the relative ability to translate and rotate objects by the thumb and
fingers (precision handling), and (3) the relative ability to orient a cylindrical object so that it functions effectively
as an extension of the forearm (power squeeze). We recommend that this classification be incorporated into protocols for field
and laboratory studies of nonhuman primate manipulative behavior, in order to test our prediction that these three elements
clearly distinguish humans from chimpanzees and other nonhuman primates. The results of this test will have direct bearing
upon decisions as to which grips (with their associated behaviors) are most likely to guide us through kinematic and kinetic
analysis to possible explanations for morphological differences between humans and other species. These explanations, in turn,
are fundamental to our ability to discern evidence for potential grips and tool behaviors in the manual morphology of fossil
hominids. 相似文献
20.
Stevens NJ Schmitt DO Cole TM Chan LK 《American journal of physical anthropology》2006,129(3):399-402
In two-dimensional (2D) kinematic studies, limb positions in three-dimensional (3D) space observed in lateral view are projected onto a 2D film plane. Elbow and knee-joint angles that are less than 20 degrees out-of-plane of lateral-view cameras generally exhibit very little measurable difference from their 3D counterparts (Plagenhoef 1979 Environment, Behavior, and Morphology; New York: Gustav Fisher, p. 95-118). However, when limb segment angles are more than 20 degrees out-of-plane, as is often the case in locomotor studies of arboreal primates, elbow and knee angles can appear significantly more extended than they actually are. For this reason, a methodology is described that corrects 2D out-of-plane angular estimates using a series of trigonometric transformations. 相似文献