首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aging is a phenomenon that is associated with profound medical implications. Idiopathic epiretinal membrane (iEMR) and macular hole (MH) are the major vision‐threatening vitreoretinal diseases affecting millions of aging people globally, making these conditions an important public health issue. iERM is characterized by fibrous tissue developing on the surface of the macula, which leads to biomechanical and biochemical macular damage. MH is a small breakage in the macula and is associated with many ocular conditions. Although several individual factors and pathways are suggested, a systems pathology level understanding of the molecular mechanisms underlying these disorders is lacking. Therefore, we performed mass spectrometry‐based label‐free quantitative proteomics analysis of the vitreous proteomes from patients with iERM and MH to identify the key proteins, as well as the multiple interconnected biochemical pathways, contributing to the development of these diseases. We identified a total of 1,014 unique proteins, many of which are linked to inflammation and the complement cascade, revealing the inflammation processes in retinal diseases. Additionally, we detected a profound difference in the proteomes of iEMR and MH compared to those of diabetic retinopathy with macular edema and rhegmatogenous retinal detachment. A large number of neuronal proteins were present at higher levels in the iERM and MH vitreous, including neuronal adhesion molecules, nervous system development proteins, and signaling molecules, pointing toward the important role of neurodegenerative component in the pathogenesis of age‐related vitreoretinal diseases. Despite them having marked similarities, several unique vitreous proteins were identified in both iERM and MH, from which candidate targets for new diagnostic and therapeutic approaches can be provided.  相似文献   

2.
Autophagy is designated as a biological recycling process to maintain cellular homeostasis by the sequestration of damaged proteins and organelles in plasma and cargo delivery to lysosomes for degradation and reclamation. This organelle recycling process promotes chondrocyte homeostasis and has been previously implicated in osteoarthritis (OA). Autophagy is widely involved in regulating chondrocyte degeneration markers such as MMPs, ADAMSTs and Col10 in chondrocytes. The critical autophagy‐related (ATG) proteins have now been considered the protective factor against late‐onset OA. The current research field proposes that the autophagic pathway is closely related to chondrocyte activity. However, the mechanism is complex yet needs precise elaboration. This review concluded that FoxO1, a forkhead O family protein, which is a decisive mediator of autophagy, facilitates the pathological process of osteoarthritis. Diverse mechanisms regulate the activity of FoxO1 and promote the initiation of autophagy, including the prominent AMPK and Sirt‐2 cellular pathways. FoxO1 transactive is regulated by phosphorylation and acetylation processes, which modulates the downstream ATGs expression. Furthermore, FoxO1 induces autophagy by directly interacting with ATGs proteins, which control the formation of autophagosomes and lysosomes fusion. This review will discuss cutting‐edge evidence that the FoxO–autophagy pathway plays an essential regulator in the pathogenesis of osteoarthritis.  相似文献   

3.
4.
A norepinephrine (NE) deficiency has been observed in aged rats and in patients with Alzheimer's disease and is thought to cause cognitive disorder. Which endogenous factor induces NE depletion, however, is largely unknown. In this study, we investigated the effects of aging‐associated formaldehyde (FA) on the inactivation of NE in vitro and in vivo, and on memory behaviors in rodents. The results showed that age‐related DNA demethylation led to hippocampal FA accumulation, and when this occurred, the hippocampal NE content was reduced in healthy male rats of different ages. Furthermore, biochemical analysis revealed that FA rapidly inactivated NE in vitro and that an intrahippocampal injection of FA markedly reduced hippocampal NE levels in healthy adult rats. Unexpectedly, an injection of FA (at a pathological level) or 6‐hydroxydopamine (6‐OHDA, a NE depletor) can mimic age‐related NE deficiency, long‐term potentiation (LTP) impairments, and spatial memory deficits in healthy adult rats. Conversely, an injection of NE reversed age‐related deficits in both LTP and memory in aged rats. In agreement with the above results, the senescence‐accelerated prone 8 (SAMP8) mice also exhibited a severe deficit in LTP and memory associated with a more severe NE deficiency and FA accumulation, when compared with the age‐matched, senescence‐resistant 1 (SAMR1) mice. Injection of resveratrol (a natural FA scavenger) or NE into SAMP8 mice reversed FA accumulation and NE deficiency and restored the magnitude of LTP and memory. Collectively, these findings suggest that accumulated FA is a critical endogenous factor for aging‐associated NE depletion and cognitive decline.  相似文献   

5.
The loss of cognitive function is a pervasive and often debilitating feature of the aging process for which there are no effective therapeutics. We hypothesized that a novel metal chaperone (PBT2; Prana Biotechnology, Parkville, Victoria, Australia) would enhance cognition in aged rodents. We show here that PBT2 rapidly improves the performance of aged C57Bl/6 mice in the Morris water maze, concomitant with increases in dendritic spine density, hippocampal neuron number and markers of neurogenesis. There were also increased levels of specific glutamate receptors (alpha‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid and N‐methyl‐d ‐aspartate), the glutamate transporter (VGLUT1) and glutamate itself. Markers of synaptic plasticity [calmodulin‐dependent protein kinase II (CaMKII) and phosphorylated CaMKII, CREB, synaptophysin] were also increased following PBT2 treatment. We also demonstrate that PBT2 treatment results in a subregion‐specific increase in hippocampal zinc, which is increasingly recognized as a potent neuromodulator. These data demonstrate that metal chaperones are a novel approach to the treatment of age‐related cognitive decline.  相似文献   

6.
Aging causes phenotypic changes in skeletal muscle progenitor cells (Skm‐PCs), such as reduced myogenesis and increased adipogenesis due to alterations in their environment or niche. Secreted protein acidic and rich in cysteine (SPARC), which is secreted into the niche of Skm‐PCs, inhibits adipogenesis and promotes myogenesis. We have previously reported that Skm‐PC responsiveness to SPARC declines with age, although the mechanism underlying this decline is unknown. In this study, we found that SPARC is internalized by Skm‐PCs and that this uptake increases with age. Internalization is dependent on integrin‐α5, a cell surface SPARC‐binding molecule, and clathrin‐mediated endocytosis. We also demonstrated that internalized SPARC is transported to Rab7‐positive endosomes. Skm‐PCs from old rats exhibited increased clathrin expression and decreased Rab7 expression exclusively in MyoD‐negative cells. In loss‐of‐function analyses, clathrin knockdown increased the anti‐adipogenic effect of SPARC, whereas Rab7 knockdown reduced it, indicating that alterations in SPARC internalization may mediate the age‐related decline in its anti‐adipogenic effect. These results provide insights into age‐related SPARC resistance in Skm‐PCs, which may lead to sarcopenia.  相似文献   

7.
Rapamycin has been shown to extend lifespan in numerous model organisms including mice, with the most dramatic longevity effects reported in females. However, little is known about the functional ramifications of this longevity‐enhancing paradigm in mammalian tissues. We treated 24‐month‐old female C57BL/6J mice with rapamycin for 3 months and determined health outcomes via a variety of noninvasive measures of cardiovascular, skeletal, and metabolic health for individual mice. We determined that while rapamycin has mild transient metabolic effects, there are significant benefits to late‐life cardiovascular function with a reversal or attenuation of age‐related changes in the heart. RNA‐seq analysis of cardiac tissue after treatment indicated inflammatory, metabolic, and antihypertrophic expression changes in cardiac tissue as potential mechanisms mediating the functional improvement. Rapamycin treatment also resulted in beneficial behavioral, skeletal, and motor changes in these mice compared with those fed a control diet. From these findings, we propose that late‐life rapamycin therapy not only extends the lifespan of mammals, but also confers functional benefits to a number of tissues and mechanistically implicates an improvement in contractile function and antihypertrophic signaling in the aged heart with a reduction in age‐related inflammation.  相似文献   

8.
9.
Age‐related diseases such as cancer, cardiovascular disease, kidney failure, and osteoarthritis have universal features: Their incidence rises exponentially with age with a slope of 6–8% per year and decreases at very old ages. There is no conceptual model which explains these features in so many diverse diseases in terms of a single shared biological factor. Here, we develop such a model, and test it using a nationwide medical record dataset on the incidence of nearly 1000 diseases over 50 million life‐years, which we provide as a resource. The model explains incidence using the accumulation of senescent cells, damaged cells that cause inflammation and reduce regeneration, whose level rise stochastically with age. The exponential rise and late drop in incidence are captured by two parameters for each disease: the susceptible fraction of the population and the threshold concentration of senescent cells that causes disease onset. We propose a physiological mechanism for the threshold concentration for several disease classes, including an etiology for diseases of unknown origin such as idiopathic pulmonary fibrosis and osteoarthritis. The model can be used to design optimal treatments that remove senescent cells, suggeting that treatment starting at old age can sharply reduce the incidence of all age‐related diseases, and thus increase the healthspan.  相似文献   

10.
An important challenge for conservation science is to detect declines in intraspecific diversity so that management action can be guided towards populations or species at risk. The lifespan of Australian lungfish (Neoceratodus forsteri) exceeds 80 years, and human impacts on breeding habitat over the last half century may have impeded recruitment, leaving populations dominated by old postreproductive individuals, potentially resulting in a small and declining breeding population. Here, we conduct a “single‐sample” evaluation of genetic erosion within contemporary populations of the Australian lungfish. Genetic erosion is a temporal decline in intraspecific diversity due to factors such as reduced population size and inbreeding. We examined whether young individuals showed signs of reduced genetic diversity and/or inbreeding using a novel bomb radiocarbon dating method to age lungfish nonlethally, based on 14C ratios of scales. A total of 15,201 single nucleotide polymorphic (SNP) loci were genotyped in 92 individuals ranging in age from 2 to 77 years old. Standardized individual heterozygosity and individual inbreeding coefficients varied widely within and between riverine populations, but neither was associated with age, so perceived problems with recruitment have not translated into genetic erosion that could be considered a proximate threat to lungfish populations. Conservation concern has surrounded Australian lungfish for over a century. However, our results suggest that long‐lived threatened species can maintain stable levels of intraspecific variability when sufficient reproductive opportunities exist over the course of a long lifespan.  相似文献   

11.
Age‐at‐death estimation of an individual skeleton is important to forensic and biological anthropologists for identification and demographic analysis, but it has been shown that the current aging methods are often unreliable because of skeletal variation and taphonomic factors. Multifactorial methods have been shown to produce better results when determining age‐at‐death than single indicator methods. However, multifactorial methods are difficult to apply to single or poorly preserved skeletons, and they rarely provide the investigator with information about the reliability of the estimate. The goal of this research is to examine the validity of the Sugeno fuzzy integral as a multifactorial method for modeling age‐at‐death of an individual skeleton. This approach is novel because it produces an informed decision of age‐at‐death utilizing multiple age indicators while also taking into consideration the accuracies of the methods and the condition of the bone being examined. Additionally, the Sugeno fuzzy integral does not require the use of a population and it qualitatively produces easily interpreted graphical results. Examples are presented applying three commonly used aging methods on a known‐age skeletal sample from the Terry Anatomical Collection. This method produces results that are more accurate and with smaller intervals than single indicator methods. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Aging is the single largest risk factor for chronic disease. Studies in model organisms have identified conserved pathways that modulate aging rate and the onset and progression of multiple age‐related diseases, suggesting that common pathways of aging may influence age‐related diseases in humans as well. To determine whether there is genetic evidence supporting the notion of common pathways underlying age‐related diseases, we analyzed the genes and pathways found to be associated with five major categories of age‐related disease using a total of 410 genomewide association studies (GWAS). While only a small number of genes are shared among all five disease categories, those found in at least three of the five major age‐related disease categories are highly enriched for apoliprotein metabolism genes. We found that a more substantial number of gene ontology (GO) terms are shared among the 5 age‐related disease categories and shared GO terms include canonical aging pathways identified in model organisms, such as nutrient‐sensing signaling, translation, proteostasis, stress responses, and genome maintenance. Taking advantage of the vast amount of genetic data from the GWAS, our findings provide the first direct evidence that conserved pathways of aging simultaneously influence multiple age‐related diseases in humans as has been demonstrated in model organisms.  相似文献   

13.
As organisms age, the effectiveness of natural selection weakens, leading to age‐related decline in fitness‐related traits. The evolution of age‐related changes associated with senescence is likely influenced by mutation accumulation (MA) and antagonistic pleiotropy (AP). MA predicts that age‐related decline in fitness components is driven by age‐specific sets of alleles, nonnegative genetic correlations within trait across age, and an increase in the coefficient of genetic variance. AP predicts that age‐related decline in a trait is driven by alleles with positive effects on fitness in young individuals and negative effects in old individuals, and is expected to lead to negative genetic correlations within traits across age. We build on these predictions using an association mapping approach to investigate the change in additive effects of SNPs across age and among traits for multiple stress‐response fitness‐related traits, including cold stress with and without acclimation and starvation resistance. We found support for both MA and AP theories of aging in the age‐related decline in stress tolerance. Our study demonstrates that the evolution of age‐related decline in stress tolerance is driven by a combination of alleles that have age‐specific additive effects, consistent with MA, as well as nonindependent and antagonistic genetic architectures characteristic of AP.  相似文献   

14.
With the onset of advanced age, cardiac‐associated pathologies have increased in prevalence. The hallmarks of cardiac aging include cardiomyocyte senescence, fibroblast proliferation, inflammation, and hypertrophy. The imbalance between levels of reactive oxygen species (ROS) and antioxidant enzymes is greatly enhanced in aging cells, promoting cardiac remodeling. In this work, we studied the long‐term impact of phenolic compounds (PC) on age‐associated cardiac remodeling. Three‐month‐old Wistar rats were treated for 14 months till middle‐age with either 2.5, 5, 10, or 20 mg kg?1 day?1 of PC. PC treatment showed a dose‐dependent preservation of cardiac ejection fraction and fractional shortening as well as decreased hypertrophy reflected by left ventricular chamber diameter and posterior wall thickness as compared to untreated middle‐aged control animals. Analyses of proteins from cardiac tissue showed that PC attenuated several hypertrophic pathways including calcineurin/nuclear factor of activated T cells (NFATc3), calcium/calmodulin‐dependent kinase II (CAMKII), extracellular regulated kinase 1/2 (ERK1/2), and glycogen synthase kinase 3ß (GSK 3ß). PC‐treated groups exhibited reduced plasma inflammatory and fibrotic markers and revealed as well ameliorated extracellular matrix remodeling and interstitial inflammation by a downregulated p38 pathway. Myocardia from PC‐treated middle‐aged rats presented less fibrosis with suppression of profibrotic transforming growth factor‐ß1 (TGF‐ß1) Smad pathway. Additionally, reduction of apoptosis and oxidative damage in the PC‐treated groups was reflected by elevated antioxidant enzymes and reduced RNA/DNA damage markers. Our findings pinpoint that a daily consumption of phenolic compounds could preserve the heart from the detrimental effects of aging storm.  相似文献   

15.
16.
Sex‐ and age‐related differences in cognitive abilities are frequently reported. However, the sex‐ and age‐related differences in dog olfaction due to biological system are still poorly understood. We examined c‐fos expression in dog olfactory bulbs by immunohistochemistry approaches. The c‐fos is mainly expressed in the olfactory glomerular layer (GL), mitral cell layer (ML) and granule cell layer (GRL). We found that a higher density of c‐fos‐positive cells could be detected in the ML of olfactory bulbs of adult female dogs compared with that in males and the c‐fos‐positive cells in females' olfactory bulbs are more distinct. Sex‐related differences in c‐fos expression also appeared in the GL of olfactory bulbs in juvenile dogs. We also discovered that the density of c‐fos‐positive cells in the GRL of adult dogs was much higher than that in the GRL of juvenile dogs. Our results indicate that cells in the olfactory bulbs of female dogs are more active than those in males and female dogs may have much stronger ability for long‐time memory of odours than male dogs. Furthermore, our results also suggest that adult dogs may have much stronger ability for long‐time memory of odours and can deal with more complicated odour information than juvenile dogs.  相似文献   

17.
Increased aortic stiffness is a biomarker for subsequent adverse cardiovascular events. We have previously reported that vascular smooth muscle Src‐dependent cytoskeletal remodelling, which contributes to aortic plasticity, is impaired with ageing. Here, we use a multi‐scale approach to determine the molecular mechanisms behind defective Src‐dependent signalling in an aged C57BL/6 male mouse model. Increased aortic stiffness, as measured in vivo by pulse wave velocity, was found to have a comparable time course to that in humans. Bioinformatic analyses predicted several miRs to regulate Src‐dependent cytoskeletal remodelling. qRT‐PCR was used to determine the relative levels of predicted miRs in aortas and, notably, the expression of miR‐203 increased almost twofold in aged aorta. Increased miR‐203 expression was associated with a decrease in both mRNA and protein expression of Src, caveolin‐1 and paxillin in aged aorta. Probing with phospho‐specific antibodies confirmed that overexpression of miR‐203 significantly attenuated Src and extracellular signal regulated kinase (ERK) signalling, which we have previously found to regulate vascular smooth muscle stiffness. In addition, transfection of miR‐203 into aortic tissue from young mice increased phenylephrine‐induced aortic stiffness ex vivo, mimicking the aged phenotype. Upstream of miR‐203, we found that DNA methyltransferases (DNMT) 1, 3a, and 3b are also significantly decreased in the aged mouse aorta and that DNMT inhibition significantly increases miR‐203 expression. Thus, the age‐induced increase in miR‐203 may be caused by epigenetic promoter hypomethylation in the aorta. These findings indicate that miR‐203 promotes a re‐programming of Src/ERK signalling pathways in vascular smooth muscle, impairing the regulation of stiffness in aged aorta.  相似文献   

18.
Ample evidences demonstrate that cytochrome P450 epoxygenase‐derived epoxyeicosatrienoic acids (EETs) exert diverse biological activities, which include potent vasodilatory, anti‐inflammatory, and cardiovascular protective effects. In this study, we investigated the effects of endothelium‐specific CYP2J2 overexpression on age‐related insulin resistance and metabolic dysfunction. Endothelium‐specific targeting of the human CYP epoxygenase, CYP2J2, transgenic mice (Tie2‐CYP2J2‐Tr mice) was utilized. The effects of endothelium‐specific CYP2J2 overexpression on aging‐associated obesity, inflammation, and peripheral insulin resistance were evaluated by assessing metabolic parameters in young (3 months old) and aged (16 months old) adult male Tie2‐CYP2J2‐Tr mice. Decreased insulin sensitivity and attenuated insulin signaling in aged skeletal muscle, adipose tissue, and liver were observed in aged adult male mice, and moreover, these effects were partly inhibited in 16‐month‐old CYP2J2‐Tr mice. In addition, CYP2J2 overexpression‐mediated insulin sensitization in aged mice was associated with the amelioration of inflammatory state. Notably, the aging‐associated increases in fat mass and adipocyte size were only observed in 16‐month‐old wild‐type mice, and CYP2J2 overexpression markedly prevented the increase in fat mass and adipocyte size in aged Tie2‐CYP2J2‐Tr mice, which was associated with increased energy expenditure and decreased lipogenic genes expression. Furthermore, these antiaging phenotypes of Tie2‐CYP2J2‐Tr mice were also associated with increased muscle blood flow, enhanced active‐phase locomotor activity, and improved mitochondrial dysfunction in skeletal muscle. Collectively, our findings indicated that endothelium‐specific CYP2J2 overexpression alleviated age‐related insulin resistance and metabolic dysfunction, which highlighted CYP epoxygenase‐EET system as a potential target for combating aging‐related metabolic disorders.  相似文献   

19.
The squaretail coralgrouper Plectropomus areolatus was identified as a fast‐growing, early maturing and relatively short‐lived aggregation‐spawning epinephelid. Examinations of sectioned otoliths found females and males first maturing at 2 and 3 years, respectively, suggesting protogynous hermaphroditism; however, no transitionals were observed in samples. Age distribution for the two sexes was similar and both were represented in the oldest age class; however, significant sex‐specific differences in size‐at‐age were identified. Both sexes fully recruit into the fishery at age 4 years and reach 90% of asymptotic length by age 3 years. Underwater visual assessments, combined with the gonado‐somatic indices, revealed a 5 month reproductive season, with interannual variability observed in the month of highest density within the spawning aggregation. Catch restrictions on adults during spawning times and at reproductive sites, combined with gear‐based management and enhanced enforcement, are recommended to maintain spawning stocks. Based on the available evidence, the sexual pattern for this species is unresolved.  相似文献   

20.
DNA methylation plays major roles in many biological processes, including aging, carcinogenesis, and development. Analyses of DNA methylation using next‐generation sequencing offer a new way to profile and compare methylomes across the genome in the context of aging. We explored genomewide DNA methylation and the effects of short‐term calorie restriction (CR) on the methylome of aged rat kidney. Whole‐genome methylation of kidney in young (6 months old), old (25 months old), and OCR (old with 4‐week, short‐term CR) rats was analyzed by methylated DNA immunoprecipitation and next‐generation sequencing (MeDIP‐Seq). CpG islands and repetitive regions were hypomethylated, but 5′‐UTR, exon, and 3′‐UTR hypermethylated in old and OCR rats. The methylation in the promoter and intron regions was decreased in old rats, but increased in OCR rats. Pathway enrichment analysis showed that the hypermethylated promoters in old rats were associated with degenerative phenotypes such as cancer and diabetes. The hypomethylated promoters in old rats related significantly to the chemokine signaling pathway. However, the pathways significantly enriched in old rats were not observed from the differentially methylated promoters in OCR rats. Thus, these findings suggest that short‐term CR could partially ameliorate age‐related methylation changes in promoters in old rats. From the epigenomic data, we propose that the hypermethylation found in the promoter regions of disease‐related genes during aging may indicate increases in susceptibility to age‐related diseases. Therefore, the CR‐induced epigenetic changes that ameliorate age‐dependent aberrant methylation may be important to CR's health‐ and life‐prolonging effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号