首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The N-glylycans have been removed by peptide-N-glycosidase F(PNGase F) from purified human non-secretory RNases derivedfrom kidney, liver and spleen. The spleen RNase was purifiedby two procedures, one of which did not include the usual acidtreatment step (0.25 M H2SO4, 45 min, 4C), to determine ifacid treatment alters the carbohydrate moieties. TheN-glycansof the RNases were fractionated by Bio-Gel P-4 chromatographyand analysed by 600 MHz 1H-NMR spectroscopy and electrospraymass spectrometry. All four non-secretory RNase preparationscontained the following structures: The relative amounts of the trisaccharide, pentasaccharide andhexasaccharide appeared to vary slightly in the different tissueRNases. The overall results indicate: (i) that acid treatmentduring purification does not alter the N-glycans of non-secretoryRNases; (ii) that the N-glycans from kidney, liver and spleennon-secretory RNases are very similar, if not identical, toone another, but different from the N-glycan structures reportedfor secretory RNase. N-glycans non-secretory RNases  相似文献   

2.
In order to elucidate the structure-function relationship of RNases belonging to the RNase T2 family (base non-specific and adenylic acid-preferential RNase), an RNase of this family was purified from Trichoderma viride (RNase Trv) to give three closely adjacent bands with RNase activity on slab-gel electrophoresis in a yield of 20%. The three RNases gave single band with the same mobility on slab-gel electrophoresis after endoglycosidase F digestion. The enzymatic properties including base specificity of RNase Trv were very similar to those of typical T2-family RNases such as RNase T2 from Aspergillus oryzae and RNase M from A. saitoi. The specific activity of RNase Trv towards yeast RNA was about 13-fold higher than that of RNase M. The complete primary structure of RNase Trv was determined by analyses of the peptides generated by digestion of reduced and carboxymethylated RNase Trv with Staphylococcus aureus V8 protease, lysylendopeptidase and alpha-chymotrypsin. The molecular weight of the protein moiety deduced from the sequence was 25,883. The locations of 10 half-cystine residues were almost superimposable upon those of other RNases of this family. The homologies between RNase Trv and RNase T2, RNase M, and RNase Rh (Rhizopus niveus) were 124, 132, and 92 residues, respectively. The sequences around three histidine residues, His52, His109, and His114, were highly conserved in these 4 RNases.  相似文献   

3.
In most tissues, ribonucleases (RNases) are found in a latent form complexed with ribonuclease inhibitor (RI). To examine whether these so-called cytoplasmic RNases belong to the same superfamily as pancreatic RNases, we have purified from porcine liver two such RNases (PL1 and PL3) and examined their primary structures. It was found that RNase PL1 belonged to the same family as human RNase Us [Beintema et al. (1988) Biochemistry 27, 4530-4538] and bovine RNase K2 [Irie et al. (1988) J. Biochem. (Tokyo) 104, 289-296]. RNase PL3 was found to be a hitherto structurally uncharacterized type of RNase. Its polypeptide chain of 119 amino acid residues was N-terminally blocked with pyroglutamic acid, and its sequence differed at 63 positions with that of the pancreatic enzyme. All residues important for catalysis and substrate binding have been conserved. Comparison of the primary structure of RNase PL3 with that of its bovine counterpart (RNase BL4; M. Irie, personal communication) revealed an unusual conservation for this class of enzymes; the 2 enzymes were identical at 112 positions. Moreover, comparison of the amino acid compositions of these RNases with that of a human colon carcinoma-derived RNase, RNase HT-29 [Shapiro et al. (1986) Biochemistry 25, 7255-7264], suggested that these three proteins are orthologous gene products. The structural characteristics of RNases PL1 and PL3 were typical of secreted RNases, and this observation questions the proposed cytoplasmic origin of these RI-associated enzymes.  相似文献   

4.
5.
Purification and properties of bovine kidney ribonucleases   总被引:3,自引:0,他引:3  
Two RNases (RNases K1 and K2) were purified from bovine kidney by means of column chromatography on phospho-cellulose, Sephadex G-50, CM-cellulose, heparin-Sepharose, nd agarose-APUP. They were named RNase K1 and RNase K2 in order of elution from the heparin-Sepharose column. The purity of RNase K1 thus obtained was about 90% by SDS-disc electrophoresis. RNase K2 was purified to homogeneity by SDS- and pH 4.3 disc electrophoresis. The yield of RNase K2 was 3.4 mg from 11 kg of kidneys. The antigenic properties of the two bovine renal RNases were studied by Ouchterlony's double diffusion analysis. RNase K1 and RNase A were serologically indistinguishable. RNase K2 did not cross-react immunologically with RNase K1 or RNase A. The molecular weights of these RNases determined by gel-filtration on Sephadex G-50 were 13,400 and 14,600 for RNase K1 and RNase K2, respectively. The pH optima for RNase K1 and RNase K2 were 8.5 and 6.5, respectively. Both RNase K1 and RNase K2 were as acid stable as RNase A. RNase K2 was less heat-stable than RNase K1 and RNase A. Although both renal RNases were pyrimidine nucleotide-specific enzymes, RNase K1 and RNase A were more preferential or cytidylic acid than RNase K2. The chemical composition of RNase K2 was determined. RNase K2, like human urinary RNase Us, contained one tryptophan residue. The N-terminal sequences of RNase K2 and RNase Us were determined by Edman degradation. Rnase K2 had a homologous sequence of about 10 amino acid residues with the sequence of RNase Us, a typical non-secretory RNase, within the N-terminal 30 residues.  相似文献   

6.
A non-secretory ribonuclease (RNase PK3) was isolated from porcine kidney, and its primary structure was analyzed. RNase PK3 consisted of 126 amino acid residues. The amino acid sequence of RNase PK3 has high sequence homology with non-secretory RNases from human urine and bovine kidney.  相似文献   

7.
The primary structure and base specificity of chicken liver RNase CL1 which has been reported by Miura et al. [Chem. Pharm. Bull., 32,4053–4060 (1984)] as poly U-preferential RNase, were extensively studied. The sequence study of this enzyme and comparison of the amino acid sequence of the enzyme with homologous RNases from oyster and Drosophila melanogaster suggested that RNase CL1 consists of three peptides with 17, 19, and 163 amino acid residues. The amino acid sequence of these three peptides were identified. The two small peptides are joined to the large peptide by disulfide bridges. The amino acid sequence of RNase CL1 had 62 (31.2%) and 63 residues (31.6%) identical with oyster RNase and D. melanogaster RNase, respectively, and belongs to the RNase T2 family RNase.

Reassessment of the base specificity of RNase CL1 found that it is guanylic acid, then uridylic acid-preferential, and not poly U preferential.  相似文献   

8.
For the first time fish RNases have been isolated and characterized. Their functional and structural properties indicate that they belong to the RNase A superfamily (or tetrapod RNase superfamily), now more appropriately described as the vertebrate RNase superfamily. Our findings suggest why previously repeated efforts to isolate RNases from fish tissues have met with no success; fish RNases have a very low ribonucleolytic activity, and their genes have a low sequence identity with those of mammalian RNases. The investigated RNases are from the bony fish Danio rerio (or zebrafish). Their cDNAs have been cloned and expressed, and the three recombinant proteins have been purified to homogeneity. Their characterization has revealed that they have indeed a very low RNA-degrading activity, when compared with that of RNase A, the superfamily prototype, but comparable with that of mammalian angiogenins; that two of them have angiogenic activity that is inhibited by the cytosolic RNase inhibitor. These data and a phylogenetic analysis indicate that angiogenic fish RNases are the earliest diverging members of the vertebrate superfamily, suggesting that ribonucleases with angiogenic activity were the ancestors of all ribonucleases in the superfamily. They later evolved into both mammalian angiogenins and, through a successful phylogenesis, RNases endowed with digestive features or with diverse bioactivities.  相似文献   

9.
Ribonuclease U2, secreted by the smut fungus Ustilago sphaerogena, is a cyclizing ribonuclease that displays a rather unusual specificity within the group of microbial extracellular RNases, best represented by RNase T1. Superposition of the three-dimensional structures of RNases T1 and U2 suggests that the RNase U2 His 101 would be the residue equivalent to the RNase T1 catalytically essential His 92. RNase U2 contains three disulfide bridges but only two of them are conserved among the family of fungal extracellular RNases. The non-conserved disulfide bond is established between Cys residues 1 and 54. Mispairing of the disulfide network due to the presence of two consecutive Cys residues (54 and 55) has been invoked to explain the presence of wrongly folded RNase U2 species when produced in Pichia pastoris. In order to study both hypotheses, the RNase U2 H101Q and C1/54S variants have been produced, purified, and characterized. The results obtained support the major conclusion that His 101 is required for proper protein folding when secreted by the yeast P. pastoris. On the other hand, substitution of the first Cys residue for Ser results in a mutant version which is more efficiently processed in terms of a more complete removal of the yeast α-factor signal peptide. In addition, it has been shown that elimination of the Cys 1–Cys 54 disulfide bridge does not interfere with RNase U2 proper folding, generating a natively folded but much less stable protein.  相似文献   

10.
Gausing K 《Planta》2000,210(4):574-579
 A group of frequent cDNA clones from a young-leaf cDNA library was found to code for a homologue of S-ribonucleases (S-RNases) involved in gametophytic incompatibility and the so-called S-like RNases active in flowers and in vegetative tissues. The derived amino acid sequence starts with a signal peptide and has a 27-amino-acid C-terminal extension of unknown function. The barley (Hordeum vulgare L.) gene, rsh1 (for RNase S-like homologue) corresponding to the cDNA clones was isolated. The gene has three introns and the position of one intron corresponds to the site of the single, small intron in the S-RNase genes. The deduced amino acid sequence of mature RSH1 shares 35% identical and 58% similar amino acid residues with an S-like RNase from tomato, RNase LE. However, two active-site histidine residues, conserved between all S and S-like RNases are replaced by serine residues in RSH1. The new barley RNase S-like homologue is clearly related to the family of active RNases but is probably not active as an RNase. Sequences from the same class of presumably inactive RNases have been recorded in maize, rice and sorghum. The barley gene is exclusively expressed in young leaf tissue and is substantially induced by light. Received: 26 July 1999 / Accepted: 26 October 1999  相似文献   

11.
Four intracellular RNases were found to be induced in cultured tomato (Lycopersicon esculentum) cells upon phosphate starvation. Localization studies revealed three (RNases LV 1-3) in the vacuoles and one (RNase LX) outside these organelles. All of these RNases were purified to homogeneity and were shown to be type I RNases on the basis of type of splitting, substrate, and base specificity at the cleavage site, molecular weight, isoelectric point, and pH optimum. Moreover, RNase LV 3 was shown by fingerprinting of tryptic digests on reversed-phase high-performance liquid chromatography and sequencing the N terminus and two tryptic peptides to be structurally very similar to a recently characterized extracellular RNase LE which is also phosphate regulated (Nürnberger et al. [1990] Plant Physiol 92: 970-976; Jost et al. [1991] Eur J Biochem 198: 1-6). Expression of the four intracellular RNases is induced by depleting the cells of phosphate and repressed by adding phosphate. Our studies indicate that higher plants, in addition to secreting enzymes for scavanging phosphate under starvation conditions, also induce intracellularly emergency rescue systems.  相似文献   

12.
Three ribonucleases, RNase I, RNase II and RNase III, were purified from the 109,000 X g supernate of detergent-treated Tetrahymena pyriformis strain W. RNases I and II act optimally at pH 5.5-6.0 and are inhibited by increasing concentrations of salts of monovalent cations. RNase III acts optimally at pH 7.5 and is activated 1.5-fold by millimolar concentrations of ZnSO4 and 5-fold by 50 mM KCl. RNases II and III are activated approximately 100% in the presence of 3 M and 5 M urea respectively. All enzymes are heat-sensitive and acid-resistant. They are endonucleases forming 2',3'-cyclic products. Their base specificity, as tested against ribosomal RNAs of known sequence, is as follows: RNase I hydrolyzes preferentially YpN and secondarily GpN bonds, RNase II is highly specific for RpN bonds, though the preparation can also hydrolyze the UpU sequence. Finally the principal targets of RNase III are YpR sequences and secondarily YpY sequences. A shorthand visualization of base specificity of nucleases in the form of right isosceles triangles is presented. The triangles are constructed by subdividing each of the two perpendicular sides in as many units as the maximum number of times the most abundant dinucleotide appears in all substrates employed and plotting the frequency of hydrolysis of each dinucleotide sequence by the enzyme under study. The proximity of each dinucleotide sequence to the hypotenuse or to one of the perpendicular sides is indicative of its susceptibility or resistance to the enzyme's action.  相似文献   

13.
Lentinus edodes (shiitake) cultivated in potato dextrose medium produced five RNases in the culture filtrate. The two major RNases (RNase Le37 and RNase Le45) were highly purified and their molecular masses, base specificities, N-terminal amino acid sequences, and amino acid compositions were analyzed and compared to RNase Le2 isolated from the fruit bodies of the same mushroom. RNase Le37 and RNase Le45 are base non-specific and adenylic acid preferential RNases like RNase Le2 and their N-terminal sequences are very similar to RNase Le2, but they are glycoproteins and their amino acid compositions are significantly different from that of RNase Le2. In addition to these enzymes, a guanylic acid-specific RNase with a molecular mass 13 kDa was partially purified. Since RNase Le2, which has very similar N-terminal sequence to RNase Le 37 and RNase Le 45, was not excreted from the mycelia, the analysis of the structures of these two excreted RNase may shade a light on the mechanism of excretion of RNases in this organism.  相似文献   

14.
Egg white ribonuclease was first found in green turtle eggs. The general properties were studied on substrate specificity, the optimum pH and temperature, and the effect of pH and temperature on the RNase activity. The enzyme studied was specific for poly (C) and degraded poly (U) at the lower rate and had the pH optimum at 7.0 and the optimum temperature at 40 °C. It was stable at alkaline range (pH 8.0–10.0) and up to 60 °C in pH 9.0 for 1 h, and unstable at acidic side for all temperatures. All of the properties studied showed similarity to RNase A. However, the optimum pH, broad range of optimum temperature and pH stability were different from RNase A. To evaluate the relationship of the structure and enzymatic properties, the 3D-structure of this enzyme was engineered by program MODELLER using two RNases (2BWL and 2BLZ) as starting models. The differences found in activity might be affected from the structure of micro environmental changing caused by amino acids deletion and substitution on the molecule.  相似文献   

15.
Three enzyme preparations, two acid and one alkaline RNases, were isolated from the hepatopancreas of the red king crab Paralithodes camtschatica using DEAE-cellulose chromatography and gel chromatography. The alkaline RNase was activated by Mg2+ ions and had a pH optimum of 7.2; the acid RNases, a pH optimum of 5.5. The molecular weight of the alkaline RNase was 19 kDa; two acid RNases, 33 and 70 kDa, respectively. The enzymes exhibited a sufficiently high thermostability (IT50 = 53–55°C) and were strongly inhibited by NaCl (IC50, 0.1–0.25 M). The alkaline RNase exhibited no specificity for heterocyclic bases, whereas the acid RNases hydrolyzed poly(U) and poly(A) at maximum rates.  相似文献   

16.
The RNase gene superfamily combines functionally divergent proteins which share statistically significant sequence similarity. Known members assigned to this family include secretory and nonsecretory RNases; angiogenin; eosinophil cationic protein; eosinophil-derived neurotoxin; sialic-acid binding lectin and anti-tumor protein P-30. We report the cDNA cloning of the chicken RNase Super Family Related (RSFR) gene that is specifically overexpressed in normal bone marrow cells and bone marrow-derived AMV transformed monoblasts. It codes for a 139 amino acid protein with a putative signal peptide and remarkable conservation of active-site residues, other residues known to be important for substrate binding and catalytic activity and half-cystine residues common for all RNase family members. Phylogenetic tree analysis shows that RSFR defines a new group of genes within the family. We also conclude that an amino acid sequence block CKXXNTF(X) 11C is a "shortest RNase superfamily signature" which is both necessary and sufficient to identify all previously recognized family members as well as chicken RSFR.  相似文献   

17.
Antibodies against pure human pancreatic ribonuclease (RNase) were used to study ribonuclease levels in human tissues and body fluids. The antibodies completely inhibit the activity of purified RNase as well as ribonuclease activity in crude pancreatic extracts. RNase activity is inhibited by 70-80% in serum and urine, indicating that a significant proportion of the RNases in these preparations are structurally like the pancreatic enzyme. In contrast, inhibition of RNase activities from spleen (8%) and liver (30%) was inefficient suggesting that most of the RNases in these tissues are structurally unlike the pancreatic enzyme. A competitive binding radioimmunoassay (RIA), sensitive in the range of 1-100 ng of RNase, was developed to quantitate the pancreatic like enzymes. The RIA of crude tissue preparations and samples fractionated by gel filtration was compatible with inhibition results. Enzymes structurally like pancreatic RNase could be quantitated despite the presence of other RNase activities. Immunological quantitation of pancreatic like RNases was also found to be much more simple and precise than enzymatic assays comparing RNA and polycytidylate substrates. We suggest the immunological assays will be useful in the quantitation and definition of tissue of origin of RNases in serum of patients with pancreatic carcinoma.  相似文献   

18.
We previously isolated from Nicotiana glutinosa leaves three distinct cDNA clones, NGR1, NGR2, and NGR3, encoding a wound-inducible RNase NW, and putative RNases NGR2 and NGR3, respectively. In this study, we produced RNases NW and NGR3 in Escherichia coli and purified them to homogeneity. RNase NGR3 had non-absolute specificity toward polynucleotides, although RNase NW preferentially cleaved polyinosinic acid (Poly I). Both RNases NW and NGR3 were more active toward diribonucleoside monophosphates ApG, CpU, and GpU. Furthermore, kinetic parameters for RNase NW (Km, 0.778 mM and kcat, 1938 min(-1)) and RNase NGR3 (Km, 0.548 mM and kcat, 408 min(-1)) were calculated using GpU as a substrate.  相似文献   

19.
The plant RNase T2 family is divided into two different subfamilies. S-RNases are involved in rejection of self-pollen during the establishment of self-incompatibility in three plant families. S-like RNases, on the other hand, are not involved in self-incompatibility, and although gene expression studies point to a role in plant defense and phosphate recycling, their biological roles are less well understood. Although S-RNases have been subjects of many phylogenetic studies, few have included an extensive analysis of S-like RNases, and genome-wide analyses to determine the number of S-like RNases in fully sequenced plant genomes are missing. We characterized the eight RNase T2 genes present in the Oryza sativa genome; and we also identified the full complement of RNase T2 genes present in other fully sequenced plant genomes. Phylogenetics and gene expression analyses identified two classes among the S-like RNase subfamily. Class I genes show tissue specificity and stress regulation. Inactivation of RNase activity has occurred repeatedly throughout evolution. On the other hand, Class II seems to have conserved more ancestral characteristics; and, unlike other S-like RNases, genes in this class are conserved in all plant species analyzed and most are constitutively expressed. Our results suggest that gene duplication resulted in high diversification of Class I genes. Many of these genes are differentially expressed in response to stress, and we propose that protein characteristics, such as the increase in basic residues can have a defense role independent of RNase activity. On the other hand, constitutive expression and phylogenetic conservation suggest that Class II S-like RNases may have a housekeeping role.  相似文献   

20.
A zymogram method for detection of in situ ribonuclease (RNase) activity, combined with isoelectric focusing in a thin layer of polyacrylamide gel (IEF-PAGE), has been developed. After incubation with a dried agarose film containing substrate RNA, ethidium bromide, and an appropriate reaction buffer, which was placed tightly on the top of the focused gel, sharp and distinct dark bands corresponding to RNase isoenzymes on a fluorescent background appeared under uv light. Addition of urea to the IEF-PAGE gel at a final concentration of 4.8 M permitted optimal focusing of the RNases. This method had not only a high sensitivity of less than 0.1 ng purified RNase A, but also a high band resolution compared with the immunostaining method. It was also useful for analysis of purified enzymes, including bovine pancreatic RNases and two types of human urine RNase as mammalian enzymes, and RNases T1 and T2 as microbial enzymes, as well as for detection of RNases present in crude tissue extracts, resulting in more detailed elucidation of the multiplicity of these enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号