首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vitamin E analogs such as alpha-tocopherol and alpha-tocotrienol have been shown to reduce endothelial expression of adhesion molecules. The reactivity of alpha-tocopherol and alpha-tocotrienol in inhibiting lipid peroxidation in vitro was essentially identical but the inhibition of adhesion of THP-1 cells, a monocytic-"like" cell line, to endothelial cells differs substantially. To determine the mechanism underlying this response, human umbilical vein endothelial cells (HUVECs) were assessed for their ability to accumulate vitamin E analogs. alpha-Tocotrienol accumulated in HUVECs to levels approximately 10-fold greater than that of alpha-tocopherol. The decrease in expression of vascular cell adhesion molecule-1 (VCAM-1) and the adhesion of THP-1 cells to HUVECs by alpha-tocopherol and alpha-tocotrienol was also determined. Both alpha-tocopherol and alpha-tocotrienol suppressed VCAM-1 expression and adhesion of THP-1 cells to HUVECs in a concentration-dependent manner. The efficacy of tocotrienol for reduction of VCAM-1 expression and adhesion of THP-1 cells to HUVECs was also 10-fold higher than that of tocopherol. The inhibitory effects of vitamin E analogs on the adhesiveness of endothelial cells clearly correlated with their intracellular concentrations. The data demonstrated that, in assessing the biological responses of antioxidants, intracellular accumulation and metabolism were additional important factors that must be considered.  相似文献   

2.
INTRODUCTION: During the oil frying process lipid peroxidation compounds are formed. These products can modulate gene expression and alter cellular behaviour. The cellular uptake of oxidized LDL, a key step in the development of atherosclerosis, is mediated by the CD36 scavenger receptor, whose expression is down-regulated by alpha-tocopherol.OBJECTIVE: To determine the effects of water-soluble aldehydes, obtained from thermally oxidized sunflower oil on the expression of CD36 scavenger receptor in human monocytes (THP-1 cells). We also wanted to study the effects of alpha-tocopherol on CD36 expression in the presence of water-soluble aldehydes.MATERIALS AND METHODS: Sunflower oil was heated in a frying pan, at 180--200 degrees C for 40 min, water-soluble aldehydes were isolated, and the content of thiobarbituric acid reacting substances (TBARS) was determined. THP-1 monocytes were cultured in RPMI medium during 24 h and incubated with increasing concentrations of the water-soluble aldehydes (ranging from 0.05 to 1 microM) and with or without 50 microM of alpha-tocopherol. In parallel, THP-1 cells were cultured with the same volume of an extract obtained from non-oxidized oil or distilled water. The CD36 expression at the cell surface was studied with fluorescence-activated cell sorting (FACS).RESULTS: Monocytes incubated in a medium containing water-soluble aldehydes, showed a dose dependent increase in the expression of the CD36 protein on the cell surface, compared to with the control groups. When the cells were treated simultaneously with 50 microM of alpha-tocopherol a significant reduction in the expression of the CD36 protein was observed.CONCLUSION: Water-soluble aldehydes, extracted from thermally oxidized culinary oil, increase the expression of CD36. This effect is partially decreased by the presence of alpha-tocopherol.  相似文献   

3.
4.
Inhibition of cell proliferation by alpha-tocopherol. Role of protein kinase C   总被引:16,自引:0,他引:16  
The effect of alpha-tocopherol (vitamin E) on the proliferation of vascular smooth muscle cells (A7r5), human osteosarcoma cells (Saos-2), fibroblasts (Balb/3T3), and neuroblastoma cells (NB2A) has been studied. The proliferation of vascular smooth muscle cells was inhibited by physiologically relevant concentrations of alpha-tocopherol, neuroblastoma cells were only sensitive to higher alpha-tocopherol concentrations, and proliferation of the other cell lines was not inhibited. The inhibition of smooth muscle cell proliferation was specific for alpha-tocopherol. Trolox, phytol, and alpha-tocopherol esters had no effect. Proliferation of smooth muscle cells stimulated by platelet-derived growth factor or endothelin was completely sensitive to alpha-tocopherol. If smooth muscle cells were stimulated by fetal calf serum, proliferation was 50% inhibited by alpha-tocopherol. No effect of alpha-tocopherol was observed when proliferation of smooth muscle cells was stimulated by bombesin and lysophosphatidic acid. The possibility of an involvement of protein kinase C in the cell response to alpha-tocopherol was suggested by experiments with the isolated enzyme and supported by the 2- to 3-fold stimulation of phorbol ester binding induced by alpha-tocopherol in sensitive cells. Moreover, alpha-tocopherol also caused inhibition of protein kinase C translocation induced by phorbol esters and inhibition of the phosphorylation of its 80-kDa protein substrate in smooth muscle cells. A model is discussed by which alpha-tocopherol inhibits cell proliferation by interacting with the cytosolic protein kinase C, thus preventing its membrane translocation and activation.  相似文献   

5.
The effects of low concentrations of methotrexate (MTX) on the growth of suspension (FM3A, 2B4 and THP-1) and adherent (NIH3T3 and V79) cells were compared. The concentration of methotrexate to cause the inhibition of cell growth was lower in suspension cells than in adherent cells. The IC(50) for FM3A, 2B4, THP-1, NIH3T3 and V79 cells were 3.5, 5, 9, 30 and 50 nM, respectively. The inhibition of cell growth was reversed completely by tetrahydrofolate and was fully or significantly reversed by adenosine and thymidine, suggesting that the effects of low concentrations of methotrexate result from the inhibition of biosynthesis of purines and pyrimidines. In suspension cells but not in adherent cells there was a decrease in the levels of S-adenosylmethionine and polyamines after methotrexate treatment. Growth of suspension but not adherent cells was significantly recovered by treatment with S-adenosylmethionine. However, treatment with spermidine did not reverse the effects of methotrexate in any of the cell lines. The preferential inhibitory effect of methotrexate in suspension cells versus adherent cells was due mainly to a more rapid uptake of methotrexate. This may be relevant to the in vivo effects of low doses of methotrexate, which have immunosuppressive and anti-inflammatory effects, because lymphocytes are suspension cells.  相似文献   

6.
When human monocyte-derived leukemia (THP-1) cells, which are floating cells, are stimulated with lipid peroxides, or Streptococcus suis, these cells adhere to a plastic plate or endothelial cells. However, it is unclear whether or not non-stimulated THP-1 cells adhere to collagen vitrigel membrane (CVM). In this study, firstly, we investigated the rate of adhesion of THP-1 cells to CVM. When THP-1 cells were not stimulated, the rate of adhesion to CVM was high. Then, to identify adhesion molecules involved in adhesion of THP-1 cells to CVM, expressions of various cell adhesion molecules on the surface of THP-1 cells adhering to CVM were measured. β-actin, β-catenin, and β1-integrin expressions did not change in non-stimulated THP-1 cells cultured on CVM compared with those in cells cultured in a flask, but β2-integrin expression markedly increased.  相似文献   

7.
Vitamin E deficiency increases expression of the CD36 scavenger receptor, suggesting specific molecular mechanisms and signaling pathways modulated by alpha-tocopherol. We show here that alpha-tocopherol down-regulated CD36 expression (mRNA and protein) in oxidized low density lipoprotein (oxLDL)-stimulated THP-1 monocytes, but not in unstimulated cells. Furthermore, alpha-tocopherol treatment of monocytes led to reduction of fluorescent oxLDL-3,3'-dioctadecyloxacarbocyanine perchlorate binding and uptake. Protein kinase C (PKC) appears not to be involved because neither activation of PKC by phorbol 12-myristate 13-acetate nor inhibition by PKC412 was affected by alpha-tocopherol. However, alpha-tocopherol could partially prevent CD36 induction after stimulation with a specific agonist of peroxisome proliferator-activated receptor-gamma (PPARgamma; troglitazone), indicating that this pathway is susceptible to alpha-tocopherol action. Phosphorylation of protein kinase B (PKB) at Ser473 was increased by oxLDL, and alpha-tocopherol could prevent this event. Expression of PKB stimulated the CD36 promoter as well as a PPARgamma element-driven reporter gene, whereas an inactive PKB mutant had no effect. Moreover, coexpression of PPARgamma and PKB led to additive induction of CD36 expression. Altogether, our results support the existence of PKB/PPARgamma signaling pathways that mediate CD36 expression in response to oxLDL. The activation of CD36 expression by PKB suggests that both lipid biosynthesis and fatty acid uptake are stimulated by PKB.  相似文献   

8.
In THP-1 monocytes, cellular proteasome inhibition by ritonavir or ALLN is associated with increased production of oxidative stress. Both compounds produced comparable amounts of oxidative stress; however, normalization by alpha-tocopherol occurred solely after inhibition by ritonavir, and not by ALLN. Similar to that, alpha-tocopherol could normalize the reduced formation of 3-nitrotyrosine-modified proteins only after ritonavir treatment. In the absence of any proteasome inhibitor, intrinsic cellular proteasome activity was not modulated by alpha-, beta-, and gamma-tocopherols; however, delta-tocopherol, alpha-tocotrienol, and alpha-tocopheryl phosphate could significantly inhibit cellular proteasome activity and increased the level of p27(Kip1) and p53. Since oxidative stress was reduced by alpha-tocopherol only after proteasome inhibition by ritonavir and not by ALLN, it is concluded that, in this experimental system, alpha-tocopherol does not act as an antioxidant but interferes with the inhibitory effect of ritonavir.  相似文献   

9.
A protein complex (PC) composed of the MRP8 and MRP14 proteins has previously been shown to be a specific inhibitor of casein kinase I and II. This PC is expressed during the late stages of terminal differentiation induced in human promyelocytic HL-60 leukemia cells by 1 alpha,25-dihydroxyvitamin D3 and in human monocytic THP-1 leukemia cells by phorbol 12-myristate 13-acetate. This expression is associated with terminal cell differentiation because incubation of HL-60 cells with an agent or condition that causes suppression of growth but not induction of differentiation does not result in expression of the PC. At concentrations of 5-15 nM, the purified PC inhibited the growth of HL-60 cells and THP-1 cells, as well as other cell types belonging to different cell lineages. This growth inhibition was preceded by a reduction in [32P]phosphate incorporation and, at the higher PC concentrations, was associated with a reduction in [3H]thymidine, [3H]uridine, and [32S]methionine incorporation. The specific expression pattern and growth-inhibitory character of the PC suggests that the complex may have a role in suppressing cell growth during monomyelocytic terminal differentiation induced by specific chemical stimuli and during physiological and pathological events associated with monomyelocytic cell functions.  相似文献   

10.
We have previously reported the isolation of the human matrix metalloproteinase (MMP)-19 (also referred to as RASI) from a synovium of a patient suffering from rheumatoid arthritis and its expression at the cell surface of activated PBMC. In this study, we have analyzed the regulation and cell surface expression of human MMP-19 in several human cell lines and blood-derived cells. Among the cell lines analyzed, MMP-19 is largely expressed by lung fibroblasts as well as by myeloid cell lines THP-1 and HL-60. After fractionating PBMC into CD14- and CD14+ populations we found that only the latter one expresses MMP-19. Although the myeloid cell lines as well as CD14+ cells express MMP-19 without stimulation, its production can be up-regulated by phorbol esters (PMA) or by adhesion. The adhesion-dependent expression was down-regulated or even abrogated by blockade of adhesion or interfering with adhesion-controlling signaling using alpha-tocopherol. We have shown that MMP-19 associates with the cell surface of myeloid cells. This cell surface association was not affected by phospholipase C. However, acidic treatment of the THP-1-derived cell membranes abolished the immunoprecipitation of MMP-19 thereof. Moreover, a high salt treatment of THP-1 cells diminished the MMP-19 detection on the cell surface. This implicates a noncovalent attachment of MMP-19 to the cell surface. Because a truncated form of the MMP-19, in which the hemopexin-like domain was deleted (Delta(hp)MMP-19), does not associate with the surface, the hemopexin-like domain appears to be critical for the cell surface attachment of human MMP-19.  相似文献   

11.
The NOD-like receptor family, pyrin domain–containing protein 3 (NLRP3) inflammasome plays an important role in the development of atherosclerosis. The activated NLRP3 inflammasome has been reported to promote macrophage foam cell formation, but not all studies have obtained the same result, and how NLRP3 inflammasome is involved in the formation of foam cells remains elusive. We used selective NLRP3 inflammasome inhibitors and NLRP3-deficient THP-1 cells to assess the effect of NLRP3 inflammasome inhibition on macrophage foam cell formation, oxidized low-density lipoprotein (ox-LDL) uptake, esterification, and cholesterol efflux, as well as the expression of associated proteins. Inhibition of the NLRP3 inflammasome attenuated foam cell formation, diminished ox-LDL uptake, and promoted cholesterol efflux from THP-1 macrophages. Moreover, it downregulated CD36, acyl coenzyme A: cholesterol acyltransferase-1 and neutral cholesterol ester hydrolase expression; upregulated ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-BI) expression; but had no effect on the expression of scavenger receptor class A and ATP-binding cassette transporter G1. Collectively, our findings show that inhibition of the NLRP3 inflammasome decreases foam cell formation of THP-1 macrophages via suppression of ox-LDL uptake and enhancement of cholesterol efflux, which may be due to downregulation of CD36 expression and upregulation of ABCA1 and SR-BI expression, respectively.  相似文献   

12.
Several lines of evidence have implicated activated protein C (APC) to be an endogenous inhibitor of the inflammatory septic cascade. APC may exhibit direct anti-inflammatory properties, independent of its antithrombotic effects. Chemokines influence the interaction of monocytes at the endothelium during infection and sepsis and are involved in the molecular events leading to an adverse and lethal outcome of sepsis. Defining regulatory mechanisms on the monocytic release profile of the proinflammatory C-C chemokines macrophage inflammatory protein-1-alpha (MIP-1-alpha) and monocyte chemoattractant protein-1 (MCP-1) might have therapeutic implications for the treatment of sepsis. We established a monocytic cell model of inflammation by the addition of lipopolysaccharide (LPS) and examined the effect of human APC on LPS-stimulated chemokine release from the monocytic cell line THP-1. We found that human APC in supra-physiological concentrations of 2.5-10 microg/ml inhibited the LPS-induced release of the chemokines MIP-1-alpha and MCP-1, as measured by enzyme-linked immunosorbent assays (ELISA) at 6 up to 24 h. In addition to experiments on THP-1 cells, recombinant human APC in concentrations of 50 ng/ml was found to have an inhibiting effect on the release of MIP-1-alpha from freshly isolated mononuclear cells of septic patients. The ability of APC to decrease the release of the C-C chemokine MIP-1-alpha from the monocytic cell line THP-1 and from human monocytes may identify a novel immunomodulatory pathway by which APC exerts its anti-inflammatory action and may contribute to control the inflammatory response in sepsis.  相似文献   

13.
Nanoparticle surface chemistry is known to play a crucial role in interactions with cells and their related cytotoxic effects. As inhalation is a major route of exposure to nanoparticles, we studied specific uptake and damages of well-characterized fluorescent 50 nm polystyrene (PS) nanobeads harboring different functionalized surfaces (non-functionalized, carboxylated and aminated) on pulmonary epithelial cells and macrophages (Calu-3 and THP-1 cell lines respectively). Cytotoxicity of in mass dye-labeled functionalized PS nanobeads was assessed by xCELLigence system and alamarBlue viability assay. Nanobeads-cells interactions were studied by video-microscopy, flow cytometry and also confocal microscopy. Finally ROS generation was assessed by glutathione depletion dosages and genotoxicity was assessed by γ-H2Ax foci detection, which is considered as the most sensitive technique for studying DNA double strand breaks. The uptake kinetic was different for each cell line. All nanobeads were partly adsorbed and internalized, then released by Calu-3 cells, while THP-1 macrophages quickly incorporated all nanobeads which were located in the cytoplasm rather than in the nuclei. In parallel, the genotoxicity study reported that only aminated nanobeads significantly increased DNA damages in association with a strong depletion of reduced glutathione in both cell lines. We showed that for similar nanoparticle concentrations and sizes, aminated polystyrene nanobeads were more cytotoxic and genotoxic than unmodified and carboxylated ones on both cell lines. Interestingly, aminated polystyrene nanobeads induced similar cytotoxic and genotoxic effects on Calu-3 epithelial cells and THP-1 macrophages, for all levels of intracellular nanoparticles tested. Our results strongly support the primordial role of nanoparticles surface chemistry on cellular uptake and related biological effects. Moreover our data clearly show that nanoparticle internalization and observed adverse effects are not necessarily associated.  相似文献   

14.
Scavenger receptor (SR)-BI mediates the selective uptake of high density lipoprotein (HDL) cholesteryl esters and the efflux of free cholesterol. In Chinese hamster ovary (CHO) cells, SR-BI is predominantly associated with caveolae which we have recently demonstrated are the initial loci for membrane transfer of HDL cholesteryl esters. Because cholesterol accumulation in macrophages is a critical event in atherogenesis, we investigated the expression of SR-BI and caveolin-1 in several macrophage cell lines. Human THP-1 monocytes were examined before and after differentiation to macrophages by treatment with 200 nm phorbol ester for 72 h. Undifferentiated THP-1 cells expressed caveolin-1 weakly whereas differentiation up-regulated caveolin-1 expression greater than 50-fold. In contrast, both undifferentiated and differentiated THP-1 cells expressed similar levels of SR-BI. Differentiation of THP-1 cells increased the percent of membrane cholesterol associated with caveolae from 12% +/- 1.9% to 38% +/- 3.1%. The increase in caveolin-1 expression was associated with a 2- to 3-fold increase in selective cholesterol ether uptake from HDL. Two mouse macrophage cell lines, J774 and RAW, expressed levels of SR-BI similar to differentiated THP-1 cells but did not express detectable levels of caveolin-1. In comparison to differentiated THP-1 cells, RAW and J774 cells internalized 9- to 10-fold less cholesteryl ester. We conclude that differentiated THP-1 cells express both caveolin-1 and SR-BI and that their co-expression is associated with enhanced selective cholesteryl ester uptake.  相似文献   

15.
The uptake of labeled inorganic phosphate into primary rabbit kidney proximal tubule cells has been examined. Phosphate was accumulated into the primary proximal tubule cells against a concentration gradient. This accumulation was sensitive to inhibition by metabolic inhibitors. The dependence of phosphate uptake on the extracellular phosphate concentration was examined. Similarities were observed between primary proximal tubule cells and the LLC-PK1 cell line in these regards. These phosphate uptake data were then plotted on a Lineweaver-Burke plot. A nonlinear plot was obtained, which suggested that phosphate uptake occurs by means of a Na+ dependent, carrier mediated process, as well as by another Na+ independent mechanism. The pH dependence of phosphate uptake was also examined. Unlike previous observations with LLC-PK1 cells, optimal phosphate uptake occurred at pH 6.5. However, this difference between the two cell culture systems may possibly be explained by differences in uptake conditions. The dependence of phosphate uptake on the extracellular NaCl concentration was examined at three different pH values. The rate of phosphate uptake at pH 7.0 was observed to saturate at a lower NaCl concentration than at either pH 6.0 or pH 6.5. Furthermore, the optimal rate of phosphate uptake at pH 7.0 was observed to be higher than at the other two pH values studied when the NaCl concentration was below 120 mM. However, when the NaCl concentration was raised to 150 mM, optimal phosphate was observed to occur at pH 6.5 rather than at pH 7.0. These observations may be explained if the pH affects not only the rate of phosphate uptake but also the affinity of the phosphate uptake system for sodium. Phosphate uptake was also observed to be sensitive to several agents, Na2 X SO4 and NaSCN, which affect the membrane potential. As observed with phosphate uptake by LLC-PK1 (and renal brush border membrane vesicles), phosphate uptake was highly sensitive to inhibition by the phosphate analogue arsenate. Novel observations were that the phosphate analogue vanadate and its cellular metabolite vanadyl stimulated the initial rate of phosphate uptake.  相似文献   

16.
The effect of alpha- and beta-tocopherol on human erythroleukemia cell (HEL) adhesion induced by phorbol 12-myristate 13-acetate (PMA) has been studied. Adhesion induced by PMA stimulation was prevented by 44.5% by physiological concentrations of alpha-tocopherol. Under the same experimental conditions, beta-tocopherol, an analogue of alpha-tocopherol, produced 11% inhibition of adhesion. Cell response gradually increased from 0 to 24 h of alpha-tocopherol treatment. Only a slight time dependency of beta-tocopherol inhibition was observed. Another human erythroleukemia cell line (K562) and the human monocyte tumor cell line U937 showed 5.0 and 11.2% inhibition, respectively. Similar to alpha-tocopherol, the protein kinase C inhibitor, Calphostin C, and the MAPK inhibitor, PD98059, prevented PMA-induced cell adhesion. An inhibition of ERK-1 phosphorylation was observed for alpha-tocopherol only in HEL, implying that MAP kinase pathway is involved in this cell line. Fluorescence-activated cell sorting (FACS), by using various integrin-specific monoclonal antibodies, has shown that alpha (1-6), beta1, and alphav integrins are less expressed at the cell surface after alpha-tocopherol treatment. Beta-tocopherol treatment was less effective.  相似文献   

17.
As shown in a previous paper, threshold concentrations of lower and intermediate fatty acids inhibit the uptake of inorganic phosphate, growth, and cell division in yeast cells. This demonstrates that, apart from these effects, the acids cause an increase in the respiration quotient (RQ), inhibition of CO2 fixation, production of ethanol at the expense of anabolic processes, and inhibition of active amino acid transport in the yeast Candida utilis. On the other hand, the threshold concentrations have no effect on intracellular pH. The inhibition of the inorganic phosphate uptake cannot be the sole primary mode of action of fatty acids since the omission of inorganic phosphate in the incubation medium brings about an inhibition of anabolic processes that is lower than that brought about by fatty acids since the omission of inorganic phosphate in the incubation medium brings about an inhibition of anabolic processes that is lower than that brought by fatty acids at concentrations still premitting some phosphate uptake. Although 2,4-dinitrophenol and caproic acid at low concentrations cause an analogous decrease in biomass yield, their combination does not bring about any marked increase in the effect. Considering the physicochemical properties of fatty acids and their preferential action on energy-requiring processes, one of the key sites of action can be assumed to be the mitochondrial membrane. Fatty acids might inhibit the transport of anions, especially phosphate, across the membrane, and disturb the membrane potential by affecting the transport protons. The physiocochemical properties of fatty acids may also give rise to their binding to other intracellular membranes and to a subsequent interference with the function of the corresponding organelles.  相似文献   

18.
17alpha-methyl testosterone is a synthetic androgen with affinity for the androgen receptor. 17alpha-methyl testosterone is used widely as a component of hormone replacement therapy. Previous reports have indicated that contrary to testosterone, 17alpha-methyl testosterone is not aromatized. However, 17alpha-methyl testosterone still could affect local estrogen formation by regulating aromatase expression or by inhibiting aromatase action. Both possibilities have important clinical implications. To evaluate the effect of 17alpha-methyl testosterone on the expression and activity of aromatase, we tested the choriocarcinoma Jar cell line, a cell line that express high levels of P450 aromatase, and the macrophage-like THP-1 cells, which express aromatase only after undergoing differentiation. We found that in both cell lines, 17alpha-methyl testosterone inhibits aromatase activity in a dose-related manner. The curve of inhibition parallels that of letrozole and gives complete inhibition at 10(-4) M 17alpha-methyl testosterone, determined by the tritium release assay. 17alpha-methyl testosterone does not have detectable effects on aromatase RNA and protein expression by Jar cells. Undifferentiated THP-1 cells had no aromatase activity and showed no effect of 17alpha-methyl testosterone, but differentiated THP-1 (macrophage-like) cells had a similar inhibition of aromatase activity by 17alpha-methyl testosterone to that seen in Jar cells. The Lineweaver-Burke plot shows 17alpha-methyl testosterone to be a competitive aromatase inhibitor. Our results show for the first time that 17alpha-methyl testosterone acts as an aromatase inhibitor. These findings are relevant for understanding the effects of 17alpha-methyl testosterone as a component of hormone replacement therapy. 17alpha-methyl testosterone may, as a functional androgen and orally active steroidal inhibitor of endogenous estrogen production, also offer special possibilities for the prevention/treatment of hormone-sensitive cancers.  相似文献   

19.
Regulation of phosphate uptake was studied in HeLa cell lines after transfection with DNA encoding the human 5-HT1A receptor. Phosphate uptake was saturable and greater than 90% sodium-dependent, with Vmax approximately 30-35% without changing Km. Treatment with 5-HT or the 5-HT1A-specific agonist 8-OH-2-(di-n-propylamino)1,2,3,4-tetrahydronaphthalene increased Vmax approximately 40% without affecting Km. This effect was blocked by pretreatment with the 5-HT1 antagonists, methiothepine and spiperone, or pertussis toxin. Surprisingly, the stimulation was not secondary to an inhibition of adenylyl cyclase because 5-HT stimulated phosphate uptake approximately 20% in the presence of 1 mM 8-Br-cAMP. Rather, the primary pathway linked to the stimulation of phosphate uptake involved activation of protein kinase C because (i) 5-HT measurably activated protein kinase C in these cells, (ii) activators of protein kinase C (phorbol esters and diacylglycerol analogues) stimulated phosphate uptake in these cells (iii) the half-maximal doses for 5-HT-induced phosphatidylinositol hydrolysis and stimulation of phosphate uptake were virtually equivalent, and both effects were equally sensitive to pertussis toxin, and (iv) the stimulation was markedly attenuated in cells made deficient in protein kinase C. These results demonstrate that the stimulation of phosphatidylinositol hydrolysis by the 5-HT1A receptor can generate physiologically measurable effects on cellular transport and suggest that such accessory pathways may play a prominent role in signal transduction.  相似文献   

20.
It is known that gamma-tocopherol inhibits human prostate cancer cell proliferation via down-regulation of cyclin-related signalling but tocopherol and tocotrienol metabolites with a shortened phytyl chain, carboxyethyl hydroxychromans, were not previously investigated as anti-proliferative agents. In this study, the effect of the two main tocopherols, namely, alpha-tocopherol and gamma-tocopherol, and their corresponding metabolites (alpha- and gamma-carboxyethyl hydroxychromans) was studied on proliferation and cyclin D1 expression of the prostate cancer cell line PC-3. The hydrosoluble vitamin E analogues Trolox and alpha-tocopherol succinate were also tested. The most effective inhibitors of PC-3 proliferation were gamma-tocopherol and gamma-carboxyethyl hydroxychroman. Their effect was discernable at 1 microM and reached a plateau at concentrations > or = 10 microM with maximal inhibition values ranging between 70 and 82%. alpha-Tocopherol, alpha-carboxyethyl hydroxychroman, and the analogue Trolox were much less effective; a weak effect was observed for concentrations < or = 10 microM and a maximal inhibition of less than 45% was found at 50 microM concentration. PC-3 cells showed higher inhibition, particularly by the gamma derivatives, than HTB-82 and HECV cells. Tocopherols and carboxyethyl hydroxychromans exerted an inhibitory effect on cyclin D1 expression parallel to the retardation of cell growth. gamma-Carboxyethyl hydroxychroman and gamma-tocopherol showed effects also upstream of the cyclin modulation. Furthermore, the inhibition of cyclin D1 expression by gamma-carboxyethyl hydroxychroman was competed for by alpha-carboxyethyl hydroxychroman. In conclusion, this study shows that carboxyethyl hydroxychroman metabolites are as effective as their vitamin precursors to inhibit PC-3 growth by specific down-regulation of cyclin expression, with the gamma forms being the most effective ones. Although the inhibition of PC-3 cell growth and diminution of cyclin expression are clearly visible, more subtle mechanistic effects of tocopherols and their corresponding carboxyethyl hydroxychroman metabolites deserve further investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号