首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evaluation measures of multiple sequence alignments.   总被引:1,自引:0,他引:1  
Multiple sequence alignments (MSAs) are frequently used in the study of families of protein sequences or DNA/RNA sequences. They are a fundamental tool for the understanding of the structure, functionality and, ultimately, the evolution of proteins. A new algorithm, the Circular Sum (CS) method, is presented for formally evaluating the quality of an MSA. It is based on the use of a solution to the Traveling Salesman Problem, which identifies a circular tour through an evolutionary tree connecting the sequences in a protein family. With this approach, the calculation of an evolutionary tree and the errors that it would introduce can be avoided altogether. The algorithm gives an upper bound, the best score that can possibly be achieved by any MSA for a given set of protein sequences. Alternatively, if presented with a specific MSA, the algorithm provides a formal score for the MSA, which serves as an absolute measure of the quality of the MSA. The CS measure yields a direct connection between an MSA and the associated evolutionary tree. The measure can be used as a tool for evaluating different methods for producing MSAs. A brief example of the last application is provided. Because it weights all evolutionary events on a tree identically, but does not require the reconstruction of a tree, the CS algorithm has advantages over the frequently used sum-of-pairs measures for scoring MSAs, which weight some evolutionary events more strongly than others. Compared to other weighted sum-of-pairs measures, it has the advantage that no evolutionary tree must be constructed, because we can find a circular tour without knowing the tree.  相似文献   

2.
Phenotypic behavior of a group of organisms can be studied using a range of molecular evolutionary tools that help to determine evolutionary relationships. Traditionally a gene or a set of gene sequences was used for generating phylogenetic trees. Incomplete evolutionary information in few selected genes causes problems in phylogenetic tree construction. Whole genomes are used as remedy. Now, the task is to identify the suitable parameters to extract the hidden information from whole genome sequences that truly represent evolutionary information. In this study we explored a random anchor (a stretch of 100 nucleotides) based approach (ABWGP) for finding distance between any two genomes, and used the distance estimates to compute evolutionary trees. A number of strains and species of Mycobacteria were used for this study. Anchor-derived parameters, such as cumulative normalized score, anchor order and indels were computed in a pair-wise manner, and the scores were used to compute distance/phylogenetic trees. The strength of branching was determined by bootstrap analysis. The terminal branches are clearly discernable using the distance estimates described here. In general, different measures gave similar trees except the trees based on indels. Overall the tree topology reflected the known biology of the organisms. This was also true for different strains of Escherichia coli. A new whole genome-based approach has been described here for studying evolutionary relationships among bacterial strains and species.  相似文献   

3.
The Multiple Sequence Alignment (MSA) is a computational abstraction that represents a partial summary either of indel history, or of structural similarity. Taking the former view (indel history), it is possible to use formal automata theory to generalize the phylogenetic likelihood framework for finite substitution models (Dayhoff's probability matrices and Felsenstein's pruning algorithm) to arbitrary-length sequences. In this paper, we report results of a simulation-based benchmark of several methods for reconstruction of indel history. The methods tested include a relatively new algorithm for statistical marginalization of MSAs that sums over a stochastically-sampled ensemble of the most probable evolutionary histories. For mammalian evolutionary parameters on several different trees, the single most likely history sampled by our algorithm appears less biased than histories reconstructed by other MSA methods. The algorithm can also be used for alignment-free inference, where the MSA is explicitly summed out of the analysis. As an illustration of our method, we discuss reconstruction of the evolutionary histories of human protein-coding genes.  相似文献   

4.
ABSTRACT: BACKGROUND: A number of software packages are available to generate DNA multiple sequence alignments (MSAs) evolved under continuous-time Markov processes on phylogenetic trees. On the other hand, methods of simulating the DNA MSA directly from the transition matrices do not exist. Moreover, existing software restricts to the time-reversible models and it is not optimized to generate nonhomogeneous data (i.e. placing distinct substitution rates at different lineages). RESULTS: We present the first package designed to generate MSAs evolving under discrete-time Markov processes on phylogenetic trees, directly from probability substitution matrices. Based on the input model and a phylogenetic tree in the Newick format (with branch lengths measured as the expected number of substitutions per site), the algorithm produces DNA alignments of desired length. GenNon-h is publicly available for download. CONCLUSION: The software presented here is an efficient tool to generate DNA MSAs on a given phylogenetic tree. GenNon-h provides the user with the nonstationary or nonhomogeneous phylogenetic data that is well suited for testing complex biological hypotheses, exploring the limits of the reconstruction algorithms and their robustness to such models.  相似文献   

5.
Methods for discovery of local similarities and estimation of evolutionary distance by identifying k-mers (contiguous subsequences of length k) common to two sequences are described. Given unaligned sequences of length L, these methods have O(L) time complexity. The ability of compressed amino acid alphabets to extend these techniques to distantly related proteins was investigated. The performance of these algorithms was evaluated for different alphabets and choices of k using a test set of 1848 pairs of structurally alignable sequences selected from the FSSP database. Distance measures derived from k-mer counting were found to correlate well with percentage identity derived from sequence alignments. Compressed alphabets were seen to improve performance in local similarity discovery, but no evidence was found of improvements when applied to distance estimates. The performance of our local similarity discovery method was compared with the fast Fourier transform (FFT) used in MAFFT, which has O(L log L) time complexity. The method for achieving comparable coverage to FFT is revealed here, and is more than an order of magnitude faster. We suggest using k-mer distance for fast, approximate phylogenetic tree construction, and show that a speed improvement of more than three orders of magnitude can be achieved relative to standard distance methods, which require alignments.  相似文献   

6.
In phylogenetics, a central problem is to infer the evolutionary relationships between a set of species X; these relationships are often depicted via a phylogenetic tree—a tree having its leaves labeled bijectively by elements of X and without degree-2 nodes—called the “species tree.” One common approach for reconstructing a species tree consists in first constructing several phylogenetic trees from primary data (e.g., DNA sequences originating from some species in X), and then constructing a single phylogenetic tree maximizing the “concordance” with the input trees. The obtained tree is our estimation of the species tree and, when the input trees are defined on overlapping—but not identical—sets of labels, is called “supertree.” In this paper, we focus on two problems that are central when combining phylogenetic trees into a supertree: the compatibility and the strict compatibility problems for unrooted phylogenetic trees. These problems are strongly related, respectively, to the notions of “containing as a minor” and “containing as a topological minor” in the graph community. Both problems are known to be fixed parameter tractable in the number of input trees k, by using their expressibility in monadic second-order logic and a reduction to graphs of bounded treewidth. Motivated by the fact that the dependency on k of these algorithms is prohibitively large, we give the first explicit dynamic programming algorithms for solving these problems, both running in time \(2^{O(k^2)} \cdot n\), where n is the total size of the input.  相似文献   

7.
A principle of maximum topological similarity in molecular systematics   总被引:1,自引:0,他引:1  
The paper deals with the problem of phylogenetic reconstruction on the basis of comparative analysis of features. Main attention is paid to comparison and classification of the biopolymer sequences. Different approaches to this task are critically reviewed. The novel principle of construction of tree-like classification schemes permitting subsequent evolutionary analysis is proposed. It concentrates on reconstruction of the tree with a topologic structure that is most close to topologic features, imprinted in the source distance matrix. Realization of this approach was made possible by development of the special formalism, enabling evaluation and comparison of topologic features of distance matrices and trees.  相似文献   

8.
Phenotypic behavior of a group of organisms can be studied using a range of molecular evolutionary tools that help to determine evolutionary relationships. Traditionally a gene or a set of gene sequences was used for generating phylogenetic trees. Incomplete evolutionary information in few selected genes causes problems in phylogenetic tree construction. Whole genomes are used as remedy. Now, the task is to identify the suitable parameters to extract the hidden information from whole genome sequences that truly represent evolutionary information. In this study we explored a random anchor (a stretch of 100 nucleotides) based approach (ABWGP) for finding distance between any two genomes, and used the distance estimates to compute evolutionary trees. A number of strains and species of Mycobacteria were used for this study. Anchor-derived parameters, such as cumulative normalized score, anchor order and indels were computed in a pair-wise manner, and the scores were used to compute distance/phylogenetic trees. The strength of branching was determined by bootstrap analysis. The terminal branches are clearly discernable using the distance estimates described here. In general, different measures gave similar trees except the trees based on indels. Overall the tree topology reflected the known biology of the organisms. This was also true for different strains of Escherichia coli. A new whole genome-based approach has been described here for studying evolutionary relationships among bacterial strains and species.  相似文献   

9.

Background

We analyze phylogenetic tree building methods from molecular sequences (PTMS). These are methods which base their construction solely on sequences, coding DNA or amino acids.

Results

Our first result is a statistically significant evaluation of 176 PTMSs done by comparing trees derived from 193138 orthologous groups of proteins using a new measure of quality between trees. This new measure, called the Intra measure, is very consistent between different groups of species and strong in the sense that it separates the methods with high confidence. The second result is the comparison of the trees against trees derived from accepted taxonomies, the Taxon measure. We consider the NCBI taxonomic classification and their derived topologies as the most accepted biological consensus on phylogenies, which are also available in electronic form. The correlation between the two measures is remarkably high, which supports both measures simultaneously.

Conclusions

The big surprise of the evaluation is that the maximum likelihood methods do not score well, minimal evolution distance methods over MSA-induced alignments score consistently better. This comparison also allows us to rank different components of the tree building methods, like MSAs, substitution matrices, ML tree builders, distance methods, etc. It is also clear that there is a difference between Metazoa and the rest, which points out to evolution leaving different molecular traces. We also think that these measures of quality of trees will motivate the design of new PTMSs as it is now easier to evaluate them with certainty.  相似文献   

10.

Background:

Stearoyl-CoA desaturase (SCD) is a key enzyme that converts saturated fatty acids (SFAs) to monounsaturated fatty acids (MUFAs) in fat biosynthesis. Despite being crucial for interpreting SCDs’ roles across species, the evolutionary relationship of SCD proteins across species has yet to be elucidated. This study aims to present this evolutionary relationship based on amino acid sequences.

Methods:

Using Multiple Sequence Alignment (MSA) and phylogenetic construction methods, a hypothetical evolutionary relationship was generated between the stearoyl-CoA desaturase (SCD) protein sequences between 18 different species.

Results:

SCD protein sequences from Homo sapiens, Pan troglodytes (chimpanzee), and Pongo abelii (orangutan) have the lowest genetic distances of 0.006 of the 18 species studied. Capra hircus (goat) and Ovis aries (Sheep) had the next lowest genetic distance of 0.023. These farm animals are 99.987% identical at the amino acid level.

Conclusions:

The SCD proteins are conserved in these 18 species, and their evolutionary relationships are similar. Key Words: Phylogenetic analysis, Stearoyl-CoA desaturase (SCD) proteins, Multiple sequence alignment  相似文献   

11.
We consider to construct 4L-components vectors for a DNA primary sequence based on the L-tuple. For two DNA sequences, using the corresponding vectors, we construct a set of L × L matrices called related matrix. The mathematical characterization from the constructed matrices have been selected to characterize the degree of similarity between the two DNA sequences. The search for similar sequences of a query sequence from a database of 39 library sequences and the construction of phylogenetic tree of H5N1 avian influenza virus illustrate the utility of the matrices for DNA sequences.  相似文献   

12.
Studies examining phylogenetic community structure have become increasingly prevalent, yet little attention has been given to the influence of the input phylogeny on metrics that describe phylogenetic patterns of co-occurrence. Here, we examine the influence of branch length, tree reconstruction method, and amount of sequence data on measures of phylogenetic community structure, as well as the phylogenetic signal (Pagel’s λ) in morphological traits, using Trichoptera larval communities from Churchill, Manitoba, Canada. We find that model-based tree reconstruction methods and the use of a backbone family-level phylogeny improve estimations of phylogenetic community structure. In addition, trees built using the barcode region of cytochrome c oxidase subunit I (COI) alone accurately predict metrics of phylogenetic community structure obtained from a multi-gene phylogeny. Input tree did not alter overall conclusions drawn for phylogenetic signal, as significant phylogenetic structure was detected in two body size traits across input trees. As the discipline of community phylogenetics continues to expand, it is important to investigate the best approaches to accurately estimate patterns. Our results suggest that emerging large datasets of DNA barcode sequences provide a vast resource for studying the structure of biological communities.  相似文献   

13.

Background  

Commonly used phylogenetic models assume a homogeneous evolutionary process throughout the tree. It is known that these homogeneous models are often too simplistic, and that with time some properties of the evolutionary process can change (due to selection or drift). In particular, as constraints on sequences evolve, the proportion of variable sites can vary between lineages. This affects the ability of phylogenetic methods to correctly estimate phylogenetic trees, especially for long timescales. To date there is no phylogenetic model that allows for change in the proportion of variable sites, and the degree to which this affects phylogenetic reconstruction is unknown.  相似文献   

14.

Background

While the conserved positions of a multiple sequence alignment (MSA) are clearly of interest, non-conserved positions can also be important because, for example, destabilizing effects at one position can be compensated by stabilizing effects at another position. Different methods have been developed to recognize the evolutionary relationship between amino acid sites, and to disentangle functional/structural dependencies from historical/phylogenetic ones.

Methodology/Principal Findings

We have used two complementary approaches to test the efficacy of these methods. In the first approach, we have used a new program, MSAvolve, for the in silico evolution of MSAs, which records a detailed history of all covarying positions, and builds a global coevolution matrix as the accumulated sum of individual matrices for the positions forced to co-vary, the recombinant coevolution, and the stochastic coevolution. We have simulated over 1600 MSAs for 8 protein families, which reflect sequences of different sizes and proteins with widely different functions. The calculated coevolution matrices were compared with the coevolution matrices obtained for the same evolved MSAs with different coevolution detection methods. In a second approach we have evaluated the capacity of the different methods to predict close contacts in the representative X-ray structures of an additional 150 protein families using only experimental MSAs.

Conclusions/Significance

Methods based on the identification of global correlations between pairs were found to be generally superior to methods based only on local correlations in their capacity to identify coevolving residues using either simulated or experimental MSAs. However, the significant variability in the performance of different methods with different proteins suggests that the simulation of MSAs that replicate the statistical properties of the experimental MSA can be a valuable tool to identify the coevolution detection method that is most effective in each case.  相似文献   

15.
The evolution of specific seed traits in scatter-hoarded tree species often has been attributed to granivore foraging behavior. However, the degree to which foraging investments and seed traits correlate with phylogenetic relationships among trees remains unexplored. We presented seeds of 23 different hardwood tree species (families Betulaceae, Fagaceae, Juglandaceae) to eastern gray squirrels (Sciurus carolinensis), and measured the time and distance travelled by squirrels that consumed or cached each seed. We estimated 11 physical and chemical seed traits for each species, and the phylogenetic relationships between the 23 hardwood trees. Variance partitioning revealed that considerable variation in foraging investment was attributable to seed traits alone (27–73%), and combined effects of seed traits and phylogeny of hardwood trees (5–55%). A phylogenetic PCA (pPCA) on seed traits and tree phylogeny resulted in 2 “global” axes of traits that were phylogenetically autocorrelated at the family and genus level and a third “local” axis in which traits were not phylogenetically autocorrelated. Collectively, these axes explained 30–76% of the variation in squirrel foraging investments. The first global pPCA axis, which produced large scores for seed species with thin shells, low lipid and high carbohydrate content, was negatively related to time to consume and cache seeds and travel distance to cache. The second global pPCA axis, which produced large scores for seeds with high protein, low tannin and low dormancy levels, was an important predictor of consumption time only. The local pPCA axis primarily reflected kernel mass. Although it explained only 12% of the variation in trait space and was not autocorrelated among phylogenetic clades, the local axis was related to all four squirrel foraging investments. Squirrel foraging behaviors are influenced by a combination of phylogenetically conserved and more evolutionarily labile seed traits that is consistent with a weak or more diffuse coevolutionary relationship between rodents and hardwood trees rather than a direct coevolutionary relationship.  相似文献   

16.
Multiple sequence alignments (MSAs) are one of the most important sources of information in sequence analysis. Many methods have been proposed to detect, extract and visualize their most significant properties. To the same extent that site-specific methods like sequence logos successfully visualize site conservations and sequence-based methods like clustering approaches detect relationships between sequences, both types of methods fail at revealing informational elements of MSAs at the level of sequence–site interactions, i.e. finding clusters of sequences and sites responsible for their clustering, which together account for a high fraction of the overall information of the MSA. To fill this gap, we present here a method that combines the Fisher score-based embedding of sequences from a profile hidden Markov model (pHMM) with correspondence analysis. This method is capable of detecting and visualizing group-specific or conflicting signals in an MSA and allows for a detailed explorative investigation of alignments of any size tractable by pHMMs. Applications of our methods are exemplified on an alignment of the Neisseria surface antigen LP2086, where it is used to detect sites of recombinatory horizontal gene transfer and on the vitamin K epoxide reductase family to distinguish between evolutionary and functional signals.  相似文献   

17.
Various factors, including taxon density, sampling error, convergence, and heterogeneity of evolutionary rates, can potentially lead to incongruence between phylogenetic trees based on different genomes. Particularly at the generic level and below, chloroplast capture resulting from hybridization may distort organismal relationships in phylogenetic analyses based on the chloroplast genome, or genes included therein. However, the extent of such discord between chloroplast DNA (cpDNA) trees and those trees based on nuclear genes has rarely been assessed. We therefore used sequences of the internal transcribed spacer regions (ITS-1 and ITS-2) of nuclear ribosomal DNA (rDNA) to reconstruct phylogenetic relationships among members of the Heuchera group of genera (Saxifragaceae). The Heuchera group presents an important model for the analysis of chloroplast capture and its impact on phylogenetic reconstruction because hybridization is well documented within genera (e.g., Heuchera), and intergeneric hybrids involving six of the nine genera have been reported. An earlier study provided a well-resolved phylogenetic hypothesis for the Heuchera group based on cpDNA restriction-site variation. However, trees based on ITS sequences are discordant with the cpDNA-based tree. Evidence from both morphology and nuclear-encoded allozymes is consistent with the ITS trees, rather than the cpDNA tree, and several points of phylogenetic discord can clearly be attributed to chloroplast capture. Comparison of the organellar and ITS trees also raises the strong likelihood that ancient events of chloroplast capture occurred between lineages during the early diversification of the Heuchera group. Thus, despite the many advantages and widespread use of cpDNA data in phylogeny reconstruction, comparison of relationships based on cpDNA and ITS sequences for the Heuchera group underscores the need for caution in the use of organellar variation for retrieving phylogeny at lower taxonomic levels, particularly in groups noted for hybridization.  相似文献   

18.
Most methods for phylogenetic tree reconstruction are based on sequence alignments; they infer phylogenies from substitutions that may have occurred at the aligned sequence positions. Gaps in alignments are usually not employed as phylogenetic signal. In this paper, we explore an alignment-free approach that uses insertions and deletions (indels) as an additional source of information for phylogeny inference. For a set of four or more input sequences, we generate so-called quartet blocks of four putative homologous segments each. For pairs of such quartet blocks involving the same four sequences, we compare the distances between the two blocks in these sequences, to obtain hints about indels that may have happened between the blocks since the respective four sequences have evolved from their last common ancestor. A prototype implementation that we call Gap-SpaM is presented to infer phylogenetic trees from these data, using a quartet-tree approach or, alternatively, under the maximum-parsimony paradigm. This approach should not be regarded as an alternative to established methods, but rather as a complementary source of phylogenetic information. Interestingly, however, our software is able to produce phylogenetic trees from putative indels alone that are comparable to trees obtained with existing alignment-free methods.  相似文献   

19.
Based on the well-known k-mer model, we propose a k-mer natural vector model for representing a genetic sequence based on the numbers and distributions of k-mers in the sequence. We show that there exists a one-to-one correspondence between a genetic sequence and its associated k-mer natural vector. The k-mer natural vector method can be easily and quickly used to perform phylogenetic analysis of genetic sequences without requiring evolutionary models or human intervention. Whole or partial genomes can be handled more effective with our proposed method. It is applied to the phylogenetic analysis of genetic sequences, and the obtaining results fully demonstrate that the k-mer natural vector method is a very powerful tool for analysing and annotating genetic sequences and determining evolutionary relationships both in terms of accuracy and efficiency.  相似文献   

20.

Background

This paper describes a new MSA tool called PnpProbs, which constructs better multiple sequence alignments by better handling of guide trees. It classifies sequences into two types: normally related and distantly related. For normally related sequences, it uses an adaptive approach to construct the guide tree needed for progressive alignment; it first estimates the input’s discrepancy by computing the standard deviation of their percent identities, and based on this estimate, it chooses the better method to construct the guide tree. For distantly related sequences, PnpProbs abandons the guide tree and uses instead some non-progressive alignment method to generate the alignment.

Results

To evaluate PnpProbs, we have compared it with thirteen other popular MSA tools, and PnpProbs has the best alignment scores in all but one test. We have also used it for phylogenetic analysis, and found that the phylogenetic trees constructed from PnpProbs’ alignments are closest to the model trees.

Conclusions

By combining the strength of the progressive and non-progressive alignment methods, we have developed an MSA tool called PnpProbs. We have compared PnpProbs with thirteen other popular MSA tools and our results showed that our tool usually constructed the best alignments.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号