首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Su JT  Kim SH  Yan YB 《Biophysical journal》2007,92(2):578-587
Aminoacylase I (ACYI) catalyzes the stereospecific hydrolysis of L-acylamino acids and is generally assumed to be involved in the final step of the degradation of intracellular N-acetylated proteins. Apart from its crucial functions in intracellular amino acid metabolism, ACYI also has substantial commercial importance for the optical resolution of N-acylated DL-amino acids. As a zinc-dependent enzyme, ACYI is quite stable against heat-induced denaturation and can be regarded as a thermostable enzyme with an optimal temperature for activity of approximately 65 degrees C. In this research, the sequential events in ACYI thermal denaturation were investigated by a combination of spectroscopic methods and related resolution-enhancing techniques. Interestingly, the results from fluorescence and infrared (IR) spectroscopy clearly indicated that a pretransitional stage existed at temperatures from 50 degrees C to 66 degrees C. The thermal unfolding of ACYI might be a three-state process involving an aggregation-prone intermediate appearing at approximately 68 degrees C. The pretransitional structural changes involved the partial unfolding of the solvent-exposed beta-sheet structures and the transformation of about half of the Class I Trp fluorophores to Class II. Our results also suggested that the usage of resolution-enhancing techniques could provide valuable information of the step-wise unfolding of proteins.  相似文献   

2.
The thermostability of an enzyme that exhibits phytase and acid phosphatase activities was studied. Kinetics of inactivation and unfolding during thermal denaturation of the enzyme were compared. The loss of phytase activity on thermal denaturation is most suggestive of a reversible process. As for acid phosphatase activities, an interesting phenomenon was observed; there are two phases in thermal inactivation: when the temperature was between 45 and 50 degrees C, the thermal inactivation could be characterized as an irreversible inactivation which had some residual activity and when the temperature was above 55 degrees C, the thermal inactivation could be characterized as an irreversible process which had no residual activity. The microscopic rate constants for the free enzyme and substrate-enzyme complex were determined by Tsou's method [Adv. Enzymol. Relat. Areas Mol. Biol. 61 (1988) 381]. Fluorescence analyses indicate that when the enzyme was treated at temperatures below 60 degrees C for 60 min, the conformation of the enzyme had no detectable change; when the temperatures were above 60 degrees C, some fluorescence red-shift could be observed with a decrease in emission intensity. The inactivation rates (k(+0)) of free enzymes were faster than those of conformational changes during thermal denaturation at the same temperature. The rapid inactivation and slow conformational changes of phytase during thermal denaturation suggest that inactivation occurs before significant conformational changes of the enzyme, and the active site of this enzyme is situated in a relatively fragile region which makes the active site more flexible than the molecule as a whole.  相似文献   

3.
The rate of thermal denaturation of bovine and rat opsin in the photoreceptor membranes was studied within a wide temperature range (between 37 and 70 degrees C). It was found that the rate of thermal denaturation of opsin at a physiological temperature (37 degrees C) might be commensurable or even exceed the known rate of rhodopsin renewal produced by photoreceptor disk formation and shedding. Lipid peroxidation caused an increase in the rate of opsin denaturation at a physiological temperature. It is assumed that accumulation of denatured opsin in the photoreceptor membranes during raised illumination together with lipid peroxidation induction may be one of the mechanisms leading to vision deterioration under raised illumination.  相似文献   

4.
Thermal inactivation and reactivation of pantothenate hydrolase were studied in whole cells of Pseudomonas fluorescens. The enzyme is susceptible to thermal inactivation in whole cells at 37-40 degrees C, and is reactivated when the temperature is lowered again. Chloramphenicol does not prevent reactivation. The activation energy of enzyme inactivation in vivo is about 540kJ/mol. This activation energy is 220kJ/mol in vitro, but it is increased to 550-630kJ/mol by several metabolites, such as succinate, glyoxylate and oxalate. Generally, good carbon sources, causing rapid growth, protect the enzyme from thermal inactivation in vivo, and enable reactivation to occur at a fast rate. The enzyme is also inactivated below 35 degrees C, showing an activation energy of about 35kJ/mol. Good carbon sources prevent this inactivation as well, and cause slight reactivation. Glycine, although not utilized for growth, protects the enzyme well from this inactivation but not from inactivation at 37-40 degrees C, and prevents reactivation totally. From the activation energies of inactivation and the effects of the various carbon sources, it appears possible that changes in the concentrations of intracellular metabolites may be responsible for the changes in inactivation and reactivation.  相似文献   

5.
Differential scanning calorimetry transitions for the irreversible thermal denaturation of yeast phosphoglycerate kinase at pH 7.0 are strongly scanning-rate dependent, suggesting that the denaturation is, at least in part, under kinetic control. To test this possibility, we have carried out a kinetic study on the thermal inactivation of the enzyme. The inactivation kinetics are comparatively fast within the temperature range of the calorimetric transitions and can be described phenomenologically by the equation dC/dt = -alpha C2/(beta + C), where C is the concentration of active enzyme at a given time, t, and alpha and beta are rate coefficients that depend on temperature. This equation, together with the values of alpha and beta (within the temperature range 50-59 degrees C) have allowed us to calculate the fraction of irreversibly denatured protein versus temperature profiles corresponding to the calorimetric experiments. We have found that (a) irreversible denaturation takes place during the time the protein spends in the transition region and (b) there is an excellent correlation between the temperatures of the maximum of the calorimetric transitions (Tm) and the temperatures (Th) at which half of the protein is irreversibly denatured. These results show that the differential scanning calorimetry transitions for the denaturation of phosphoglycerate kinase are highly distorted by the rate-limited irreversible process. Finally, some comments are made as to the use of equilibrium thermodynamics in the analysis of irreversible protein denaturation.  相似文献   

6.
Thermoanaerobacter ethanolicus 39E secondary-alcohol dehydrogenase (2 degrees ADH) was optimally active near 90 degrees C displaying thermostability half-lives of 1.2 days, 1.7 h, 19 min, 9.0 min, and 1.3 min at 80 degrees C, 90 degrees C, 92 degrees C, 95 degrees C, and 99 degrees C, respectively. Enzyme activity loss upon heating (90-100 degrees C) was accompanied by precipitation, but the soluble enzyme remaining after partial inactivation retained complete activity. Enzyme thermoinactivation was modeled by a pseudo-first order rate equation suggesting that the rate determining step was unimolecular with respect to protein and thermoinactivation preceded aggregation. The apparent 2 degrees ADH melting temperature (T(m)) occurred at approximately 115 degrees C, 20 degrees C higher than the temperature for maximal activity, suggesting that it is completely folded in its active temperature range. Thermodynamic calculations indicated that the active folded structure of the 2 degrees ADH is stabilized by a relatively small Gibbs energy (triangle upG(stab.)(double dagger) = 110 kJ mol(-1)). 2 degrees ADH catalytic activities at 37 degrees C to 75 degrees C, were 2-fold enhanced by guanidine hydrochloride (GuHCl) concentrations between 120 mM and 190 mM. These results demonstrate the extreme resistance of this thermophilic 2 degrees ADH to thermal or chemical denaturation; and suggest increased temperature or GuHCl levels seem to enhance protein fixability and activity.  相似文献   

7.
Exposure of cultured rat hepatoma (HTC) cells to a 43 degrees C heat shock transiently accelerates the degradation of the long-lived fraction of cellular proteins. The rapid phase of proteolysis which lasts approximately 2 h after temperature step-up is followed by a slower phase of proteolysis. During the first 2 h after temperature step-up there is a wave of ubiquitin conjugation to cellular proteins which is accompanied by a fall in ubiquitin and ubiquitinated histone 2A (uH2A) levels. Upon continued incubation at 43 degrees C the levels of ubiquitin conjugates fall with a corresponding increase of ubiquitin and uH2A to initial levels. The burst of protein degradation and ubiquitin conjugation after temperature step-up is not affected by the inhibition of heat shock protein synthesis. Cells of the FM3A ts85 mutant, which have a thermolabile ubiquitin activating enzyme (E1), do not accelerate protein degradation in response to a 43 degrees C heat shock, whereas wild-type FM3A mouse cells do. This observation indicates that the ubiquitin system is involved in the degradation of heat-denatured proteins. Sequential temperature jump experiments show that the extent of proteolysis at temperatures up to 43 degrees C is related to the final temperature and not to the number of steps taken to attain it. Temperature step-up to 45 degrees C causes the inhibition of intracellular proteolysis. We propose the following explanation of the above observations. Heat shock causes the conformational change or denaturation of a subset of proteins stable at normal temperatures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The effect of trehalose (0.5 M) on the thermal stability of cutinase in the alkaline pH range was studied. The thermal unfolding induced by increasing temperature was analyzed in the absence and in the presence of trehalose according to a two-state model (which assumes that only the folded and unfolded states of cutinase were present). Trehalose delays the reversible unfolding. The midpoint temperature of the unfolding transition (Tm) increases by 4.0 degrees C and 2. 6 degrees C at pH 9.2 and 10.5, respectively, in the presence of trehalose. At pH 9.2 the thermal unfolding occurs at higher temperatures (Tm is 52.6 degrees C compared to 42.0 degrees C at pH 10.5) and a refolding yield of around 80% was obtained upon cooling. This pH value was chosen to study the irreversible inactivation (long-term stability) of cutinase. Temperatures in the transition range from folded to unfolded state were selected and the rate constants of irreversible inactivation determined. Inactivation followed first-order kinetics and trehalose reduced the observed rate constants of inactivation, pointing to a stabilizing effect on the irreversible inactivation step of thermal denaturation. However, if the contribution of reversible unfolding on the irreversible inactivation of cutinase was taken into account, i.e., considering the fraction of cutinase molecules in the reversible unfolded conformation, the intrinsic rate constants can be calculated. Based on the intrinsic rate constants it was concluded that trehalose does not delay the irreversible inactivation. This conclusion was further supported by comparing the activation energy of the irreversible inactivation in the absence and in the presence of trehalose. The apparent activation energy in the absence and in the presence of trehalose were 67 and 99 Kcal/mol, respectively. The activation energy calculated from intrinsic rate constants was higher in the absence (30 Kcal/mol) than in the presence of trehalose (16 Kcal/mol), showing that kinetics of the irreversible inactivation step increased in the presence of trehalose. In fact, trehalose stabilized only the reversible step of thermal denaturation of cutinase.  相似文献   

9.
The mechanism of spermidine-induced ornithine decarboxylase (ODC, E.C. 4.1.1.17) inactivation was investigated using Chinese hamster ovary (CHO) cells, maintained in serum-free medium, which display a stabilization of ODC owing to the lack of accumulation of putrescine and spermidine (Glass and Gerner: Biochem. J., 236:351-357, 1986; Sertich et al.: J. Cell Physiol., 127:114-120, 1986). Treatment of cells with 10 microM exogenous spermidine leads to rapid decay of ODC activity accompanied by a parallel decrease in enzyme protein. Analysis of the decay of [35S]methionine-labeled ODC and separation by two-dimensional electrophoresis revealed no detectable modification in ODC structure during enhanced degradation. Spermidine-mediated inactivation of ODC occurred in a temperature-dependent manner exhibiting pseudo-first-order kinetics over a temperature range of 22-37 degrees C. In cultures treated continuously, an initial lag was observed after treatment with spermidine, followed by a rapid decline in activity as an apparent critical concentration of intracellular spermidine was achieved. Treating cells at 22 degrees C for 3 hours with 10 microM spermidine, followed by removal of exogenous polyamine, and then shifting to varying temperatures, resulted in rates of ODC inactivation identical with that determined with a continuous treatment. Arrhenius analysis showed that polyamine mediated inactivation of ODC occurred with an activation energy of approximately 16 kcal/mol. Treatment of cells with lysosomotrophic agents (NH4Cl, chloroquine, antipain, leupeptin, chymostatin) had no effect on ODC degradation. ODC turnover was not dependent on ubiquitin-dependent proteolysis. Shift of ts85 cells, a temperature-sensitive mutant for ubiquitin conjugation, to 39 degrees C (nonpermissive for ubiquitin-dependent proteolysis) followed by addition of spermidine led to a rapid decline in ODC activity, with a rate similar to that seen at 32 degrees C (the permissive temperature). In contrast, spermidine-mediated ODC degradation was substantially decreased by inhibitors of protein synthesis (cycloheximide, emetine, and puromycin). These data support the hypothesis that spermidine regulates ODC degradation via a mechanism requiring new protein synthesis, and that this occurs via a non-lysosomal, ubiquitin-independent pathway.  相似文献   

10.
The kinetics and mechanism of thermal inactivation of Penicillium canescens alpha-galactosidase in the temperature range of 55-65 degrees C have been studied. The kinetic scheme of alpha-galactosidase thermal inactivation was proposed which included the reversible dissociation of active hexamers into associating monomers and irreversible denaturation of monomers. The kinetic constants of thermal inactivation have been determined. The effect of enzyme concentration and purification efficiency has been investigated. A possibility of defence of protein molecule from thermal inactivation in the presence of BSA, glycerol, melibiose, raffinose and stachyose is shown.  相似文献   

11.
《The Journal of cell biology》1993,122(6):1267-1276
There is circumstantial evidence that protein denaturation occurs in cells during heat shock at hyperthermic temperatures and that denatured or damaged protein is the primary inducer of the heat shock response. However, there is no direct evidence regarding the extent of denaturation of normal cellular proteins during heat shock. Differential scanning calorimetry (DSC) is the most direct method of monitoring protein denaturation or unfolding. Due to the fundamental parameter measured, heat flow, DSC can be used to detect and quantitate endothermic transitions in complex structures such as isolated organelles and even intact cells. DSC profiles with common features are obtained for isolated rat hepatocytes, liver homogenate, and Chinese hamster lung V79 fibroblasts. Five main transitions (A-E), several of which are resolvable into subcomponents, are observed with transition temperatures (Tm) of 45-98 degrees C. The onset temperature is approximately 40 degrees C, but some transitions may extend as low as 37-38 degrees C. In addition to acting as the primary signal for heat shock protein synthesis, the inactivation of critical proteins may lead to cell death. Critical target analysis implies that the rate limiting step of cell killing for V79 cells is the inactivation of a protein with Tm = 46 degrees C within the A transition. Isolated microsomal membranes, mitochondria, nuclei, and a cytosolic fraction from rat liver have distinct DSC profiles that contribute to different peaks in the profile for intact hepatocytes. Thus, the DSC profiles for intact cells appears to be the sum of the profiles of all subcellular organelles and components. The presence of endothermic transitions in the isolated organelles is strong evidence that they are due to protein denaturation. Each isolated organelle has an onset for denaturation near 40 degrees C and contains thermolabile proteins denaturing at the predicted Tm (46 degrees C) for the critical target. The extent of denaturation at any temperature can be approximately by the fractional calorimetric enthalpy. After scanning to 45 degrees C at 1 degree C/min and immediately cooling, a relatively mild heat shock, an estimated fraction denaturation of 4-7% is found in hepatocytes, V79 cells, and the isolated organelles other than nuclei, which undergo only 1% denaturation because of the high thermostability of chromatin. Thus, thermolabile proteins appear to be present in all cellular organelles and components, and protein denaturation is widespread and extensive after even mild heat shock.  相似文献   

12.
Conjugation of ubiquitin to certain proteins can trigger their degradation in the in vitro reticulocyte system. In order to determine whether ubiquitin conjugation serves as an intermediate step in the turnover of cellular proteins in vivo, it is necessary to isolate proteolytic intermediates, i.e. ubiquitin-protein adducts of specific cellular proteins. While the steady-state level of conjugates of rapidly turning over proteins is relatively high, that of long-lived proteins is presumably extremely low, and therefore undetectable. Therefore, mutant cell lines with conditionally altered function(s) of the ubiquitin system can serve as powerful tools in studying the degradation of stable cellular proteins. We have characterized a temperature sensitive cell cycle arrest mutant cell (ts85) with a thermolabile ubiquitin-activating enzyme (E1; Finley, D., Ciechanover, A., and Varshavsky, A. (1984) Cell 37, 43-55). Following incubation at the restrictive temperature (39.5 degrees C), these cells fail to degrade short-lived proteins (Ciechanover, A., Finley, D., and Varshavsky, A. (1984) Cell 37, 57-66). However, involvement of the ubiquitin system in the turnover of long-lived proteins has not been addressed in these cells. A slow rate of inactivation of E1 in vivo, and significant rate of cell death following long incubation periods at the restrictive temperature, make this question difficult to address experimentally. In the present study we show that incubation of the cells for 1 h at 43 degrees C leads to rapid inactivation of ubiquitin conjugation in the intact mutant cell. Following heat treatment, the cells can be incubated at 39.5 degrees C for at least 6 h in order to study the possible involvement of the system in the turnover of long-lived cellular proteins. The viability of the cells is excellent at the end of the incubation. Following extraction, we have shown that inactivation occurs much more rapidly in the cell lysate in vitro than in the intact cell (t1/2 of 10 min compared to 4 h at 39.5 degrees C). The enzyme from both the mutant cell and the wild-type cell was purified to homogeneity. The molecular mass of the native enzyme from both cells is approximately 220 kDa with a subunit molecular mass of about 108 kDa. The structure of the enzyme is therefore very similar to that purified from rabbit reticulocytes. At the permissive temperature, the enzymes from both cells catalyze ATP-PPi and ATP-AMP exchange in similar kinetics. However, at the high temperature, the mutated enzyme is at least 7-fold less stable than the wild-type enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Heat stress inhibits photosynthesis by reducing the activation of Rubisco by Rubisco activase. To determine if loss of activase function is caused by protein denaturation, the thermal stability of activase was examined in vitro and in vivo and compared with the stabilities of two other soluble chloroplast proteins. Isolated activase exhibited a temperature optimum for ATP hydrolysis of 44 degrees C compared with > or =60 degrees C for carboxylation by Rubisco. Light scattering showed that unfolding/aggregation occurred at 45 degrees C and 37 degrees C for activase in the presence and absence of ATPgammaS, respectively, and at 65 degrees C for Rubisco. Addition of chemically denatured rhodanese to heat-treated activase trapped partially folded activase in an insoluble complex at treatment temperatures that were similar to those that caused increased light scattering and loss of activity. To examine thermal stability in vivo, heat-treated tobacco (Nicotiana rustica cv Pulmila) protoplasts and chloroplasts were lysed with detergent in the presence of rhodanese and the amount of target protein that aggregated was determined by immunoblotting. The results of these experiments showed that thermal denaturation of activase in vivo occurred at temperatures similar to those that denatured isolated activase and far below those required to denature Rubisco or phosphoribulokinase. Edman degradation analysis of aggregated proteins from tobacco and pea (Pisum sativum cv "Little Marvel") chloroplasts showed that activase was the major protein that denatured in response to heat stress. Thus, loss of activase activity during heat stress is caused by an exceptional sensitivity of the protein to thermal denaturation and is responsible, in part, for deactivation of Rubisco.  相似文献   

14.
15.
Differential scanning calorimetry (DSC) was used to assay thermal transitions that might be responsible for cell death and other responses to hyperthermia or heat shock, such as induction of heat shock proteins (HSP), in whole Chinese hamster lung V79 cells. Seven distinct peaks, six of which are irreversible, with transition temperatures from 49.5 degrees C to 98.9 degrees C are detectable. These primarily represent protein denaturation with minor contributions from DNA and RNA melting. The onset temperature of denaturation, 38.7 degrees C, is shifted to higher temperatures by prior heat shock at 43 degrees and 45 degrees C, indicative of irreversible denaturation occurring at these temperatures. Thus, using DSC it is possible to demonstrate significant denaturation in a mammalian cell line at temperatures and times of exposure sufficient to induce hyperthermic damage and HSP synthesis. A model was developed based on the assumption that the rate limiting step of hyperthermic cell killing is the denaturation of a critical target. A transition temperature of 46.3 degrees C is predicted for the critical target in V79 cells. No distinct transition is detectable by DSC at this temperature, implying that the critical target comprises a small fraction of total denaturable material. The short chain alcohols methanol, ethanol, isopropanol, and t-butanol are known hyperthermic sensitizers and ethanol is an inducer of HSP synthesis. These compounds non-specifically lower the denaturation temperature of cellular protein. Glycerol, a hyperthermic protector, non-specifically raises the denaturation temperature for proteins denaturing below 60 degrees C. Thus, there is a correlation between the effect of these compounds on protein denaturation in vivo and their effect on cellular sensitivity to hyperthermia.  相似文献   

16.
Intracellular protein degradation was investigated using an unstable fragment of Escherichia coli beta-galactosidase, the CSH11 mutant, as a model protein. This abnormal protein was expressed from a single copy gene in the chromosome and is converted to a detectable degradable intermediate. The in vivo degradation rates of both beta-galactosidase fragments were measured using pulse-chase radioactive labeling techniques, and their intracellular concentrations were determined using alpha-complementation assays. In the physiological range of 30 to 37 degrees C, the apparent degradation rate constant for the CSH11 fragment follows Arrhenius behavior; while the intermediate's apparent degradation rate constant is nearly unchanged. However, above 37 degrees C the degradation rates of both fragments increase significantly. Analysis of the labeled intermediate's rate of change above 40 degrees C reveals that the CSH11 fragment is being degraded by a second pathway which does not produce the intermediate. When the induction level of the abnormal beta-galactosidase was varied the degradation rates of both fragments behaved similarly, but they unexpectedly decreased with increasing IPTG concentration. The two parallel degradation pathways for CSH11 apparently operated at only the lower IPTG levels. The measured degradation rates did not correlate directly with the intracellular concentration of abnormal proteins.  相似文献   

17.
Transient States of Adenylate Cyclase in Brain Membranes   总被引:3,自引:1,他引:2  
Basal activity of adenylate cyclase from the amygdala of sheep brain and the neostriatum of turkey brain decays in two phases at 37 degrees C. The first phase is rapid (t1/2 = 2.3 +/- 0.3 min) and results in the loss of 60-70% of basal activity. The second phase is slow (t1/2 approximately 100 min) during which time the catalytic units denature irreversibly. The GTP analogue guanosine-5' (beta-gamma imino) triphosphate (p[NH]ppG) prevents the rapid decay by stabilizing the enzyme at its initial level of activity and also reactivates the enzyme to initial levels during or immediately following the early phase, indicating that denaturation of neither the guanylnucleotide units nor the catalytic units causes the rapid decline in basal activity. Activation by p[NH]ppG is rapid at 37 degrees C, but the binding of p[NH]ppG to the guanylnucleotide subunit also occurs at nonactivatory temperatures. This is determined by the protection of catalytic units from thermal or N-ethylmaleimide inactivation after extensive washing. Thus, at 25 degrees C all of the catalytic units can be stabilized by saturating p[NH]ppG concentrations. At 0 degree C, 35% of the catalytic units can be stabilized by saturating p[NH]ppG concentrations within 30 s. The half-saturation constant for the binding of p[NH]ppG at 0 degree C is identical to that derived in an assay at 37 degrees C, or after an incubation of the membranes for 10 min at 45 degrees C, when the process of thermal denaturation is 80% complete (K1/2 approximately 3 +/- 2 microM).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
An extramitochondrial acetyl-coenzyme-A hydrolase from rat liver is shown to be a cold-labile oligomeric enzyme that undergoes a reversible conformational transition between a dimeric and a tetrameric form in the presence of adenosine 5'-triphosphate or adenosine 5'-diphosphate at 25-37 degrees C, and between a dimeric and a monomeric form at low temperature. The enzymatically active dimer is fairly stable at 25-37 degrees C, but much less stable at low temperature, dissociating into monomer with no activity. At 37 degrees C and low concentrations of enzyme protein (less than or equal to 14 micrograms/ml), the activity decreased rapidly and only 10% of the initial activity remaining after 60 min. Addition of bovine serum albumin or immunoglobulin G to the medium completely prevented inactivation of the dimeric enzyme at low concentration at 37 degrees C, but had little effect on cold inactivation of the enzyme. Cold inactivation of the dimeric enzyme was partially prevented by the presence of various CoA derivatives. The order of potency was acetyl-CoA (substrate) greater than or equal to butyryl-CoA greater than octanoyl-CoA greater than CoA (product) greater than acetoacetyl-CoA. Another enzyme product, acetate, had little effect on cold inactivation. Polyols, such as sucrose, glycerol, and ethylene glycol, and high concentrations of NaCl, KCl, pyrophosphate and phosphate also greatly prevented cold inactivation. Cold inactivation was scarcely affected by pH within the pH range at which the enzyme was stable at 37 degrees C.  相似文献   

19.
Heat shock denatures cellular protein and induces both a state of acquired thermotolerance, defined as resistance to a subsequent heat shock, and the synthesis of a category of proteins referred to as heat-shock proteins (HSPs). Thermotolerance may be due to the stabilization of thermolabile proteins that would ordinarily denature during heat shock, either by HSPs or some other factors. We show by differential scanning calorimetry (DSC) that mild heat shock irreversibly denatures a small fraction of Chinese hamster lung V79-WNRE cell protein (i.e., the enthalpy change, which is proportional to denaturation, on scanning to 45 degrees C at 1 degree C/min is approximately 2.3% of the total calorimetric enthalpy). Thermostability, defined by the extent of denaturation during heat shock and determined from DSC scans of whole cells, increases as the V79 cells become thermotolerant. Cellular stabilization appears to be due to an increase in the denaturation temperature of the most thermolabile proteins; there is no increase in the denaturation temperatures of the most thermally resistant proteins, i.e., those denaturing above 65 degrees C. Cellular stabilization is also observed in the presence of glycerol, which is known to increase resistance to heat shock and to stabilize proteins in vitro. A model is presented, based on a direct relationship between the extent of hyperthermic killing and the denaturation or inactivation of a critical target that defines the rate-limiting step in killing, which predicts a transition temperature (Tm) of the critical target for control V79-WNRE cells of 46.0 degrees C and a Tm of 47.3 degrees C for thermotolerant cells. This shift of 1.3 degrees C is consistent with the degree of stabilization detected by DSC.  相似文献   

20.
The irreversible thermal inactivation of the sugarcane leaf NADP(+)-malic enzyme was studied at 50 degrees C and pH 7.0 and 8.0. Depending on the preincubation conditions, thermal inactivation followed mono- or biphasic first-order kinetics. A two-step behavior in the irreversible denaturation process was found when protein concentration was sufficiently low. The protein concentration necessary to obtain monlphasic thermal inactivation kinetics was lower at pH 8.0 than at pH 7.0. The results suggest that biphasic inactivation kinetics are the consequence of the existence of two different oligomeric forms of the enzyme (dimer and tetramer), with the dimer being more stable in regards to thermal inactivation. The effects of the substrate and essential cofactors on the thermostability and equilibrium between the dimeric and tetrameric enzyme forms were also studied. Depending on the pH, NADP+, L-malate, and Mg2+ all had a protective effect on the stability of the dimeric and tetrameric species during thermal treatment. However, these ligands showed different effects on the aggregation state of the enzyme. NADP+ and L-malate induced dissociation, especially at pH 8.0, whereas Mg2+ induced aggregation of the protein. By studying the thermal inactivation kinetics at 50 degrees C and different pH values it was observed that the equilibrium between dimers and tetramers was dramatically affected in the range of pH 7.0-8.0. These results suggest that an amino acid residue(s) in the protein with an apparent pKa value of 7.7 needs to be deprotonated to stabilize aggregation of the enzyme to the tetrameric form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号