共查询到20条相似文献,搜索用时 31 毫秒
1.
Formation of discoidal high density lipoproteins (rHDL) by apolipoprotein A-I (apoA-I) mediated solubilization of dimyristoyl phosphatidylcholine (DMPC) multilamellar vesicles (MLV) was dramatically affected by bilayer cholesterol concentration. At a low ratio of DMPC/apoA-I (2 mg DMPC/mg apoA-I, 84/1 mol/mol), sterols (cholesterol, lathosterol, and beta-sitosterol) that form ordered lipid phases increase the rate of solubilization similarly, yielding rHDL with similar structures. By changing the temperature and sterol concentration, the rates of solubilization varied almost 3 orders of magnitude; however, the sizes of the rHDL were independent of the rate of their formation and dependent upon the bilayer sterol concentration. At a high ratio of DMPC/apoA-I (10/1 mg DMPC/mg apoA-I, 420/1 mol/mol), changing the temperature and cholesterol concentration yielded rHDL that varied greatly in size, phospholipid/protein ratio, mol% cholesterol, and number of apoA-I molecules per particle. rHDL were isolated that had 2, 4, 6, and 8 molecules of apoA-I per particle, mean diameters of 117, 200, 303, and 396 A, and a mol% cholesterol that was similar to the original MLV. Kinetic studies demonstrated that the different sized rHDL are formed independently and concurrently. The rate of formation, lipid composition, and three-dimensional structures of cholesterol-rich rHDL is dictated primarily by the original membrane phase properties and cholesterol content. The size speciation of rHDL and probably nascent HDL formed via the activity of the ABCA1 lipid transporter is mechanistically linked to the cholesterol content of the membranes from which they were formed. 相似文献
2.
Apolipoprotein (apo) A-I is the major protein constituent of human high-density lipoprotein (HDL) and is likely responsible for many of its anti-atherogenic properties. Since distinct HDL size subspecies may play different roles in interactions critical for these properties, a key question concerns how apoA-I can adjust its conformation in response to changes in HDL particle size. A prominent hypothesis states that apoA-I contains a flexible "hinge domain" that can associate/dissociate from the lipoprotein as its diameter fluctuates. Although flexible domains clearly exist within HDL-bound apoA-I, this hypothesis has not been directly tested by assessing the ability of such domains to modulate their contacts with the lipid surface. In this work, discoidal HDL particles of different size were reconstituted with a series of human apoA-I mutants containing a single reporter tryptophan residue within each of its 22 amino acid amphipathic helical repeats. The particles also contained nitroxide spin labels, potent quenchers of tryptophan fluorescence, attached to the phospholipid acyl chains. We then measured the relative exposure of each tryptophan probe with increasing quencher concentrations. We found that, although there were modest structural changes across much of apoA-I, only helices 5, 6, and 7 exhibited significant differences in terms of exposure to lipid between large (96 A) and small (78 A) HDL particles. From these results, we present a model for a putative hinge domain in the context of recent "belt" and "hairpin" models of apoA-I structure in discoidal HDL particles. 相似文献
3.
We have constructed a series of models for apolipoprotein A-I (apo A-I) bound to discoidal high-density lipoprotein (HDL) particles, based upon the molecular belt model [Segrest, J. P., et al. (1999) J. Biol. Chem. 274, 31755-31758] and helical hairpin models [Rogers, D. P., et al. (1998) Biochemistry 37, 11714-11725], and compared these with picket fence models [Phillips, J. C., et al. (1997) Biophys. J. 73, 2337-2346]. Molecular belt models for discoidal HDL particles with differing diameters are presented, illustrating that the belt model can explain the discrete changes in HDL particle size observed experimentally. Hairpin models are discussed for the binding of apo A-I to discoidal HDL particles with diameters identical to those for the molecular belt model. Two models are presented for the binding of three monomers of apo A-I to a 150 A diameter discoidal HDL particle. In one model, two monomers of apo A-I bind to the exterior of the HDL particle in an antiparallel belt, with a third monomer of apo A-I bound to the disk in a hairpin conformation. In the second model, all three monomers of apo A-I are bound to the discoidal HDL particle in a hairpin conformation. Previously published experimental data for each model are reviewed, with FRET favoring either the belt or hairpin models over the picket fence models for HDL particles with diameters of 105 A. Naturally occurring mutations appear to favor the belt model for the 105 A particles, while the 150 A HDL particles favor the presence of at least one hairpin. 相似文献
4.
Gauthamadasa K Vaitinadin NS Dressman JL Macha S Homan R Greis KD Silva RA 《The Journal of biological chemistry》2012,287(10):7615-7625
It is well accepted that HDL has the ability to reduce risks for several chronic diseases. To gain insights into the functional properties of HDL, it is critical to understand the HDL structure in detail. To understand interactions between the two major apolipoproteins (apos), apoA-I and apoA-II in HDL, we generated highly defined benchmark discoidal HDL particles. These particles were reconstituted using a physiologically relevant phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) incorporating two molecules of apoA-I and one homodimer of apoA-II per particle. We utilized two independent mass spectrometry techniques to study these particles. The techniques are both sensitive to protein conformation and interactions and are namely: 1) hydrogen deuterium exchange combined with mass spectrometry and 2) partial acetylation of lysine residues combined with MS. Comparison of mixed particles with apoA-I only particles of similar diameter revealed that the changes in apoA-I conformation in the presence of apoA-II are confined to apoA-I helices 3-4 and 7-9. We discuss these findings with respect to the relative reactivity of these two particle types toward a major plasma enzyme, lecithin:cholesterol acyltransferase responsible for the HDL maturation process. 相似文献
5.
Evidence that apolipoprotein A-I facilitates hepatic lipase-mediated phospholipid hydrolysis in reconstituted HDL containing apolipoprotein A-II 总被引:1,自引:0,他引:1
This study examines hepatic lipase (HL) mediated phospholipid hydrolysis in mixtures of apolipoprotein-specific, spherical reconstituted high-density lipoproteins (rHDL). We have shown previously that apolipoprotein A-I (apoA-I) and apoA-II have a major influence on the kinetics of HL-mediated phospholipid and triacylglycerol hydrolysis in well-characterized, homogeneous preparations of spherical rHDL [Hime, N. J., Barter, P. J., and Rye, K.-A. (1998) J. Biol. Chem. 273, 27191-27198]. In the present study, phospholipid hydrolysis was assessed in mixtures of rHDL containing either apoA-I only, (A-I)rHDL, apoA-II only, (A-II)rHDL, or both apoA-I and apoA-II, (A-I/A-II)rHDL. The rHDL contained trace amounts of radiolabeled phospholipid, and hydrolysis was measured as the formation of radiolabeled nonesterified fatty acids (NEFA). As predicted from our previous kinetic studies, the (A-II)rHDL acted as competitive inhibitors of HL-mediated phospholipid hydrolysis in (A-I)rHDL. Less expected was the observation that the rate of phospholipid hydrolysis in (A-II)rHDL was enhanced when (A-I)rHDL were also present in the incubation mixture. The rate of phospholipid hydrolysis in (A-I/A-II)rHDL was also greater than in (A-II)rHDL, indicating that apoA-I enhances phospholipid hydrolysis when it is present as a component of (A-I/A-II)rHDL. It is concluded that apoA-I enhances HL-mediated phospholipid hydrolysis in apoA-II containing rHDL, irrespective of whether the apoA-I is present in the same particle as the apoA-II [as in (A-I/A-II)rHDL] or whether it is present as a component of a different particle, such as when (A-I)rHDL are added to incubations of (A-II)rHDL. 相似文献
6.
Discoidal forms of high density lipoproteins (HDL) are critical intermediates between lipid-poor apolipoprotein A-I (apo A-I), the major protein constituent of HDL, and the mature spherical forms that comprise the bulk of circulating particles. Thus, many studies have focused on understanding apoA-I structure in discs reconstituted in vitro. Recent theoretical and experimental work supports a "belt" model for apoA-I in which repeating amphipathic helical domains run parallel to the plane of the lipid disc. However, disc-associated apoA-I can adopt several tertiary arrangements that are consistent with a belt orientation. To distinguish among these, we cross-linked near-neighbor Lys groups in homogeneous 96 A discs containing exactly two molecules of apoA-I. After delipidation and tryptic digestion, mass spectrometry was used to identify 9 intermolecular and 11 intramolecular cross-links. The cross-linking pattern strongly suggests a "double-belt" molecular arrangement for apoA-I in which two apoA-I molecules wrap around the lipid bilayer disc forming two stacked rings in an antiparallel orientation with helix 5 of each apoA-I in juxtaposition (LL5/5 orientation). The data also suggests the presence of an additional double-belt orientation with a shifted helical registry (LL5/2 orientation). Furthermore, a 78 A particle with two molecules of apoA-I fit a similar double-belt motif with evidence for conformational changes in the N-terminus and the region near helix 5. A comparison of this work to a previous study is suggestive that a third molecule of apoA-I can form a hairpin in larger particles containing three molecules of apoA-I. 相似文献
7.
Evidence in vitro that hepatic lipase reduces the concentration of apolipoprotein A-I in rabbit high-density lipoproteins 总被引:1,自引:0,他引:1
Incubation of rabbit plasma in vitro with hepatic lipase resulted in the hydrolysis of triacylglycerol in high-density lipoproteins (HDL) and a reduction in HDL particle size. These changes were accompanied by a decrease in the concentration of apolipoprotein A-I (apo A-I) in the HDL. The loss of apo A-I was demonstrated independently by ultracentrifugation, size exclusion chromatography and gradient gel-immunoblot analysis. It was unrelated to hydrolysis of HDL phospholipids but did correlate with the reduction in HDL particle size. These studies suggest that the concentration of apo A-I in HDL may be influenced by factors which regulate the metabolism of HDL core lipid constituents. 相似文献
8.
Evidence that endothelial lipase remodels high density lipoproteins without mediating the dissociation of apolipoprotein A-I 总被引:2,自引:0,他引:2
Jahangiri A Rader DJ Marchadier D Curtiss LK Bonnet DJ Rye KA 《Journal of lipid research》2005,46(5):896-903
Endothelial lipase (EL) is a triglyceride lipase gene family member that has high phospholipase and low triglyceride lipase activity. The aim of this study was to determine whether the phospholipase activity of EL is sufficient to remodel HDLs into small particles and mediate the dissociation of apolipoprotein A-I (apoA-I). Spherical, reconstituted HDLs (rHDLs) containing apoA-I only [(A-I)rHDLs], apoA-II only [(A-II)rHDLs], or both apoA-I and apoA-II [(A-I/A-II) rHDLs] were prepared. The rHDLs, which contained only cholesteryl esters in their core and POPC on the surface, were incubated with EL. As the rHDLs did not contain triacylglycerol, only the POPC was hydrolyzed. Hydrolysis was greater in the (A-I/A-II)rHDLs than in the (A-I)rHDLs. The (A-II)rHDL phospholipids were not hydrolyzed by EL. EL remodeled the (A-I)rHDLs and (A-I/A-II)rHDLs, but not the (A-II)rHDLs, into smaller particles. The reduction in particle size was related to the amount of phospholipid hydrolysis, with the diameter of the (A-I/A-II)rHDLs decreasing more than that of the (A-I)rHDLs. These changes did not affect the conformation of apoA-I, and neither apoA-I nor apoA-II dissociated from the rHDLs. Comparable results were obtained when human plasma HDLs were incubated with EL. These results establish that the phospholipase activity of EL remodels plasma HDLs and rHDLs into smaller particles without mediating the dissociation of apolipoproteins. 相似文献
9.
Rabbit apolipoprotein A-I mRNA and gene. Evidence that rabbit apolipoprotein A-I is synthesized in the intestine but not in the liver 总被引:1,自引:0,他引:1
T C Pan Q L Hao T T Yamin P H Dai B S Chen S L Chen P A Kroon Y S Chao 《European journal of biochemistry》1987,170(1-2):99-104
In order to study the tissue-specific expression of rabbit apolipoprotein (apo) A-I, a 923-base-pair clone, pRBA-502, complementary to rabbit apo A-I mRNA was identified from a rabbit intestinal cDNA library by hybrid-select translation and immunoprecipitation methods. Northern blot and dot-blot hybridization, utilizing 32P-labeled pRBA-502, revealed that the rabbit apo A-I gene is expressed in the intestine, not in the liver and that rabbit apo A-I mRNA is about 950 nucleotides in length. The entire nucleotide sequence of pRBA-502 has been determined and the complete amino acid sequence of the corresponding apo A-I has been deduced. The mRNA codes for a protein comprising 265 amino acids. Amino acids 1-18 and 19-24 of the primary translation product represent the presegment and prosegment, respectively, of apo A-I. Matured rabbit apo A-I contains 241 amino acids and has a molecular mass of 27612 Da. Using pRBA-502 as a probe, a 15.5-kb genomic fragment, which contains the entire apo A-I gene, was isolated from a rabbit liver genomic library. Sequence analysis of the gene shows that the 200 base pairs of the 5' upstream flanking region of the rabbit and human apo A-I genes showed 78% sequence homology. Like the human apo A-I gene, the rabbit apo A-I gene is interrupted by three intervening sequences. Except for two nucleotides in the fourth exon, the coding sequence of the rabbit liver apo A-I gene is identical to that of pRBA-502. Our data showed that the lack of expression of apo A-I gene in rabbit liver is not due to the alternation of rabbit liver apo A-I gene sequence and suggest that the expression of apo A-I gene in rabbit liver is regulated by a trans-acting regulating element(s). 相似文献
10.
The C-terminal domain of apolipoprotein A-I is involved in ABCA1-driven phospholipid and cholesterol efflux 总被引:1,自引:0,他引:1
Favari E Bernini F Tarugi P Franceschini G Calabresi L 《Biochemical and biophysical research communications》2002,299(5):801-805
ABCA1, a member of the ATP-binding cassette family, mediates the efflux of cellular lipids to free apolipoproteins, mainly apoA-I. The role of the C-terminal domain of apoA-I in this process has been evaluated by measuring the efflux capacity of a truncated form (apoA-I-(1-192)) versus intact apoA-I in different cellular models. In stimulated J774 macrophages, cholesterol efflux to apoA-I-(1-192) was remarkably lower than that to the intact apoA-I. The truncated apoA-I, lacking an important lipid-binding domain, was also significantly less efficient in removing phospholipids from stimulated macrophages. No difference was detected with stimulated Tangier fibroblasts that do not express functional ABCA1. The C-terminal domain of apoA-I is clearly involved in ABCA1-driven lipid efflux. Independent of the interaction with the cell surface, it may be the decreased ability of the truncated apoA-I to recruit membrane phospholipids that impairs its capacity to promote cell cholesterol efflux. 相似文献
11.
Saito H Dhanasekaran P Nguyen D Deridder E Holvoet P Lund-Katz S Phillips MC 《The Journal of biological chemistry》2004,279(20):20974-20981
Apolipoprotein (apo) A-I is thought to undergo a conformational change during lipid association that results in the transition of random coil to alpha-helix. Using a series of deletion mutants lacking different regions along the molecule, we examined the contribution of alpha-helix formation in apoA-I to the binding to egg phosphatidylcholine (PC) small unilamellar vesicles (SUV). Binding isotherms determined by gel filtration showed that apoA-I binds to SUV with high affinity and deletions in the C-terminal region markedly decrease the affinity. Circular dichroism measurements demonstrated that binding to SUV led to an increase in alpha-helix content, but the helix content was somewhat less than in reconstituted discoidal PC.apoA-I complexes for all apoA-I variants, suggesting that the helical structure of apoA-I on SUV is different from that in discs. Isothermal titration calorimetry showed that the binding of apoA-I to SUV is accompanied by a large exothermic heat and deletions in the C-terminal regions greatly decrease the heat. Analysis of the rate of release of heat on binding, as well as the kinetics of quenching of tryptophan fluorescence by brominated PC, indicated that the opening of the N-terminal helix bundle is a rate-limiting step in apoA-I binding to the SUV surface. Significantly, the correlation of thermodynamic parameters of binding with the increase in the number of helical residues revealed that the contribution of alpha-helix formation upon lipid binding to the enthalpy and the free energy of the binding of apoA-I is -1.1 and -0.04 kcal/mol per residue, respectively. These results indicate that alpha-helix formation, especially in the C-terminal regions, provides the energetic source for high affinity binding of apoA-I to lipids. 相似文献
12.
The conversion of the precursor of apolipoprotein A-I (proapoA-I) to apolipoprotein A-I (apoA-I) is known to occur extracellularly by an enzyme that has been shown to be present in plasma. The hepatocarcinoma-derived cell line Hep G2, when grown in culture, secretes proapoA-I. We now show that this cell line also secretes the converting enzyme that correctly processes proapoA-I to mature apoA-I as determined by radio-sequence analyses. The secreted enzyme is inhibited by EDTA and 1,10-phenanthroline, is activated by Ca2+ and is unaffected by both phenylmethylsulfonyl fluoride and diisoprophylfluorophosphate in the same way as the converting enzyme previously described in the plasma. The conversion of proapoA-I to apoA-I effected by this enzyme obeys first-order kinetics and is linear over the first 4 h with a calculated initial velocity of 3.3% conversion per hour. The converting activity is secreted in a time-dependent fashion and parallels the mass of total secreted protein. 相似文献
13.
Administration of alpha-naphthylisothiocyanate (ANIT) to rats induces changes to plasma lipids consistent with cholestasis. We have previously shown (J. Lipid Res. 37 (1996) 1086) that animals treated with ANIT accumulate large amounts of free cholesterol (FC) and phospholipid (PL)-rich cholestatic lipoproteins in the LDL density range by 48 h. This lipid was cleared by 120 h through apparent movement into HDL with concomitant cholesteryl ester (CE) production. It was hypothesised that the clearance was mediated through the movement of the PL and FC into apolipoprotein A-I (apo A-I) containing lipoproteins followed by LCAT esterification to form CE. To test this hypothesis, rats overexpressing various amounts of human apo A-I (TgR[HuAI] rats) were treated with ANIT (100 mg/kg) and the effect of plasma apo A-I concentration on plasma lipids and lipoprotein distribution was examined. In untreated TgR[HuAI] rats, human apo A-I levels were strongly correlated to plasma PL (r(2)=0. 94), FC (r(2)=0.93) and CE (r(2)=0.90), whereas in ANIT-treated TgR[HuAI] rats, human apo A-I levels were most strongly correlated to CE levels (r(2)=0.80) and an increased CE/FC ratio (r(2)=0.62) and the movement of cholestatic lipid in the LDL to HDL. Since LCAT activity was not affected by ANIT treatment, these results demonstrate that the ability of LCAT to esterify the plasma FC present in cholestatic liver disease is limited by in vivo apo A-I activation of the cholestatic lipid and not by the catalytic capacity of LCAT. 相似文献
14.
Interaction of human low-density lipoproteins (LDL) with discoidal complexes comprised of egg yolk phosphatidylcholine and human apolipoprotein A-I (molar ratio, 88:1, respectively) was investigated. The multicomponent gradient gel electrophoretic pattern of LDL is transformed to one that includes a predominant component with an apparent particle diameter larger than that of the initial major LDL but still in the size range of normal LDL. The apparent particle diameter increase (range, 0.2-3.5 nm) is proportional to the increase (range, 6-40%) in LDL phospholipid/protein weight ratio following incubation (37 degrees C; 6 and 24 h); the smaller the initial LDL diameter, the greater the apparent particle diameter increase and percentage of phospholipid uptake. The LDL unesterified cholesterol/protein weight ratio decreases (range, 33-39%), but does not correlate with the increase in apparent particle diameter value. Interaction products are round particles with intact apolipoprotein B and show no evidence of phospholipid degradation. The products appear more dense than expected from the size vs. density relationship observed for nonincubated LDL subspecies. In addition to products in the normal LDL size range, larger components (apparent particle diameter range, 29.0-41.2 nm) also form and may be association complexes of phospholipid-modified LDL. Our results indicate that phospholipid uptake by LDL may contribute to the particle size polydispersity observed in plasma LDL. 相似文献
15.
Dissociation of apolipoprotein E oligomers to monomer is required for high-affinity binding to phospholipid vesicles 总被引:1,自引:0,他引:1
The apolipoprotein apoE plays a key role in cholesterol and lipid metabolism. There are three isoforms of this protein, one of which, apoE4, is the major risk factor for Alzheimer's disease. At micromolar concentrations all lipid-free apoE isoforms exist primarily as monomers, dimers, and tetramers. However, the molecular weight form of apoE that binds to lipid has not been clearly defined. We have examined the role of self-association of apoE with respect to interactions with phospholipids. Measurements of the time dependence of turbidity clearance of small unilamellar vesicles of dimyristoyl-sn-glycero-3-phosphocholine (DMPC) upon addition of apoE show that higher molecular weight oligomers bind poorly if at all. The kinetic data can be described by a reaction model in which tetramers and dimers of apoE must first dissociate to monomers which then bind to the liposome surface in a fast and reversible manner. A slow but not readily reversible conformational conversion of the monomer then occurs. Prior knowledge of the rate constants for the association-dissociation process allows us to determine the rate constant of the conformational conversion. This rate constant is isoform dependent and appears to correlate with the stability of the apoE isoforms with the rate of dissociation of the apoE oligomers to monomers being the rate-limiting process for lipidation. Differences in the lipidation kinetics between the apoE isoforms arise from their differences in the self-association behavior leading to the conclusion that self-association behavior may influence biological functions of apoE in an isoform-dependent manner. 相似文献
16.
Transfected mouse mammary-derived cells (C127) expressing human apolipoprotein (apo) E (C127E) were used a) to determine whether the lipid-binding character of apoE is sufficient to promote its assembly with lipid to form lipoprotein-like particles when expressed by cells not normally expressing apolipoproteins; b) to characterize the secreted complexes in terms of morphology, size, and composition; and finally c) to determine whether apoE or apoA-I gene expression by these transfected cells has any effect on the levels and the profiles of the synthesized and secreted lipids. The findings of the present study demonstrate that: a) as determined by density gradient ultracentrifugation and gel filtration chromatography, about 20% of the secreted [35S]methionine-labeled apoE expressed by C127E cells is lipid-associated. b) Negative-stain electron microscopic analysis of the lipid-protein complexes recovered in the lipoprotein fractions (d less than 1.21 g/ml) revealed that approximately 13% of the total population of particles were discs (16 +/- 5 nm mean diameter and 4-6 nm thick), resembling nascent high density lipoproteins (HDL). The majority of the particles however (greater than 82%) appeared vesicular with varying diameters (48 +/- 40 nm mean diameter). The discoidal and the vesicular appearance of the particles secreted by C127E cells is consistent with the composition of lipids. These consisted mostly of surface lipids, phospholipids (45 +/- 18%), diacylglycerols (36 +/- 17%), and free cholesterol (17 +/- 7%) (by weight). c) Expression of apoE by C127E cells was associated with an increased release of [35S]methionine-labeled protein and [3H]glycerol-labeled lipid (3- to 5- and 4- to 8-fold, respectively) compared to nontransfected C127 cells. Expression of mutant apoE or normal apoA-I, however, was not associated with increased release of the major lipid classes compared to the parent C127 cells, strongly suggesting that this character of C127E cells is specific to apoE expression. The release of lipids by C127E cells could be reduced considerably by the addition of the metabolic inhibitors, colchicine or cycloheximide (10 and 1 microM, respectively), suggesting that lipid release by C127E cells is an active process requiring both protein synthesis and functional secretory mechanisms. Taken together the findings suggest that apoE expression by C127 cells promotes the formation of nascent discoidal lipoprotein-like particles and enhances the release of vesicular lipids, possibly by promoting shedding of cell plasma membrane fragments. 相似文献
17.
Apolipoprotein (apo) A-I-containing lipoproteins in the form of high-density lipoproteins (HDL) are inversely correlated with atherosclerosis. Because HDL is a soft form of condensed matter easily deformable by thermal fluctuations, the molecular mechanisms for HDL remodeling are not well understood. A promising approach to understanding HDL structure and dynamics is molecular dynamics (MD). In the present study, two computational strategies, MD simulated annealing (MDSA) and MD temperature jump, were combined with experimental particle reconstitution to explore molecular mechanisms for phospholipid- (PL-) rich HDL particle remodeling. The N-terminal domains of full-length apoA-I were shown to be "sticky", acting as a molecular latch largely driven by salt bridges, until, at a critical threshold of particle size, the associated domains released to expose extensive hydrocarbon regions of the PL to solvent. The "sticky" N-termini also associate with other apoA-I domains, perhaps being involved in N-terminal loops suggested by other laboratories. Alternatively, the overlapping helix 10 C-terminal domains of apoA-I were observed to be extremely mobile or "promiscuous", transiently exposing limited hydrocarbon regions of PL. Based upon these models and reconstitution studies, we propose that separation of the N-terminal domains, as particles exceed a critical size, triggers fusion between particles or between particles and membranes, while the C-terminal domains of apoA-I drive the exchange of polar lipids down concentration gradients between particles. This hypothesis has significant biological relevance since lipid exchange and particle remodeling are critically important processes during metabolism of HDL particles at every step in the antiatherogenic process of reverse cholesterol transport. 相似文献
18.
To determine the apolipoprotein specificity of high density lipoprotein (HDL) receptor, apolipoprotein A-I (apo-AI) and apolipoprotein A-II (apo-AII) purified from high density lipoprotein3 (HDL3) were reconstituted into dimyristoyl phosphatidylcholine vesicles (DMPC) and their ability to bind to luteinized rat ovarian membranes was examined. Both 125I-apo-A-I.DMPC and 125I-apo-A-II.DMPC were shown to bind to ovarian membranes with Kd = 2.87 and 5.70 micrograms of protein/ml, respectively. The binding of both 125I-apo-A-I.DMPC and 125I-apo-A-II.DMPC was inhibited by unlabeled HDL3, apo-A-I.DMPC, apo-A-II.DMPC, apo-C-I.DMPC, apo-C-II.DMPC, apo-C-III1.DMPC, and apo-C-III2.DMPC, but not by DMPC vesicles, bovine serum albumin.DMPC or low density lipoprotein. Since the binding labeled apo-A-I.DMPC and apo-A-II.DMPC was inhibited by the DMPC complexes of apo-C groups, the direct binding of 125I-apo-C-III1.DMPC was also demonstrated with Kd = 9.6 micrograms of protein/ml. In addition, unlabeled apo-A-I.DMPC, and apo-A-II.DMPC, as well as apo-C.DMPC, inhibited 125I-HDL3 binding. 125I-apo-A-I, 125I-apo-A-II, and 125I-apo-C-III1 in the absence of DMPC also bind to the membranes. These results suggest that HDL receptor recognizes apolipoprotein AI, AII, and the C group and that the binding specificity of the reconstituted lipoproteins is conferred by their apolipoprotein moiety rather than the lipid environment. In vivo pretreatment of rats with human chorionic gonadotropin resulted in an increase of 125I-apo-A-I.DMPC, 125I-apo-A-II.DMPC, and 125I-apo-C-III1.DMPC binding activities. However, no induction of binding activity was observed when the apolipoprotein was not included in DMPC vesicles. An examination of the equilibrium dissociation constant and binding capacity for 125I-apo-A-I.DMPC and 125I-apo-A-II.DMPC after human chorionic gonadotropin treatment revealed that the increase in binding activity was due to an increase in the number of binding sites rather than a change in the binding affinity. These results further support our contention that apo-A-I, apo-A-II, and the apo-C group bind to HDL receptor. In conclusion, the HDL receptor of luteinized rat ovary recognizes apolipoproteins A-I, A-II, and the C group but not low density lipoprotein, and the binding is induced by human chorionic gonadotropin in vivo. 相似文献
19.
A combined N- and C-terminal truncation variant of human apolipoprotein A-I (apoA-I) was designed, expressed in Escherichia coli, isolated, and characterized. Hydrodynamic experiments yielded a weight average molecular weight of 34000, indicating apoA-I-(44-186) exists in solution predominantly as a dimer. An axial ratio of 4.2 was calculated for the dimer based on sedimentation velocity experiments. Far-UV circular dichroism spectroscopy of apoA-I-(44-186) in buffer indicated the presence of 65% alpha-helix secondary structure. Guanidine hydrochloride denaturation experiments yielded a transition midpoint of 0.5 M for apoA-I-(44-186). ApoA-I-(44-186) induced solubilization of dimyristoylphosphatidylcholine vesicles at a rate comparable to that of full-length apoA-I, displayed lipoprotein binding ability, and was an acceptor of ABCA1-mediated cholesterol efflux from cultured macrophages. Fluorescence quenching studies with KI indicate that the three Trp residues in apoA-I-(44-186) are shielded from the aqueous environment. Taken together, the data indicate that lipid-free apoA-I-(44-186) adopts a folded conformation in solution that possesses lipid binding capability. The central region of apoA-I appears to adopt a globular amphipathic alpha-helix bundle organization that is stabilized by intramolecular and/or intermolecular helix-helix interactions. Lipid association likely results in a conformational adaptation wherein helix-helix contacts are substituted for helix-lipid interactions. 相似文献
20.
A Duggan M Paolucci A Tercyak M Gigliotti D Small I Callard 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2001,130(2):253-269
An analysis of plasma lipids and lipoprotein fractions was performed over the course of the annual ovarian cycle of the female turtle, Chrysemys picta. Determinations of total plasma triglycerides, cholesterol, vitellogenin and apolipoprotein A-I (apoA-I) were made. The lipid and protein composition of the lipoprotein fractions [very low density lipoprotein (VLDL), low density lipoprotein (LDL), high density lipoprotein (HDL) and very high density lipoprotein (VHDL)] were also observed over the same period. Plasma triglyceride and vitellogenin levels were significantly increased in the spring preovulatory period and fall recrudescent phase. Total plasma cholesterol levels were significantly elevated only at the onset of the fall recrudescent phase and apoA-I levels were highest during the postoviposition/ovarian arrest phase. The triglyceride content of VLDL was highest in preovulatory animals and there were apparent seasonal changes in the expression of apoA-I and apoE of HDL/VHDL. We conclude that the coordinate regulation of lipids and protein contributes to seasonal ovarian growth and clearance of lipids from plasma, both of which are most likely under hormonal control. 相似文献