首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report that the first localized Ca(2+) transient visualized in the blastodisc cortex of post-mitotic zebrafish zygotes has unique features. We confirm that this initial 'furrow positioning' Ca(2+) transient precedes the physical appearance of the first cleavage furrow at the blastodisc surface and that it has unique dynamics, which distinguish it from the subsequent furrow propagation transients that develop from it. This initial transient displays a distinct rising phase that peaks prior to the initiation of the two linear, subsurface, self-propagating Ca(2+) waves that constitute the subsequent furrow propagation transient. Through the carefully timed introduction of the Ca(2+) buffer, dibromo-BAPTA, we also demonstrate the absolute requirement of this initial rising phase Ca(2+) transient in positioning the furrow at the blastodisc surface: no rising phase transient, no cleavage furrow. Likewise, the introduction of the inositol 1,4,5-trisphosphate receptor (IP3R) antagonist, 2-aminoethoxydiphenyl borate, eliminates both the rising phase transient and the appearance of the furrow at the cell surface. On the other hand, antagonists of the ryanodine receptor and NAADP-sensitive channels, or simply bathing the zygote in Ca(2+)-free medium, have no effect on the generation of the rising phase positioning transient or the appearance of the furrow at the surface. This suggests that like the subsequent propagation and deepening/zipping Ca(2+) transients, the rising phase furrow positioning transient is also generated specifically by Ca(2+) released via IP3Rs. We propose, however, that despite being generated by a similar Ca(2+) release mechanism, the unique features of this initial transient suggest that it might be a distinct signal with a specific function associated with positioning the cleavage furrow at the blastodisc surface.  相似文献   

2.
Females homozygous for a mutation in cellular island (cei) produce embryos with defects in cytokinesis during early development. Analysis of the cytoskeletal events associated with furrow formation reveal that these defects include a general delay in furrow initiation as well as a complete failure to form furrow-associated structures in distal regions of the blastodisc. A linkage mapping-based candidate gene approach, including transgenic rescue, shows that cei encodes the zebrafish Aurora B kinase homologue. Genetic complementation analysis between the cei mutation and aurB zygotic lethal mutations corroborate gene assignment and reveal a complex nature of the maternal-effect cei allele, which appears to preferentially affect a function important for cytokinesis in the early blastomeres. Surprisingly, in cei mutant embryos a short yet otherwise normal furrow forms in the center of the blastodisc. Furrow formation is absent throughout the width of the blastodisc in cei mutant embryos additionally mutant for futile cycle, which lack a spindle apparatus, showing that the residual furrow signal present in cei mutants is derived from the mitotic spindle. Our analysis suggests that partially redundant signals derived from the spindle and astral apparatus mediate furrow formation in medial and distal regions of the early embryonic blastomeres, respectively, possibly as a spatial specialization to achieve furrow formation in these large cells. In addition, our data also suggest a role for Cei/AurB function in the reorganization of the furrow-associated microtubules in both early cleavage- and somite-stage embryos. In accordance with the requirement for cei/aurB in furrow induction in the early cleavage embryo, germ plasm recruitment to the forming furrow is also affected in embryos lacking normal cei/aurB function.  相似文献   

3.
The mitotic spindle provides the spatial cue that coordinates cytokinesis with nuclear division. However, the specific property of the mitotic spindle that mediates this spatial regulation remains obscure, in part because different aspects of the mitotic spindle appear to have furrow inducing activity in different systems. We show that in C. elegans embryos, although the central spindle is usually dispensable for furrow initiation, it becomes essential for furrow formation when the extent of centrosome separation during anaphase is reduced. Measurements of microtubule density demonstrate that furrow formation occurs in the vicinity of a local minimum of microtubule density. Reduction of the extent of spindle elongation or disruption of the central spindle causes delayed formation of the cleavage furrow. These data suggest that reduced microtubule density triggers cleavage furrow initiation and demonstrate that redundant mechanisms direct efficient formation of the cleavage furrow.  相似文献   

4.
To study the regulation of embryonic development by Rho, we microinjected Clostridium botulinum C3-exoenzyme (C3) into zebrafish embryos. We found that C3 inhibited cytokinesis during early cleavages. C3 inhibition appeared to be specific on RhoA, since the constitutively active RhoA could partially rescued the C3-induced defects. Distributions of actin and the cleavage furrow associated beta-catenin were disrupted by C3. Belbbistatin, a myosin II inhibitor, also caused blastomeres disintegration. It suggested that Rho mediates cytokinesis via cleavage furrow protein assembly and actomyosin ring constriction. Furthermore, C3 blocked cellular movements during epiboly and gastrulation as evident by the impairment on no tail and goosecoid expression in blastoderm front runner cells and the dorsal lip of blastopore, respectively. Y-27632, an antagonist of Rho-associated kinase (ROK/ROCK), had the similar inhibitory effects on zebrafish development as the C3 treatments. Taken together, these results suggest that Rho mediates cleavage furrow protein assembly during cytokinesis and cellular migration during epiboly and gastrulation via a ROK/ROCK-dependent pathway.  相似文献   

5.
BACKGROUND: In syncytial blastoderm Drosophila embryos, actin caps assemble during telophase. As the cell cycle progresses through interphase, these small caps expand and fuse to form pseudocleavage furrows that are structurally related to the cleavage furrows that assemble during somatic cell division. The molecular mechanism driving cell cycle coordinated actin reorganization from the caps to the furrows is not understood. RESULTS: We show that Drosophila embryos contain a typical Arp2/3 complex and that components of this complex localize to the margins of the expanding caps, to mature pseudocleavage furrows, and to somatic cell cleavage furrows during the postcellularization embryonic divisions. A mutation that disrupts the arpc1 subunit of Arp2/3 leads to spindle fusions that are characteristic of pseudocleavage furrow disruption. By contrast, this mutation does not significantly affect nuclear positioning during interphase, which is dependent on actin cap function. In vivo analysis of actin reorganization demonstrates that the arpc1 mutation does not prevent assembly of small actin caps but blocks cap expansion and furrow assembly as the cell cycle progresses through interphase. The scrambled gene is also required for cap expansion and furrow assembly, and Scrambled is required for Arp2/3 localization to the cap margins. CONCLUSIONS: The Drosophila Arp2/3 complex and Scrambled protein are required for actin cap expansion and pseudocleavage furrow formation during the syncytial blastoderm divisions. We propose that Scrambled-dependent localization of Arp2/3 to the margins of the expanding caps triggers local actin polymerization that drives cap expansion and pseudocleavage furrow assembly.  相似文献   

6.
We have previously visualized three Ca2+ transients, generated by release from intracellular stores, which are associated with cytokinesis during the early cell division cycles of zebrafish embryos: the furrow positioning, propagation and deepening transients. Here we demonstrate the requirement of the latter for furrow deepening, and identify the Ca2+ release channels responsible for generating the deepening transient. The introduction of the Ca2+ buffer 5,5'-dibromo-BAPTA, at an appropriate time to challenge only the deepening transient, resulted in the dissipation of this transient and an inhibition of furrow deepening. Introduction of antagonists of the inositol 1,4,5-trisphosphate (IP3) receptor (heparin and 2-aminoethoxydiphenylborate; 2-APB) at the appropriate time, blocked the furrow deepening transient and resulted in an inhibition of furrow deepening. In contrast, antagonists of the ryanodine receptor and the NAADP-sensitive channel had no effect on either the furrow deepening transient or on furrow deepening. In addition, microinjection of IP3 led to the release of calcium from IP3-sensitive stores, whereas the introduction of caffeine or cADPR failed to induce any increase in intracellular Ca2+. Our new data thus support the idea that Ca2+ released via IP3 receptors is essential for generating the furrow deepening transient and demonstrate a requirement for a localized cytosolic Ca2+ riseforthe furrow deepening process. We also present data to show that the endoplasmic reticulum and IP3 receptors are localized on either side of the cleavage furrow, thus providing the intracellular Ca2+ store and release mechanism for generating the deepening transient.  相似文献   

7.
How microtubules act to position the plane of cell division during cytokinesis is a topic of much debate. Recently, we showed that a subpopulation of stable microtubules extends past chromosomes and interacts with the cell cortex at the site of furrowing, suggesting that these stabilized microtubules may stimulate contractility. To test the hypothesis that stable microtubules can position furrows, we used taxol to rapidly suppress microtubule dynamics during various stages of mitosis in PtK1 cells. Cells with stabilized prometaphase or metaphase microtubule arrays were able to initiate furrowing when induced into anaphase by inhibition of the spindle checkpoint. In these cells, few microtubules contacted the cortex. Furrows formed later than usual, were often aberrant, and did not progress to completion. Images showed that furrowing correlated with the presence of one or a few stable spindle microtubule plus ends at the cortex. Actin, myosin II, and anillin were all concentrated in these furrows, demonstrating that components of the contractile ring can be localized by stable microtubules. Inner centromere protein (INCENP) was not found in these ingressions, confirming that INCENP is dispensable for furrow positioning. Taxol-stabilization of the numerous microtubule-cortex interactions after anaphase onset delayed furrow initiation but did not perturb furrow positioning. We conclude that taxol-stabilized microtubules can act to position the furrow and that loss of microtubule dynamics delays the timing of furrow onset and prevents completion. We discuss our findings relative to models for cleavage stimulation.  相似文献   

8.
The organization of microtubules within the surface caps of Drosophila embryos is described for the mitotic cycles of the syncytial blastoderm stage (particularly cycle 10), and for the subsequent cellularization process. Tubulin was labelled with the well characterized monoclonal antibody YL 1/2 (Kilmartin et al., J cell biol 93 (1982) 576). Each surface cap was found to contain an array of microtubules running around the nucleus. The microtubules originated at prominent centrosomes located close to the apical surface of each cap nucleus. During mitosis the spindle microtubules stained strongly for tubulin. A novel finding was that the spindle microtubules of the interzone region appeared to reduce their connections with the centrosomes at the end of anaphase. The spindle remnant remained in position during telophase but then became smaller in size, disappearing by interphase. At this phase of the cell cycle duplication of the aster centrosomes occurred. The cellular blastoderm stage was marked by a change in the main axis of microtubule orientation. The centrosomes of each cap separated somewhat and formed initiation centres for the development of a well developed basket of microtubules around each nucleus, but now perpendicular to the surface. The microtubule baskets were seen to extend in parallel with nuclear elongation, but not in concert with growth of the cell membranes, which extended some way beneath the bases of the nuclei.  相似文献   

9.
Animal cells decide where to build the cytokinetic apparatus by sensing the position of the mitotic spindle. Reflecting a long-standing presumption that a furrow-inducing stimulus travels from spindle to cortex via microtubules, debate continues about which microtubules, and in what geometry, are essential for accurate cytokinesis. We used live imaging in urchin and frog embryos to evaluate the relationship between microtubule organization and cytokinetic furrow position. In normal cells, the cytokinetic apparatus forms in a region of lower cortical microtubule density. Remarkably, cells depleted of astral microtubules conduct accurate, complete cytokinesis. Conversely, in anucleate cells, asters alone can support furrow induction without a spindle, but only when sufficiently separated. Ablation of a single centrosome displaces furrows away from the remaining centrosome; ablation of both centrosomes causes broad, inefficient furrowing. We conclude that the asters confer accuracy and precision to a primary furrow-inducing signal that can reach the cell surface from the spindle without transport on microtubules.  相似文献   

10.
Selection of the cleavage plane during cytokinesis in dividing cells is linked to the position of the mitotic spindle. A major player in cleavage plane positioning is believed to be the anaphase central spindle and its associated signaling complex called centralspindlin, composed of MgcRacGap and MKLP1. Centralspindlin has the capacity to induce furrowing of the cell cortex by promoting the localized activation of RhoA, which in turn promotes assembly of the contractile ring. We have found a way to induce a cytokinesis-like process in unfertilized Drosophila eggs and very early embryos, when spindle structures are few and located far from invaginating egg cortex. The simple injection of a small molecule inhibitor of Cdk1/Cyclin B (either Roscovitin or RO3306) is sufficient to promote membrane invagination near the site of injection. The furrow generated is in many respects similar to a classical cleavage furrow. Actin, myosin, anillin and MKLP1 are all associated with the forming furrow, which in some cases can entirely circumscribe the unfertilized egg. A similar furrow can also be generated by the localized injection of constitutively active RhoA protein, suggesting that Cdk1 is normally an upstream inhibitor of RhoA activation. We show further that this process apparently is not associated with microtubules. Since simple localized inhibition of Cdk1 is sufficient to induce a furrow, we suggest that in real cytokinesis in normal cells, the localized downregulation of Cdk1 activity at the metaphase-anaphase transition may contribute, along with the spindle, to the positioning of the cleavage furrow.  相似文献   

11.
The mitotic spindle is crucial to achieve segregation of sister chromatids. To identify new mitotic spindle assembly regulators, we isolated 855 microtubule-associated proteins (MAPs) from Drosophila melanogaster mitotic or interphasic embryos. Using RNAi, we screened 96 poorly characterized genes in the Drosophila central nervous system to establish their possible role during spindle assembly. We found that Ensconsin/MAP7 mutant neuroblasts display shorter metaphase spindles, a defect caused by a reduced microtubule polymerization rate and enhanced by centrosome ablation. In agreement with a direct effect in regulating spindle length, Ensconsin overexpression triggered an increase in spindle length in S2 cells, whereas purified Ensconsin stimulated microtubule polymerization in vitro. Interestingly, ensc-null mutant flies also display defective centrosome separation and positioning during interphase, a phenotype also detected in kinesin-1 mutants. Collectively, our results suggest that Ensconsin cooperates with its binding partner Kinesin-1 during interphase to trigger centrosome separation. In addition, Ensconsin promotes microtubule polymerization during mitosis to control spindle length independent of Kinesin-1.  相似文献   

12.
Kuroda et al. (2001) of our laboratory have previously revealed that exposure of early Xenopus embryos to 150 mm urethane results in complete suppression of formation of the asters and the cleavage furrow, as well as significant reduction of the size of the spindle in the blastomeres, allowing only 1 or 2 cycles of mitosis but not cytokinesis. In the course of closer examination of the effect of urethane on the cleavage of blastomeres of early Xenopus embryos, we unexpectedly discovered that exposure of early Xenopus embryos to 75 mm urethane did not prevent cell division at all, though asters were not detected in the blastomeres. Instead, they contained a spindle that appeared rather normal. They also formed the diastema, a thin yolk-free structure, which is considered to play an essential role in the induction of the cleavage furrow. Essentially the same results were obtained in the exposure of embryos to vinblastine, a well-known microtubule inhibitor: exposure of embryos to 20 micro g/mL vinblastine resulted in complete suppression of cleavage of the blastomeres, where formation of both the spindle and asters were perfectly suppressed. By contrast, exposure of embryos to 5 microg/mL vinblastine did not prevent cleavage in the blastomeres though asters were not detected, whereas the rather normal spindle was formed. Thus, there was a close correlation between the formation of the normal spindle, not asters, and that of the cell division furrow and the diastema in the blastomeres of early Xenopus embryos. We suggest that while the spindle plays an essential role, asters are likely to play only a dispensable role in the induction of the cleavage furrow in even very large cells like the blastomeres of early Xenopus embryos.  相似文献   

13.
Early embryonic development in Drosophila melanogaster is marked by a series of thirteen very rapid (10-15 min) and highly synchronous nuclear divisions, the last four of which occur just beneath the embryo surface. A total of some 6000 blastoderm nuclei result, which are subsequently enclosed by furrow membranes to form the cellular blastoderm. We have examined the fine structure of nuclear division in late syncytial embryos. The mitotic spindle forms adjacent to the nuclear envelope on the side facing the embryo surface. During prophase, astral microtubules deform the nuclear envelope which then ruptures at the poles at the onset of prometaphase. The nuclear envelope remains essentially intact elsewhere throughout mitosis. A second envelope begins to form around the nuclear envelope in prometaphase and is completed by metaphase; the entire double layered structure, referred to as the spindle envelope, persists through early in the ensuing interphase. Pole cell spindles are enclosed by identical spindle envelopes. Interphase and prophase nuclei contain nuclear pore complexes (PCs) of standard dimensions and morphology. In prometaphase PCs become much less electron-dense, although they retain their former size and shape. By metaphase, no semblance of PC structure remains, and instead, both layers of the spindle envelope are interrupted by numerous irregular fenestrae. PCs are presumably disassembled into their component parts during mitosis, and reassembled subsequently. Yolk nuclei remain among the central yolk mass when most nuclei migrate to the surface, cease to divide, yet become polyploid. These nuclei nonetheless lose and regain PCs in synchrony with the dividing blastoderm nuclei. In addition, they gain and lose a second fenestrated membrane layer with the same timing. Cytoplasmic membranes containing PCs (annulate lamellae) also lose and regain pores in synchrony with the two classes of nuclear envelopes. The factors that affect the integrity of PCs in dividing blastoderm nuclei appear to affect those in other membrane systems to an equivalent degree and with identical timing.  相似文献   

14.
The generation of a required series of localized Ca2+ transients during cytokinesis in zebrafish embryos suggests that Ca2+ plays a necessary role in regulating this process. Here, we report that cortical actin remodeling, characterized by the reorganization of the contractile band and the formation during furrow deepening of pericleavage F-actin enrichments (PAEs), requires a localized increase in intracellular Ca2+, which is released from IP3-sensitive stores. We demonstrate that VAMP-2 vesicle fusion at the deepening furrow also requires Ca2+ released via IP3 receptors, as well as the presence of PAEs and the action of calpains. Finally, by expressing a dominant-negative form of the kinesin-like protein, kif23, we demonstrate that its recruitment to the furrow region is required for VAMP-2 vesicle transport; and via FRAP analysis, that kif23 localization is also Ca2+-dependent. Collectively, our data demonstrate that a localized increase in intracellular Ca2+ is involved in regulating several key events during furrow deepening and subsequent apposition.  相似文献   

15.
We have identified the Yes kinase in zebrafish eggs and investigated its role in development of the zebrafish embryo. In situ hybridization as well as immunofluorescence techniques demonstrated that Yes kinase is maternally expressed and is localized to the cortical region of the unfertilized egg. Fertilization resulted in concentration of Yes kinase to the blastodisc where it continued to be localized to the blastoderm cells through cleavage, gastrulation, and later development. Yes kinase activity was found to decrease abruptly at fertilization, then increase progressively during epiboly, and was maintained at high levels throughout gastrulation. The role of Yes kinase in development was tested by treating embryos with chemical protein tyrosine kinase (PTK) inhibitors such as 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d] pyrimidine (PP2) and by injection of antisense morpholinos. Both treatments resulted in the arrest of development at the beginning of the epiboly. Co-immunoprecipitation studies demonstrated that Yes kinase participates in a stable complex with focal adhesion kinase (FAK), which is phosphorylated in vitro. These results demonstrate that Yes kinase plays an important role in epiboly and indicate that Yes kinase participates in signaling by focal adhesion kinase during early development.  相似文献   

16.
The kinesin superfamily is a large group of proteins (kinesin-like proteins [KLPs]) that share sequence similarity with the microtubule (MT) motor kinesin. Several members of this superfamily have been implicated in various stages of mitosis and meiosis. Here we report our studies on KLP67A of Drosophila. DNA sequence analysis of KLP67A predicts an MT motor protein with an amino-terminal motor domain. To prove this directly, KLP67A expressed in Escherichia coli was shown in an in vitro motility assay to move MTs in the plus direction. We also report expression analyses at both the mRNA and protein level, which implicate KLP67A in the localization of mitochondria in undifferentiated cell types. In situ hybridization studies of the KLP67A mRNA during embryogenesis and larval central nervous system development indicate a proliferation-specific expression pattern. Furthermore, when affinity-purified anti-KLP67A antisera are used to stain blastoderm embryos, mitochondria in the region of the spindle asters are labeled. These data suggest that KLP67A is a mitotic motor of Drosophila that may have the unique role of positioning mitochondria near the spindle.  相似文献   

17.
BACKGROUND: In many animals, embryonic patterning depends on a careful interplay between cell division and the segregation of localized cellular components. Both of these processes in turn rely on cytoskeletal elements and motor proteins. A type of localized cellular component found in most animals is the germ plasm, a specialized region of cytoplasm that specifies the germ-cell fate. The gene vasa has been shown in Drosophila to encode an essential component of the germ plasm and is thought to have a similar function in other organisms. In the zebrafish embryo, the vasa RNA is localized to the furrows of the early cellular divisions. RESULTS: We identified the gene nebel in a pilot screen for zebrafish maternal-effect mutations. Embryos from females homozygous for a mutation in nebel exhibit defects in cell adhesion. Our analysis provides genetic evidence for a function of the microtubule array that normally develops at the furrow in the deposition of adhesive membrane at the cleavage plane. In addition, nebel mutant embryos show defects in the early localization of vasa RNA. The vasa RNA localization phenotype could be mimicked with microtubule-inhibiting drugs, and confocal microscopy suggests an interaction between microtubules and vasa-RNA-containing aggregates. CONCLUSIONS: Our data support two functions for the microtubule reorganization at the furrow, one for the exocytosis of adhesive membrane, and another for the translocation of vasa RNA along the forming furrow.  相似文献   

18.
We studied cyclic reorganizations of filamentous actin, myosin II and microtubules in syncytial Drosophila blastoderms using drug treatments, time-lapse movies and laser scanning confocal microscopy of fixed stained embryos (including multiprobe three-dimensional reconstructions). Our observations imply interactions between microtubules and the actomyosin cytoskeleton. They provide evidence that filamentous actin and cytoplasmic myosin II are transported along microtubules towards microtubule plus ends, with actin and myosin exhibiting different affinities for the cell's cortex. Our studies further reveal that cell cycle phase modulates the amounts of both polymerized actin and myosin II associated with the cortex. We analogize pseudocleavage furrow formation in the Drosophila blastoderm with how the mitotic apparatus positions the cleavage furrow for standard cytokinesis, and relate our findings to polar relaxation/global contraction mechanisms for furrow formation.  相似文献   

19.
Immunofluorescence staining of Drosophila embryos with a monoclonal antibody specific for acetylated alpha-tubulin has revealed that acetylated and nonacetylated alpha-tubulin isoforms have different patterns of distribution during early development. Acetylated alpha-tubulin was not detected in either interphase or mitotic spindle microtubules during the rapid early cleavage or syncytial blastoderm divisions. Acetylated alpha-tubulin was first observed as interphase lengthened at the end of syncytial blastoderm, and at cycle 14 was localized to a ring of structures clustered around the interphase nuclei. These structures probably represent a set of stable microtubules involved in nuclear elongation. Absence of detectable acetylated alpha-tubulin prior to cellular blastoderm seems to be due to rapid turnover of microtubule arrays rather than to lack of the enzyme required for modification, since acetylated alpha-tubulin appeared in early embryos when micro-tubules were stabilized by taxol treatment or anoxia. Because acetylated alpha-tubulin seems to be characteristic of stable microtubule arrays, the appearance of the antigen at cycle 14 represents a fundamental change in microtubule behaviour in the somatic cells of the embryo. Acetylated alpha-tubulin was not detected in pole cells during the blastoderm or early gastrula stages, indicating that acetylation of alpha-tubulin is not merely a consequence of cellularization. After the onset of gastrulation, interphase microtubule arrays in most cell types contain acetylated alpha-tubulin. However, cells in mitosis lack antibody staining. The resulting unstained patches reveal the stereotyped spatial pattern of cell division during gastrulation. Although the cells that give rise to the amnioserosa have acetylated alpha-tubulin in their interphase arrays at early gastrulation, by germ band elongation these large, plastic cells completely lack staining with anti-acetylated alpha-tubulin. In contrast, differentiated cell types such as neurones, which have arrays of stable axonal microtubules, stain brightly with the specific antibody. Although acetylated and nonacetylated alpha-tubulin are present in roughly equal amounts by the late stages of embryogenesis, acetylated alpha-tubulin is partitioned into the pellet during centrifugation of extracts of embryos homogenized at 4 degrees C.  相似文献   

20.
Mitotic spindles specify cleavage planes in early embryos by communicating their position and orientation to the cell cortex using microtubule asters that grow out from the spindle poles during anaphase. Chromatin also plays a poorly understood role. Polyspermic fertilization provides a natural experiment in which aster pairs from the same spindle (sister asters) have chromatin between them, whereas asters pairs from different spindles (nonsisters) do not. In frogs, only sister aster pairs induce furrows. We found that only sister asters recruited two conserved furrow-inducing signaling complexes, chromosome passenger complex (CPC) and Centralspindlin, to a plane between them. This explains why only sister pairs induce furrows. We then investigated factors that influenced CPC recruitment to microtubule bundles in intact eggs and a cytokinesis extract system. We found that microtubule stabilization, optimal starting distance between asters, and proximity to chromatin all favored CPC recruitment. We propose a model in which proximity to chromatin biases initial CPC recruitment to microtubule bundles between asters from the same spindle. Next a positive feedback between CPC recruitment and microtubule stabilization promotes lateral growth of a plane of CPC-positive microtubule bundles out to the cortex to position the furrow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号