首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inoculation of diploid budding yeast onto nitrogen-poor agar media stimulates a MAPK pathway to promote filamentous growth. Characteristics of filamentous cells include a specific pattern of gene expression, elongated cell shape, polar budding pattern, persistent attachment to the mother cell, and a distinct cell cycle characterized by cell size control at G2/M. Although a requirement for MAPK signaling in filamentous gene expression is well established, the role of this pathway in the regulation of morphogenesis and the cell cycle remains obscure. We find that ectopic activation of the MAPK signal pathway induces a cell cycle shift to G2/M coordinately with other changes characteristic of filamentous growth. These effects are abrogated by overexpression of the yeast mitotic cyclins Clb1 and Clb2. In turn, yeast deficient for Clb2 or carrying cdc28-1N, an allele of CDK defective for mitotic functions, display enhanced filamentous differentiation and supersensitivity to the MAPK signal. Importantly, activation of Swe1-mediated inhibitory phosphorylation of Thr-18 and/or Tyr-19 of Cdc28 is not required for the MAPK pathway to affect the G2/M delay. Mutants expressing a nonphosphorylatable mutant Cdc28 or deficient for Swe1 exhibit low-nitrogen-dependent filamentous growth and are further induced by an ectopic MAPK signal. We infer that the MAPK pathway promotes filamentous growth by a novel mechanism that inhibits mitotic cyclin/CDK complexes and thereby modulates cell shape, budding pattern, and cell-cell connections.  相似文献   

2.
3.
4.
The phytopathogenic fungus Ustilago maydis is obligately dependent on infection of maize to complete the sexual phase of its life cycle. Mating interactions between haploid, budding cells establish an infectious filamentous cell type that invades the host, induces large tumours and eventually forms large masses of black spores. The ability to switch from budding to filamentous growth is therefore critical for infection and completion of the life cycle, although the signals that influence the transition have not been identified from the host or the environment. We have found that growth in the presence of lipids promotes a filamentous phenotype that resembles the infectious cell type found in planta. In addition, the ability of the fungus to respond to lipids is dependent on both the cAMP signalling pathway and a Ras/MAPK pathway; these pathways are known to regulate mating, filamentous growth and pathogenesis in U. maydis. Overall, these results lead us to hypothesize that lipids may represent one of the signals that promote and maintain the filamentous growth of the fungus in the host environment.  相似文献   

5.
In haploid strains of Saccharomyces cerevisiae, glucose depletion causes invasive growth, a foraging response that requires a change in budding pattern from axial to unipolar-distal. To begin to address how glucose influences budding pattern in the haploid cell, we examined the roles of bud-site-selection proteins in invasive growth. We found that proteins required for bipolar budding in diploid cells were required for haploid invasive growth. In particular, the Bud8p protein, which marks and directs bud emergence to the distal pole of diploid cells, was localized to the distal pole of haploid cells. In response to glucose limitation, Bud8p was required for the localization of the incipient bud site marker Bud2p to the distal pole. Three of the four known proteins required for axial budding, Bud3p, Bud4p, and Axl2p, were expressed and localized appropriately in glucose-limiting conditions. However, a fourth axial budding determinant, Axl1p, was absent in filamentous cells, and its abundance was controlled by glucose availability and the protein kinase Snf1p. In the bud8 mutant in glucose-limiting conditions, apical growth and bud site selection were uncoupled processes. Finally, we report that diploid cells starved for glucose also initiate the filamentous growth response.  相似文献   

6.
C J Gimeno  P O Ljungdahl  C A Styles  G R Fink 《Cell》1992,68(6):1077-1090
Diploid S. cerevisiae strains undergo a dimorphic transition that involves changes in cell shape and the pattern of cell division and results in invasive filamentous growth in response to starvation for nitrogen. Cells become long and thin and form pseudohyphae that grow away from the colony and invade the agar medium. Pseudohyphal growth allows yeast cells to forage for nutrients. Pseudohyphal growth requires the polar budding pattern of a/alpha diploid cells; haploid axially budding cells of identical genotype cannot undergo this dimorphic transition. Constitutive activation of RAS2 or mutation of SHR3, a gene required for amino acid uptake, enhance the pseudohyphal phenotype; a dominant mutation in RSR1/BUD1 that causes random budding suppresses pseudohyphal growth.  相似文献   

7.
8.
9.
In the plant, filamentous growth is required for pathogenicity of the corn smut pathogen Ustilago maydis. Earlier, we identified a role for the cAMP signal transduction pathway in the switch between budding and filamentous growth for this fungus. A gene designated ubc1 (for Ustilago bypass of cyclase) was found to be required for filamentous growth and to encode the regulatory subunit of a cAMP-dependent protein kinase (PKA). Here, we show that ubc1 is important for the virulence of the pathogen. Specifically, ubc1 mutants are able to colonize maize plants and, like the wild-type pathogen, cause localized symptoms in association with the presence of hyphae. However, in contrast to plants infected with wild-type cells that often developed galls from initially chlorotic tissue, plants infected with the ubc1 mutant did not produce galls. These data suggest that PKA regulation is critical for the transition from saprophytic to pathogenic growth and from vegetative to reproductive development. Plate mating assays in which exogenous cAMP was applied suggested that the cAMP and b mating-type morphogenetic pathways may be coordinated.  相似文献   

10.
L. Giasson  J. W. Kronstad 《Genetics》1995,141(2):491-501
Mating between haploid, budding cells of the dimorphic fungus Ustilago maydis results in the formation of a dikaryotic, filamentous cell type. Mating compatibility is governed by two mating-type loci called a and b; transformation of genes from these loci (e.g., a1 and b1) into a haploid strain of different mating type (e.g., a2 b2) allows filamentous growth and establishes a pathogenic cell type. Several mutants with a nonmycelial colony morphology were isolated after insertional mutagenesis of a filamentous, pathogenic haploid strain. The mutagenized region in one such mutant was recovered by plasmid rescue and employed to isolate a gene involved in conditioning the mycelial phenotype (myp1). An 1150 amino acid open reading frame is present at the myp1 locus; the predicted polypeptide is rich in serine residues and contains short regions with similarity to SH3 domain ligands. Construction of myp1 disruption and deletion mutants in haploid strains confirmed that this gene plays a role in mycelial growth and virulence.  相似文献   

11.
Ustilago maydis, the causal agent of corn smut disease, displays dimorphic growth in which it alternates between a budding haploid saprophyte and a filamentous dikaryotic pathogen. We are interested in identifying the genetic determinants of filamentous growth and pathogenicity in U. maydis. To do this, we have taken a forward genetic approach. Previously, we showed that haploid adenylate cyclase (uac1) mutants display a constitutively filamentous phenotype. Mutagenesis of a uac1 disruption strain allowed the isolation of a large number of budding suppressor mutants. These mutants are named ubc, for Ustilago bypass of cyclase, as they no longer require the production of cAMP to grow in the budding morphology. Complementation of one of these suppressor mutants led to the identification of ubc3, which is required for filamentous growth and encodes a MAP kinase most similar to those of the yeast pheromone response pathway. In addition to filamentous growth, the ubc3 gene is required for pheromone response and for full virulence. Mutations in the earlier identified fuz7 MAP kinase kinase also suppress the filamentous phenotype of the uac1 disruption mutant, adding evidence that both ubc3 and fuz7 are members of this same MAP kinase cascade. These results support an important interplay of the cAMP and MAP kinase signal transduction pathways in the control of morphogenesis and pathogenicity in U. maydis.  相似文献   

12.
The fungal phytopathogen Ustilago maydis alternates between budding and filamentous growth during its life cycle. This dimorphic transition, which is influenced by environmental factors and mating, is regulated in part by cAMP-dependent protein kinase (PKA). We have recently identified a related protein kinase, encoded by the ukc1 gene, that also plays a role in determining cell shape. The ukc1 gene is homologous to several other protein kinase-encoding genes including the cot-1 gene of Neurospora crassa, the TB3 gene of Colletotrichum trifolii, the orb6 gene of Schizosaccharomyces pombe, the warts tumor suppressor gene of Drosophila melanogaster and the myotonic dystrophy kinase gene in humans. Disruption of the ukc1 gene in U. maydis resulted in cells that were highly distorted in their morphology, incapable of generating aerial filaments during mating in culture and defective in their ability to cause disease on corn seedlings. In addition, the cells of ukc1 mutants became highly pigmented and resembled the chlamydospore-like cells that have been described for U. maydis. Overall, these results demonstrate an important role for the ukc1-encoded protein kinase in the morphogenesis, pathogenesis and pigmentation of U. maydis. Received: 6 May 1998 / Accepted: 19 November 1998  相似文献   

13.
Under certain conditions of nutrient stress, the budding yeast Saccharomyces cerevisiae initiates a striking developmental transition to a filamentous form of growth, resembling developmental transitions required for virulence in closely related pathogenic fungi. In yeast, filamentous growth involves known mitogen-activated protein kinase and protein kinase A signaling modules, but the full scope of this extensive filamentous response has not been delineated. Accordingly, we have undertaken the first systematic gene disruption and overexpression analysis of yeast filamentous growth. Standard laboratory strains of yeast are nonfilamentous; thus, we constructed a unique set of reagents in the filamentous Σ1278b strain, encompassing 3627 integrated transposon insertion alleles and 2043 overexpression constructs. Collectively, we analyzed 4528 yeast genes with these reagents and identified 487 genes conferring mutant filamentous phenotypes upon transposon insertion and/or gene overexpression. Using a fluorescent protein reporter integrated at the MUC1 locus, we further assayed each filamentous growth mutant for aberrant protein levels of the key flocculence factor Muc1p. Our results indicate a variety of genes and pathways affecting filamentous growth. In total, this filamentous growth gene set represents a wealth of yeast biology, highlighting 84 genes of uncharacterized function and an underappreciated role for the mitochondrial retrograde signaling pathway as an inhibitor of filamentous growth.  相似文献   

14.
In response to a wide variety of environmental stimuli, the opportunistic fungal pathogen Candida albicans exits the budding cycle, producing germ tubes and hyphae concomitant with expression of virulence genes, such as that encoding hyphal wall protein 1 (HWP1). Biochemical studies implicate cyclic AMP (cAMP) increases in promoting bud-hypha transitions, but genetic evidence relating genes that control cAMP levels to bud-hypha transitions has not been reported. Adenylate cyclase-associated proteins (CAPs) of nonpathogenic fungi interact with Ras and adenylate cyclase to increase cAMP levels under specific environmental conditions. To initiate studies on the relationship between cAMP signaling and bud-hypha transitions in C. albicans, we identified, cloned, characterized, and disrupted the C. albicans CAP1 gene. C. albicans strains with inactivated CAP1 budded in conditions that led to germ tube formation in isogenic strains with CAP1. The addition of 10 mM cAMP and dibutyryl cAMP promoted bud-hypha transitions and filamentous growth in the cap1/cap1 mutant in liquid and solid media, respectively, showing clearly that cAMP promotes hypha formation in C. albicans. Increases in cytoplasmic cAMP preceding germ tube emergence in strains having CAP1 were markedly diminished in the budding cap1/cap1 mutant. C. albicans strains with deletions of both alleles of CAP1 were avirulent in a mouse model of systemic candidiasis. The avirulence of a germ tube-deficient cap1/cap1 mutant coupled with the role of Cap1 in regulating cAMP levels shows that the Cap1-mediated cAMP signaling pathway is required for bud-hypha transitions, filamentous growth, and the pathogenesis of candidiasis.  相似文献   

15.
Saccharomyces cerevisiae Spa2p is a component of polarisome that controls cell polarity. Here, we have characterized the role of its homologue, CaSpa2p, in the polarized growth in Candida albicans. During yeast growth, GFP-tagged CaSpa2p localized to distinct growth sites in a cell cycle-dependent manner, while during hyphal growth it persistently localized to hyphal tips throughout the cell cycle. Persistent tip localization of the protein was also observed in Catup1Delta and Canrg1Delta, mutants constitutive for filamentous growth. Caspa2Delta exhibited defects in polarity establishment and maintenance, such as random budding and failure to confine growth to a small surface area leading to round cells with wide, elongated bud necks and markedly thicker hyphae. It was also defective in nuclear positioning, presumably a result of defective interactions between cytoplasmic microtubules with certain polarity determinants. The highly conserved SHD-I and SHD-V domains were found to be important and responsible for different aspects of CaSpa2p function. Caspa2Delta exhibited no virulence in the mouse systemic candidiasis model. Because of the existence of distinct growth forms and the easy control of the switch between them in vitro, C. albicans may serve as a useful model in cell polarity research.  相似文献   

16.
The subcellular distribution of kinases and other signaling proteins is regulated in response to cellular cues; however, the extent of this regulation has not been investigated for any gene set in any organism. Here, we present a systematic analysis of protein kinases in the budding yeast, screening for differential localization during filamentous growth. Filamentous growth is an important stress response involving mitogen-activated protein kinase and cAMP-dependent protein kinase signaling modules, wherein yeast cells form interconnected and elongated chains. Because standard strains of yeast are nonfilamentous, we constructed a unique set of 125 kinase-yellow fluorescent protein chimeras in the filamentous Sigma1278b strain for this study. In total, we identified six cytoplasmic kinases (Bcy1p, Fus3p, Ksp1p, Kss1p, Sks1p, and Tpk2p) that localize predominantly to the nucleus during filamentous growth. These kinases form part of an interdependent, localization-based regulatory network: deletion of each individual kinase, or loss of kinase activity, disrupts the nuclear translocation of at least two other kinases. In particular, this study highlights a previously unknown function for the kinase Ksp1p, indicating the essentiality of its nuclear translocation during yeast filamentous growth. Thus, the localization of Ksp1p and the other kinases identified here is tightly controlled during filamentous growth, representing an overlooked regulatory component of this stress response.  相似文献   

17.
18.
The increasing evidence linking regulation of polar growth and pathogenicity in fungi has elicited a significant effort devoted to produce a better understanding of mechanisms determining polarization in pathogenic fungi. Here we characterize in the phytopathogenic basidiomycete Ustilago maydis, the Spa2 protein, a well-known component of polarisome, firstly described in Saccharomyces cerevisiae. U. maydis display a dimorphic switch between budding growth of hapoid cells and filamentous growth of the dikaryon. During yeast growth, a GFP-tagged Spa2 protein localized to distinct growth sites in a cell cycle-specific manner, while during hyphal growth is persistently located to hyphal tips. Deletion of spa2 gene produces rounder budding cells and thicker filaments than wild-type cells, suggesting a role of Spa2 for the determination of the growth area in U. maydis. We also address the connections between Spa2 and the actin- and microtubule-cytoskeleton. We found that the absence of Spa2 does not affect cytoskeleton organization and strikingly, interference with actin filament or microtubule formation does not affect the polar localization of Spa2. In contrast, defects in the small GTPase Rac1 seems to affect the ability of Spa2 to locate to precise sites at the tip cell. Finally, to our surprise, we found that cells defectives in Spa2 function were as pathogenic as wild-type cells.  相似文献   

19.
Filamentous growth is a microbial differentiation response that involves the concerted action of multiple signaling pathways. In budding yeast, one pathway that regulates filamentous growth is a Cdc42p-dependent mitogen-activated protein kinase (MAPK) pathway. Several transmembrane (TM) proteins regulate the filamentous growth pathway, including the signaling mucin Msb2p, the tetraspan osmosensor Sho1p, and an adaptor Opy2p. The TM proteins were compared to identify common and unique features. Msb2p, Sho1p, and Opy2p associated by coimmunoprecipitation analysis but showed predominantly different localization patterns. The different localization patterns of the proteins resulted in part from different rates of turnover from the plasma membrane (PM). In particular, Msb2p (and Opy2p) were turned over rapidly compared to Sho1p. Msb2p signaled from the PM, and its turnover was a rate-limiting step in MAPK signaling. Genetic analysis identified unique phenotypes of cells overexpressing the TM proteins. Therefore, each TM regulator of the filamentous growth pathway has its own regulatory pattern and specific function in regulating filamentous growth. This specialization may be important for fine-tuning and potentially diversifying the filamentation response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号