首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Li GP  Seidel GE  Squires EL 《Theriogenology》2003,59(5-6):1143-1155
Five experiments were designed to study the fertilizability and development of bovine oocytes fertilized by intracytoplasmic sperm injection (ICSI) with stallion spermatozoa. Experiment 1 determined the time required for pronuclear formation after ICSI. Equine sperm head decondensation began 3 h after ICSI; 42% were decondensed 6 h after ICSI. Male pronuclei (MPN) began to form 12 h after ICSI. Female pronuclei (FPN), however, formed as early as 6 h after ICSI. In Experiment 2, ionomycin, ionomycin plus 6-dimethylaminopurine (DMAP), and thimerosal were used to activate ICSI ova. None of the ICSI ova cleaved after treatment with thimerosal. Ionomycin activation after 24 and 30 h of oocyte maturation resulted in 29 and 48% cleavage rates, respectively. Ionomycin combined with DMAP resulted in 49, 6 and 3% cleavage, morula and blastocyst rates, respectively, when oocytes were activated after 24 h maturation. In Experiment 3, rates of cleavage (45-60%) and development to morulae (4-13%) and blastocysts (1-5%) stages following ICSI were not different (P>0.05) among three stallions. Treatment of stallion spermatozoa with ionomycin did not affect cleavage or development of ova fertilized by ICSI. The chromosomal constitution of blastocysts derived from ICSI was bovine, not bovine and equine hybrids. In Experiment 4, to make male and FPN form synchronously, colchicine and DMAP were used for 4 h to inhibit oocytes at metaphase during activation; 63% of oocytes were still at metaphase 8h after ICSI when treated with colchicine, and 50% of sperm nuclei were decondensed. About 18 h after ICSI, 21 and 50% male and FPN had formed, respectively, but cleavage rates were low, and only 1% developed to morulae. In Experiment 5, to test if capacitated equine sperm could fuse with the bovine oolemma, capacitated spermatozoa were injected subzonally (SUZI). Of the 182 SUZI oocytes, 49 (27%) contained extruded second polar bodies. After activation of oocytes with second polar bodies, 44, 22 and 15% developed to 2-, 4- and 8-cell stages, respectively, but development stopped at the 8-cell stage. None of the unactivated oocytes cleaved. In conclusion, equine spermatozoa can decondense and form MPN in bovine oocytes after ICSI, but subsequent embryonic development is parthenogenetic with only bovine chromosomes being found.  相似文献   

2.
This study was conducted to investigate the possibility of using bovine oocytes for a heterologous fertility test by intracytoplasmic sperm injection (ICSI) and to compare the pronuclear formation of ram, bull and minke whale spermatozoa after injection into bovine oocytes. Bovine oocytes were cultured in vitro for 24 h and those with a polar body were selected for ICSI. Frozen-thawed semen from the three species were treated with 5 mM dithiothreitol for 1 h and spermatozoa were killed by storing them in a -20 degrees C refrigerator before use. ICSI was performed using a Piezo system. Three experiments were designed. In experiment 1, a higher (p < 0.05) male pronuclear formation rate was found in the oocytes injected with ram (52.6%) or bull (53.4%) spermatozoa than with minke whale spermatozoa (39.1%). In experiment 2, sperm head decondensation was detected at 2 h after ICSI in the oocytes injected with a spermatozoon of each species. Male pronuclei were first observed at 4 h in the oocytes injected with ram or bull spermatozoa and at 6 h in oocytes injected with minke whale spermatozoa. The mean diameters of male pronuclei derived from both whale and bull spermatozoa were larger than those from ram spermatozoa (30.4 microm and 28.3 microm vs 22.4 microm, p < 0.005). The mean diameter of female pronuclei in the oocytes injected with whale spermatozoa was also larger than with ram spermatozoa (29.3 microm vs 24.7 microm, p < 0.05). The development of male and female pronuclei was synchronous. In experiment 3, ethanol-activated oocytes injected with a spermatozoon from any of the three species achieved significantly higher (p < 0.05-0.001) cleavage rates than control oocytes. Blastocyst formation was only observed when bull spermatozoa were used. The results of this study indicate that dead foreign spermatozoa can participate in fertilisation activities in bovine oocytes after ICSI.  相似文献   

3.
Intracytoplasmic sperm injection (ICSI) is a very important technique for treating male subfertility and for basic research. The efficiency of ICSI in bovine is very limited because of the necessity for additional oocyte activation before or after the ICSI procedure. In this study, we compared the effects of seven different protocols on activation and fertilization rates of bovine oocytes after ICSI and on their subsequent development under in vitro conditions. The protocols include 1) different chemical activation of oocytes, 2) pretreated or nonpretreated sperm, and 3) conventional or Piezo-driven injection techniques. In all three groups, ICSI, sham-injected, and noninjected, the highest activation rates were obtained after treatment of oocytes with ionomycin followed by 6-dimethylaminopurine (6-DMAP). Using this treatment for oocyte activation, 59% of oocytes were activated and 31% of oocytes were fertilized using dithiothreitol (DTT) pretreated spermatozoa and Piezo-driven injection. Using the protocols with the same oocyte activation or activation with calcium ionophore (Ca-I) and cycloheximide (CHX), nonpretreated sperm, and conventional injection technique, early cleavage rate (79.6% and 77.6%, respectively) were significantly (P <0.01) higher when compared with all other protocols. The latter protocol resulted in 8% blastocyst and 90% of the obtained blastocysts were found to be diploid. Our results demonstrate that activation of oocytes, sperm treatment, and injection technique separately or together could improve the success of bovine ICSI.  相似文献   

4.
Chung JT  Keefer CL  Downey BR 《Theriogenology》2000,53(6):1273-1284
In the human and the mouse, intracytoplasmic sperm injection (ICSI) apparently triggers normal fertilization and may result in offspring. In the bovine, injection of spermatozoa must be accompanied by artificial methods of oocyte activation in order to achieve normal fertilization events (e.g., pronuclear formation). In this study, different methods of oocyte activation were tested following ICSI of in vitro-matured bovine oocytes. Bovine oocytes were centrifuged to facilitate sperm injection, and spermatozoa were pretreated with 5 mM dithiothreitol (DTT) to promote decondensation. Sperm-injected or sham-injected oocytes were activated with 5 microM ionomycin (A23187). Three hours after activation, oocytes with second polar bodies were selected and treated with 1.9 mM 6-dimethylaminopurine (DMAP). The cleavage rate of sperm-injected oocytes treated with ionomycin and DMAP was higher than with ionomycin alone (62 vs 27%, P < or = 0.05). Blastocysts (2 of 41 cleaved) were obtained only from the sperm-injected, ionomycin + DMAP-treated oocytes. Upon examination 16 h after ICSI, pronuclear formation was observed in 33 of 47 (70%) DMAP-treated oocytes. Two pronuclei were present in 18 of 33 (55%), while 1 and 3 pronuclei were seen in 8 of 33 (24%) and 7 of 33 (21%) oocytes, respectively. In sham-injected oocytes, pronuclear formation was observed in 15 of 38 (39%) with 9 (60%) having 2 pronuclei. Asa single calcium stimulation was insufficient and DMAP treatment could result in triploidy, activation by multiple calcium stimulations was tested. Three calcium stimulations (5 microM ionomycin) were given at 30-min intervals following ICSI. Two pronuclei were found in 12 of 41 (29%) injected oocytes. Increasing the concentration of ionomycin from 5 to 50 microM resulted in a higher rate of activation (41 vs 26%). The rate of metaphase III arrest was lower while the rate of pronuclear formation and cleavage development was higher in sperm-injected than sham-injected oocytes, suggesting that spermatozoa contribute to the activation process. Further improvements in oocyte activation following ICSI in the bovine are necessary.  相似文献   

5.
The aim of this study was to investigate whether bovine spermatozoa possess so-called sperm factor in the cytosolic fraction (CF) which activates bovine oocytes, and whether bovine oocytes matured in vitro are activated by microinjection of CF extracted from spermatozoa of other species. In the first experiment, bovine and human spermatozoa were microinjected into ooplasm of bovine oocytes matured in vitro. Secondly, CF from bovine and human spermatozoa were injected into bovine oocytes. In the third, CF from human spermatozoa was injected into human unfertilised oocytes obtained 18-20 h after clinical intracytoplasmic sperm injection (ICSI). We found that microinjection of bovine spermatozoa into bovine oocytes induced oocyte activation, as shown by resumption of meiosis and formation of a female pronucleus, at a significantly higher rate than the bovine sham injection (63.0% vs 43.0%; p < 0.05). On the other hand, there was no significant difference in activation rate between the human sperm injection (35.9%) and the human sham injection (22.9%). Furthermore, microinjection of bovine sperm CF into bovine oocytes induced oocyte activation at a significantly higher rate than the human CF injection or sham injection (75.9% vs 14.8%, 20.4%; p < 0.01). Formation of a single female pronucleus and second polar body extrusion was observed in 95.1% of activated oocytes after bovine sperm CF injection. When human sperm CF was injected into human unfertilised oocytes, the activation rate was significantly higher than following sham injection (76.9% vs 44.0%; p < 0.05). These results indicate the presence of sperm factor in bovine sperm CF which activate bovine oocytes, and suggest the possibility that sperm factor has species-specificity at least between bovine and human.  相似文献   

6.
Improved cleavage of bovine ICSI ova cultured in heparin-containing medium   总被引:4,自引:0,他引:4  
Li GP  Seidel GE  Squires EL 《Theriogenology》2004,61(6):1077-1084
Although heparin plays an important role in bovine sperm capacitation, there is no direct evidence for a role in embryonic development. The present study was designed to examine the effect of heparin on early development of bovine zygotes obtained by intracytoplasmic sperm injection (ICSI). Spermatozoa were treated with or without heparin, and the ICSI ova were cultured in a chemically defined medium + BSA, with or without heparin. Treatment of spermatozoa with heparin before ICSI or heparin in post-ICSI culture medium for 18 or 24h had a beneficial effect on pronuclear formation, cleavage rate (63% versus 76-83%), and number of cells in blastocysts (68 cells versus 82-109 cells; P < 0.05).  相似文献   

7.
Using an interspecies microinsemination assay with bovine oocytes, it was examined whether centrosomes of Antarctic minke whale spermatozoa function as the microtubule-organizing centre (MTOC). Bull and rat spermatozoa were used as positive and negative controls, respectively. Vitrified-warmed bovine mature oocytes were subjected to immunostaining against alpha-tubulin 4-6 h after intracytoplasmic injection (ICSI) of 5 mM dithiothreitol-treated spermatozoa. Aster formation occurred from whale spermatozoa (33%) and bull spermatozoa (33%), but very little from rat spermatozoa (3%). Activation treatment for the microinseminated oocytes with 7% ethanol + 2 mM 6-dimethylaminopurine resulted in a similar proportion of oocytes forming a whale sperm aster (35% vs 27% in the non-treated group; 4 h after ICSI) but a significantly larger aster (ratio of aster diameter to oocyte diameter, 0.57 vs 0.30 in the non-treated group). These results indicate that the centrosome introduced into bovine oocytes by whale spermatozoa contributes to the MTOC and that assembly of the microtubule network is promoted by oocyte activation.  相似文献   

8.
Regardless of the presence of sperm-borne oocyte-activating factors, activation of bovine oocytes with exogenous activation stimuli is required for further development after intracytoplasmic sperm injection (ICSI). The current study was designed to develop a new activation regimen for improving the blastocyst yield after ICSI of bovine oocytes harvested from ovaries stored at 10 to 12 °C for 24 h. After ICSI, oocytes were treated with 5 μM ionomycin for 5 min, 7% ethanol for 5 or 10 min, ionomycin followed by ethanol (5 or 10 min), ionomycin followed by 10 μg/mL cycloheximide for 5 h, or ionomycin followed by 1.9 mM 6-dimethylaminopurine for 3 h. Across the activation regimens, the cleavage rates of ICSI oocytes (45% to 77%) were higher than those of parthenogenetically activated oocytes (11% to 21%; P < 0.05). Activating the ICSI oocytes with ionomycin plus ethanol improved the blastocyst yield (29% to 30%) compared with that of nontreated oocytes (12%; P < 0.05), but the other regimens did not improve the blastocyst yield (9% to 18%; P > 0.05). Higher blastocyst yields were due to increasing the proportion of ICSI oocytes that passed through the early postfertilization events until cleavage. None of the regimens have any adverse effect on the quality of the blastocysts regarding the total cell number or the proportion of the inner cell mass cells. Thus, a new activation regimen using two triggers for single calcium increase effectively improved blastocyst yield after bovine ICSI using oocytes harvested from stored ovaries.  相似文献   

9.
Pronuclear formation, and the chromosomal constitution and developmental capacity of bovine zygotes formed by intracytoplasmic sperm injection with freeze-dried (lyophilized) spermatozoa were evaluated. Frozen-thawed spermatozoa were selected, freeze-dried, and stored at 4 degrees C until use. After 22-24 h of in vitro maturation oocytes were denuded and injected singly with a lyophilized spermatozoon. Injected oocytes were activated by treatment with 10 microM ionomycin (5 min) alone and in combination with 1.9 mM 6-dimethylaminopurine (DMAP) for 4 h. Ionomycin plus DMAP activation treatment resulted in a significantly higher proportion of sperm-injected oocytes with two pronuclei than was found after activation with ionomycin alone (74% vs. 56%; P < 0.03). The rates of cleavage, morula, and blastocyst development of sperm-injected oocytes treated with ionomycin plus DMAP were higher than after activation with ionomycin alone (63.3%, 34.2%, and 29.6% vs. 44.7%, 18.7%, and 10.6%, respectively; P < 0.05). Seventy-three percent of blastocysts produced with lyophilized sperm were diploid. These results demonstrate that in vitro-matured bovine oocytes can be fertilized with freeze-dried sperm cells, and that resultant zygotes can develop into karyotypically normal blastocysts.  相似文献   

10.
ABSTRACT Effects of sperm and oocyte quality control on the efficiency of ICSI of in vitro matured goat oocytes were studied in this paper. The results showed that when injected intracytoplasmically, spermatozoa from caput, corpus and cauda epididymidis resulted in similar rates of fertilization, cleavage and morulae/blastocysts, but when injected subzonally, spermatozoa from caput and corpus gave rise to significantly lower rates of fertilization and embryo development than spermatozoa from the cauda epididymidis and ejaculates. When dead spermatozoa collected from semen that had been preserved in different ways were used for ICSI, those dead from liquid storage at 20 degrees C for 24 h gave rise to the best, but those dead from liquid storage at 5 degrees C for 15 days produced the poorest fertilization and embryo development. When spermatozoa were treated with different concentrations of Triton X-100 before ICSI, significantly higher rates of fertilization, cleavage and morulae/blastocysts were obtained with 0.0005% Triton X-100 than with other concentrations and manual immobilization. Oocytes were classified as of good and poor qualities by treatment in hypertonic sucrose solution, and rates of fertilization and embryo development were significantly higher in the good than in the poor oocytes after ICSI. Post-injection activation of oocytes with either A23187 or ionomycin/6-DMAP significantly increased the rates of fertilization, cleavage and morulae/blastocysts after ICSI. It is therefore concluded that (i) epididymal maturation mainly endowed spermatozoa with the capacity to fuse with the egg plasma membrane; (ii) different methods of semen storage caused different impairment of sperm fertilizing capacity; (iii) pre-injection treatment of spermatozoa with proper concentrations of Triton X-100 might be used to replace manual immobilization for ICSI; (iv) oocyte quality was a major factor influencing the efficiency of ICSI; (v) post-injection activation treatment of oocytes improved fertilization and embryo development after ICSI.  相似文献   

11.
In this study, the developmental capacity and cytogenetic composition of different oocyte activation protocols was evaluated following intracytoplasmic sperm injection (ICSI) of in vitro matured bovine oocytes. Motile spermatozoa selected by Percoll density gradient were treated with 5 mM dithiothreitol (DTT) and analysed for ultrastructural changes of the head using transmission electron microscopy (TEM). The alterations in sperm morphology after DTT treatment for different times (15, 30 and 60 min) were 10%, 45-55% and 70-85%, respectively. Further, a partial decondensation of sperm heads was observed after DTT treatment for 30 min. Oocytes were injected with sperm treated with DTT for 30 min. In group 1, sperm injection was performed without any activation stimulus to the oocytes. In group 2, sham injection without sperm was performed without activating the oocytes. Oocytes injected with sperm exposed to 5 microM ionomycin for 5 min (group 3), 5 microM ionomycin + 1.9 mM dimethylaminopurine (DMAP) for 3 h (group 4) and 5 microM ionomycin + 3 h culture in M199 + 1.9 mM DMAP (group 5) were also evaluated for cleavage, development and chromosomal abnormality. Cleavage and development rates in groups 1, 2 and 3 were significantly (p < 0.05) lower than those in groups 4 and 5. The incidence of chromosomal abnormality in the embryos treated directly with DMAP after ionomycin (group 4) was higher than in group 5. We conclude that immediate DMAP treatment after ionomycin exposure of oocytes results in arrest of release of the second polar body, and thus leads to changes in chromosomal pattern. Therefore, the time interval between ionomycin and DMAP plays a crucial role in bovine ICSI.  相似文献   

12.
Whole in vitro capacitated bovine spermatozoa were microinjected directly into the ooplasm of in vitro matured bovine oocytes in order to determine whether oocytes fertilized by sperm injection could undergo normal pronuclear formation and cleavage development. Immature oocytes recovered from follicles (2-5 mm) of unstimulated ovaries were cultured for 24-25 h in modified TCM 199 medium supplemented with heat-treated day 20 cow serum, luteinizing hormone (LH), and estradiol 17-B. In vitro capacitated, frozen-thawed spermatozoa were injected into the ooplasm, and the injected oocytes were cultured for an additional 24-28 h. Twenty-one percent (21/101) of the sperm-injected oocytes contained a sperm within the ooplasm; however, only 2% (2/101) cleaved. The remaining oocytes either did not contain a sperm or had degenerated. After oocyte activation induced by a 5 min incubation in 1 microM A23187, sperm nuclear decondensation occurred in the A23187-activated, injected oocytes but not in the unactivated, injected controls (37% vs. 0% after 3 h). Those injected, activated oocytes that contained a male pronucleus also exhibited a female pronucleus and second polar body. Furthermore, a significantly higher number (28%, 6/21) of the injected, activated oocytes cleaved to a two- to four-cell stage after 48 h than did the injected, unactivated oocytes (4%). These results indicate that, unlike hamster and rabbit oocytes, bovine oocytes are not sufficiently stimulated by the injection procedure to complete meiosis, but, upon activation by calcium ionophore, they will undergo normal-appearing cleavage development following fertilization by sperm injection.  相似文献   

13.
The objective of this study was to compare the effectiveness of different methods of bovine oocyte activation following intracytoplasmic sperm injection (ICSI) in terms of oocyte cleavage and blastocyst rates, and calf production. Oocytes were harvested, post mortem, from the ovaries of Japanese Black heifers or cows. ICSI was carried out using a piezo-electric actuator. The injected or sham-injected oocytes that were assigned to three activation treatments, each replicated three times, were studied: (1) exposure to 5 microM ionomycin for 5 min (ionomycin); (2) exposure to 5 microM ionomycin for 5 min followed by culture in TCM199 for 3 h and a further 3h culture in 1.9 mM 6-dimethylaminopurine (DMAP-ionomycin+DMAP); (3) exposure to 7% ethanol in TCM199 for 5 min, 4 h after ICSI (ethanol). One or two blastocysts from the ionomycin+DMAP (8 recipients) and ethanol (17 recipients) oocyte activation treatments were non-surgically transferred into Holsteins for the study of calf production. The highest cleavage and blastocyst production rates were observed in the ionomycin+DMAP treatment (83.9% and 40.1%) by the ICSI. These rates were significantly (P<0.05) higher than those for the ionomycin oocyte activation treatment (57.6% and 18.2%) but did not differ from the ethanol treatment (75.6% and 29.4%). In the sham-injected, the highest blastocyst production rates were observed for the ionomycin+DMAP and ethanol treatments (10.7% and 11.3%). Pregnancy and birth rates for blastocysts derived from the ethanol oocyte activation treatment (58.8% and 47.4%) were significantly higher (P<0.05) than those of the ionomycin+DMAP treatment (12.5% and 9.2%). The results showed that post-ICSI oocyte activation with ethanol is more effective than activation with ionomycin alone or with ionomycin+DMAP for the production of viable blastocysts and calves.  相似文献   

14.
The objective was to assess the ability of testicular spermatozoa to fertilize in vitro matured domestic cat oocytes and support blastocyst formation in vitro following intra-cytoplasmic sperm injection (ICSI). After IVM, oocytes were randomly and equally allocated among treatment groups (ICSI with testicular spermatozoa, ICSI with ejaculated spermatozoa, sham ICSI, and control IVF). At 18 h after either injection or insemination, the percentage of fertilized oocytes (per total metaphase II oocytes) was approximately 65% after ICSI with testicular or ejaculated spermatozoa (P > 0.05), which was less (P < 0.05) than control IVF (approximately 90%). On Day 7, the percentage of cleaved embryos (per total metaphase II oocytes) was approximately 60% after ICSI with testicular or ejaculated spermatozoa (P > 0.05), which also was less (P < 0.05) than control IVF (approximately 85%). After ICSI with testicular spermatozoa, the percentage of blastocysts (per total cleaved embryos) was approximately 11.0%, which was less (P < 0.05) than ICSI with ejaculated spermatozoa (approximately 21.0%); the latter was less (P < 0.05) than control IVF (approximately 43.0%). No blastocyst formation was observed after sham ICSI. For the first time in the domestic cat, this study demonstrated the fertilizing ability and developmental potential of intra-testicular spermatozoa delivered directly into intra-ovarian oocytes matured in vitro.  相似文献   

15.
Yong HY  Hong JY  Kang SK  Lee BC  Lee ES  Hwang WS 《Theriogenology》2005,63(3):783-794
The present study investigated the correlation of sperm movement in the ooplasm, pretreatment of sperm with dithiothreitol (DTT) and sperm freezing with the development of porcine embryos derived from modified intracytoplasmic sperm injection (ICSI). In vitro, matured gilt oocytes without centrifugation were injected with head membrane-damaged spermatozoa aspirated tail-first. In Exp. 1, frozen-thawed sperm were categorized into three groups: impaired, immotile or motile. Oocytes injected with motile sperm (43.6%) showed a higher (P < 0.05) fertilization rate compared to oocytes injected with impaired or immotile sperm (34.5 or 37.2%). The survival rate was significantly higher (P < 0.05) in oocytes injected with impaired sperm (92.9%) than in oocytes injected with immotile or motile sperm (84.8 or 86.7%). No differences were observed in the rates of cleavage or blastocyst formation, and in total cell number of blastocysts among three groups of oocytes. In Exp. 2, motile frozen-thawed sperm were pretreated with DTT before injection and non-treated sperm served as controls. Higher rates (P < 0.05) of fertilization, male pronucleus (MPN) and decondensed sperm head (DSH) formation were observed in oocytes injected with control sperm (41.1, 50.0 and 91.1%, respectively) than in oocytes injected with DTT-treated sperm (22.1, 30.2 and 72.1%, respectively). No differences in embryo development and total cell number of blastocysts were observed between two groups of oocytes. In Exp. 3, motile frozen-thawed or fresh sperm without DTT pretreatment were injected into oocytes. The rates of fertilization and MPN formation were significantly higher (P < 0.05) in oocytes injected with fresh sperm (59.8 and 73.5%) than in oocytes injected with frozen-thawed sperm (36.7 and 59.2%). No differences in embryo development and total cell number of blastocysts were observed between two groups of oocytes. In conclusion, the present study clearly demonstrated that sperm movement in the ooplasm, use of DTT and fresh spermatozoa did not significantly affect on embryo development in porcine modified ICSI.  相似文献   

16.
In the domestic cat, morula-blastocyst formation in vitro is compromised after intracytoplasmic sperm injection (ICSI) with testicular compared to ejaculated spermatozoa. The aim of this study was to determine the cellular basis of the lower developmental potential of testicular spermatozoa. Specifically, we examined the influence of sperm DNA fragmentation (evaluated by TUNEL assay) and centrosomal function (assessed by sperm aster formation after ICSI) on first-cleavage timing, developmental rate, and morula-blastocyst formation. Because the incidences of DNA fragmentation were not different between testicular and ejaculated sperm suspensions, DNA integrity was not the origin of the reduced developmental potential of testicular spermatozoa. After ICSI, proportions of fertilized and cleaved oocytes were similar and not influenced by sperm source. However, observations made at 5 h postactivation clearly demonstrated that 1) zygotes generally contained a large sperm aster after ICSI with ejaculated spermatozoa, a phenomenon never observed with testicular spermatozoa, and 2) proportions of zygotes with short or absent sperm asters were higher after ICSI with testicular spermatozoa than using ejaculated spermatozoa. The poor pattern of aster formation arose from the testicular sperm centrosome, which contributed to a delayed first cleavage, a slower developmental rate, and a reduced formation of morulae and blastocysts compared to ejaculated spermatozoa. When a testicular sperm centrosome was replaced by a centrosome from an ejaculated spermatozoon, kinetics of first cell cycle as well as embryo development quality significantly improved and were comparable to data from ejaculated spermatozoa. Results demonstrate for the first time in mammals that maturity of the cat sperm centrosome (likely via epididymal transit) contributes to an enhanced ability of the spermatozoon to produce embryos that develop normally to the morula and blastocyst stages.  相似文献   

17.
The ability to mature and fertilize oocytes of endangered species may allow us to sustain genetic and global biodiversity. The first objective of this study was to compare the effect of two different culture media and two different incubation times on in vitro maturation (IVM) of domestic cat oocytes. The second objective was to determine the developmental competence of in vitro matured cat oocytes after intracytoplasmic sperm injection (ICSI) with cat spermatozoa. Oocytes recovered from ovaries of ovariectomized cats were cultured either in TCM 199 medium or in synthetic oviductal fluid (SOF), both of which were supplemented with cysteamine, BSA, FSH, LH. Nuclear maturation was assessed after 24 h and 40 h of incubation. Results of IVM showed that the percentage of oocytes reaching MII after 24 h and 40 h of incubation were significantly higher (P<0.001) after culture with SOF (88/110, 80% and 159/192, 82.8%) than TCM 199 (86/129, 66.7% and 58/90, 64.4%). Oocytes (n = 231) matured in vitro in SOF for 24 h were fertilized by ICSI with frozen-thawed epididymal cat spermatozoa. After ICSI, one group of oocytes (n = 129) was activated with ethanol, and a second group (n = 102) was not activated. The developmental competence of all ICSI oocytes was examined after 7 days of in vitro culture. After 28 h of culture, the cleavage frequency of ICSI-activated oocytes was significantly higher (P<0.001) than that of IC  相似文献   

18.
Said S  Han MS  Niwa K 《Theriogenology》2003,60(2):359-369
The possibility of obtaining normal development of rat oocytes following intracytoplasmic injection of rat sperm heads, obtained by sonicating spermatozoa from testes and epididymides, was evaluated. Irrespective of the source of spermatozoa, sperm heads were successfully injected into approximately 45% of oocytes used; after 9-12h of culture, approximately 55% of injected oocytes still had normal morphology. Of the oocytes injected with testicular sperm heads 45% were activated, with a female pronucleus and a second polar body, but significantly more oocytes (approximately 68%) injected with caput and cauda epididymal sperm heads were activated. Male pronuclear formation was observed in 67-84% of the activated oocytes, with no difference in the proportions among the different sources of sperm heads. When zygotes showing two pronuclei and a second polar body at 10h after injection were cultured in conditions that support development of 1-cell embryos produced in vivo, no embryos derived from testicular sperm heads developed to blastocysts after 120 h of culture. Development of embryos derived from cauda sperm heads was significantly higher at all points of assessment, while embryos from caput sperm showed an intermediate degree of development, compared with embryos from testicular spermatozoa. However, similar proportions (2-4%) of 1-cell embryos derived from all three groups of sperm heads developed into normal offspring after transfer to foster mothers; of the limited number of offspring tested, all were fertile. These results demonstrate that sperm heads from all sources tested are similar in their ability to contribute to full development of normal, fertile offspring.  相似文献   

19.
Development of bovine oocytes after intracytoplasmic sperm injection (ICSI) was investigated. Oocytes were matured for 24-26 h in vitro and injected with isolated sperm heads. When treated with 7% ethanol (v/v) for 5 min, 71.7% of ICSI oocytes were activated as shown by the resumption of meiosis and the formation of female pronuclei. However, 41.5% of injected sperm heads remained condensed at 18-20 h after injection into the ooplasm. The incidence of decondensing sperm and that of male pronuclei at this stage were 15.1% and 26.4%, respectively. A total of 55.5% of oocytes reached the 2-cell stage following sperm head injection and 54.7% after sham-ICSI; these percentages were not significantly different from those following in vitro fertilisation (IVF) (73.1%). The percentage of 2-cell embryos reaching the 8-cell stage following ICSI was 37.5%, and 27.6% after sham-ICSI, which were significantly lower (p < 0.01) than the equivalent percentage following IVF (62.4%). The percentages of parthenogenetic embryos reaching the 2-cell, 4-cell and 8-cell stages following ICSI were 56.4%, 48.9% and 30.0%, respectively. These results indicate that the low rate of normal embryonic development of bovine oocytes following ICSI is largely due to the parthenogenetic activation of the oocytes.  相似文献   

20.
Recently, mouse and human offspring have been successfully obtained from embryos developed after intracytoplasmic sperm injection(ICSI), using a Piezo micromanipulator. In this study, the Piezo-ICSI procedure was used with in vitro matured bovine oocytes known to be difficult to fertilize microsurgically. The efficacy of Piezo-ICSI versus conventional ICSI was examined after oocytes were activated and fertilized with or without calcium ionophore (A23187) exposure. In conventional ICSI, the rate of fertilization was 19% (11/59) with A23187 and 5% (2/38) without it. However, when the Piezo-ICSI procedure was performed, the fertilization rate was 72% (47/65) with A23187 and 72% (28/39) without it. The rate of oocyte survival after microinjection was nearly similar for both methods. We suggest that the bovine oocyte is successfully activated and fertilized when an immobilized spermatozoon is injected exactly into the ooplasm through the oolemma, perforated easily by the pulsation of the Piezo. Moreover, an activating procedure such as exposure of oocytes to A23187 is not necessary, because the so-called sperm factor (oocyte activating substances) is incorporated into the ooplasm along with a spermatozoon. In this respect, the Piezo-ICSI was more efficient than the conventional ICSI method for fertilizing and thus obtaining more bovine embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号