首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endospores of proteolytic type B Clostridium botulinum TMW 2.357 and Bacillus amyloliquefaciens TMW 2.479 are currently described as the most high-pressure-resistant bacterial spores relevant to food intoxication and spoilage in combined pressure-temperature applications. The effects of combined pressure (0.1 to 1,400 MPa) and temperature (70 to 120 degrees C) treatments were determined for these spores. A process employing isothermal holding times was established to distinguish pressure from temperature effects. An increase in pressure (600 to 1,400 MPa) and an increase in temperature (90 to 110 degrees C) accelerated the inactivation of C. botulinum spores. However, incubation at 100 degrees C, 110 degrees C, or 120 degrees C with ambient pressure resulted in faster spore reduction than treatment with 600 or 800 MPa at the same temperature. This pressure-mediated spore protection was also observed at 120 degrees C and 800, 1,000, or 1,200 MPa with the more heat-tolerant B. amyloliquefaciens TMW 2.479 spores. Inactivation curves for both strains showed a pronounced pressure-dependent tailing, which indicates that a small fraction of the spore populations survives conditions of up to 120 degrees C and 1.4 GPa in isothermal treatments. Because of this tailing and the fact that pressure-temperature combinations stabilizing bacterial endospores vary from strain to strain, food safety must be ensured in case-by-case studies demonstrating inactivation or nongrowth of C. botulinum with realistic contamination rates in the respective pressurized food and equipment.  相似文献   

2.
Survival of Clostridium botulinum Spores   总被引:1,自引:1,他引:0       下载免费PDF全文
Radiation survival curves of spores of Clostridium botulinum strain 33A exhibited an exponential reduction which accounted for most of the population, followed by a “tail” comprising a very small residual number [7 to 0.7 spore(s) per ml] which resisted death in the range between 3.0 and 9.0 Mrad dose levels. The “tail” was not caused by protective spore substances released into the suspensions during irradiation, by the presence of accumulated radiation “inactivated” spores, or by heat shock of pre-irradiated spores. The theoretical number of spore targets which must be inactivated by irradiation was estimated both by a graphical and by a computation method to be about 80, and the D value was calculated to be 0.295 and 0.396 Mrad, respectively, in buffer and in pork pea broth.  相似文献   

3.
The inactivation of bacterial endospores by hydrostatic pressure requires the combined application of heat and pressure. We have determined the resistance of spores of 14 food isolates and 5 laboratory strains of Bacillus subtilis, B. amyloliquefaciens, and B. licheniformis to treatments with pressure and temperature (200 to 800 MPa and 60 to 80°C) in mashed carrots. A large variation in the pressure resistance of spores was observed, and their reduction by treatments with 800 MPa and 70°C for 4 min ranged from more than 6 log units to no reduction. The sporulation conditions further influenced their pressure resistance. The loss of dipicolinic acid (DPA) from spores that varied in their pressure resistance was determined, and spore sublethal injury was assessed by determination of the detection times for individual spores. Treatment of spores with pressure and temperature resulted in DPA-free, phase-bright spores. These spores were sensitive to moderate heat and exhibited strongly increased detection times as judged by the time required for single spores to grow to visible turbidity of the growth medium. The role of DPA in heat and pressure resistance was further substantiated by the use of the DPA-deficient mutant strain B. subtilis CIP 76.26. Taken together, these results indicate that inactivation of spores by combined pressure and temperature processing is achieved by a two-stage mechanism that does not involve germination. At a pressure between 600 and 800 MPa and a temperature greater than 60°C, DPA is released predominantly by a physicochemical rather than a physiological process, and the DPA-free spores are inactivated by moderate heat independent of the pressure level. Relevant target organisms for pressure and temperature treatment of foods are proposed, namely, strains of B. amyloliquefaciens, which form highly pressure-resistant spores.  相似文献   

4.
5.
Chub injected in the loin muscle with 10(6)Clostridium botulinum type E spores were smoked to an internal temperature of 180 F (82.2 C) for 30 min, sealed in plastic bags, and incubated at room temperature (20 to 25 C) for 7 days. Viable type E spores were found in practically all such fish. Toxin formation by the survivors in the smoked fish was dependent on the brine concentration of the smoked fish. A brine concentration of 3% or higher, as measured in the loin muscle, inhibited toxin formation. Six different type E strains gave similar results. Only a few hundred of the million spores in the inoculum survived the smoking. Moisture in the atmosphere during smoking did not reduce the incidence of fish with type E survivors.  相似文献   

6.
Unrelatedness of Bacillus amyloliquefaciens and Bacillus subtilis   总被引:30,自引:12,他引:18       下载免费PDF全文
Eight strains of highly amylolytic, sporeforming bacilli (hereafter referred to as Bacillus amyloliquefaciens) were compared with respect to their taxonomic relationship to B. subtilis. The physiological-biochemical properties of these two groups of organisms showed that B. amyloliquefaciens differed from B. subtilis by their ability to grow in 10% NaCl, characteristic growth on potato plugs, increased production of alpha-amylase, and their ability to ferment lactose with the production of acid. The base compositions of the deoxyribonucleic acid (DNA) of the B. subtilis strains consistently fell in the range of 41.5 to 43.5% guanine + cytosine (G + C), whereas that of the B. amyloliquefaciens strains was in the 43.5 to 44.9% G + C range. Hybrid formation between B. subtilis W23 and B. amyloliquefaciens F DNA revealed only a 14.7 to 15.4% DNA homology between the two species. Transducing phage, SP-10, was able to propagate on B. subtilis W23 and B. amyloliquefaciens N, and would transduce B. subtilis 168 (indole(-)) and B. amyloliquefaciens N-10 (arginine(-)) to prototrophy with a frequency of 3.9 x 10(-4) and 2.4 x 10(-5) transductants per plaque-forming unit, respectively. Attempts to transduce between the two species were unsuccessful. These data show that Bacillus amyloliquefaciens is a valid species and should not be classified as a strain or variety of B. subtilis.  相似文献   

7.
Endospores of Bacillus spp., especially Bacillus subtilis, have served as experimental models for exploring the molecular mechanisms underlying the incredible longevity of spores and their resistance to environmental insults. In this review we summarize the molecular laboratory model of spore resistance mechanisms and attempt to use the model as a basis for exploration of the resistance of spores to environmental extremes both on Earth and during postulated interplanetary transfer through space as a result of natural impact processes.  相似文献   

8.
Bacteriophages of Clostridium botulinum   总被引:9,自引:0,他引:9  
  相似文献   

9.
Many spores (1-60/g) of Clostridium botulinum type F were detected in different containers of honey products of the same brand. Microbiological and physicochemical properties of the contaminated honey were compared with those of the negative one. No difference in pH, hydroxymethyl furfural contents or diastase activity was found between them. The total counts of anaerobes other than C. botulinum and of yeast were also similar, whereas the aerobe counts, which were proportionally related with the C. botulinum counts, were higher in the positive honey than in the negative one. Motile colony-forming Bacillus alvei was predominant among the aerobes. B. alvei stimulated the toxin production by C. botulinum type F in culture medium incubated under aerobic conditions. The high count of C. botulinum in the honey might have been due to the possible stimulation of growth by B. alvei or some other microorganisms at some stage of honey ripening.  相似文献   

10.
11.
12.
Growth and toxin formation by Clostridium botulinum at low pH values   总被引:10,自引:6,他引:4  
Spores of Clostridium botulinum were found to initiate growth and to produce toxin in aqueous suspensions of soya protein at pH values as low as 4-2 and in skimmed milk at pH 4.4. Most of the experiments were done with mixed cultures of CI. botulinum types A and B in the presence of two strains of Bacillus subtilis. The role of the latter organism was concluded to be to lower the oxygen content and the Eh of the suspensions. Toxin was produced at pH 4-4 after 4 weeks of incubation at 30oC when either hydrochloric or citric acids were used as the acidulant and after 12 and 14 weeks when, respectively, lactic and acetic acids were used. Thus, amongst other factors the nature of the acid and not solely the pH value is an important factor in controlling the growth of Cl. botulinum at low pH. Pure cultures of Cl botulinum type A grew at 30oC under strictly anaerobic conditions and produced toxin at pH 4-3 in the presence of hydrochloric acid.  相似文献   

13.
Peptidoglycan structural dynamics during endospore germination of Bacillus subtilis 168 have been examined by muropeptide analysis. The first germination-associated peptidoglycan structural changes are detected within 3 min after the addition of the specific germinant l-alanine. We detected in the spore-associated material new muropeptides which, although they have slightly longer retention times by reversed-phase (RP)-high-pressure liquid chromatography (HPLC) than related ones in dormant spores, show the same amino acid composition and molecular mass. Two-dimensional nuclear magnetic resonance (NMR) analysis shows that the chemical changes to the muropeptides on germination are minor and are probably limited to stereochemical inversion. These new muropeptides account for almost 26% of the total muropeptides in spore-associated material after 2 h of germination. The exudate of germinated spores of B. subtilis 168 contains novel muropeptides in addition to those present in spore-associated material. Exudate-specific muropeptides have longer retention times, have no reducing termini, and exhibit a molecular mass 20 Da lower than those of related reduced muropeptides. These new products are anhydro-muropeptides which are generated by a lytic transglycosylase, the first to be identified in a gram-positive bacterium. There is also evidence for the activity of a glucosaminidase during the germination process. Quantification of muropeptides in spore-associated material indicates that there is a heterogeneous distribution of muropeptides in spore peptidoglycan. The spore-specific residue, muramic δ-lactam, is proposed to be a major substrate specificity determinant of germination-specific lytic enzymes, allowing cortex hydrolysis without any effect on the primordial cell wall.The extreme heat resistance of dormant bacterial endospores has made them an important problem in the production of safe foodstuffs (3). The spore cell wall peptidoglycan is considered to play a major role in the maintenance of heat resistance and dormancy (6). Bacillus subtilis spore peptidoglycan is composed of two layers. A thin, inner layer called the primordial cell wall retains the basic vegetative cell peptidoglycan structure. The primordial cell wall represents 2 to 4% of the total endospore peptidoglycan, is not digested during germination, and serves as the initial cell wall during outgrowth (2, 5, 25, 29). The outer thick layer of peptidoglycan, known as the cortex, is characterized by several unique spore-specific features. Approximately 50% of the muramic acid residues in the glycan strands are present in the δ-lactam form (2, 24). Muramic acid side chains are composed of 26 and 23% of tetrapeptide and single l-alanine, respectively (2).Despite their extreme dormancy and thermostability, bacterial endospores retain an alert sensory mechanism enabling them to respond within minutes to the presence of specific germinants. Spores of B. subtilis respond to at least two different types of germinative stimuli: (i) l-alanine and (ii) a combination of l-asparagine, glucose, fructose, and KCl (AGFK) (34). The germination response is initiated by the interaction of a receptor protein with specific germinants which triggers the loss of spore-specific properties and the transformation of a dormant resistant bacterial spore into a metabolically active vegetative cell. The germination process is characterized by sequential, interrelated biochemical events. The specific hydrolysis of peptidoglycan in the spore cortex layer is an essential event in germination (2, 25). Its degradation removes the physical constraints of the cortex and allows core expansion and outgrowth (9, 25). As a consequence of cortex hydrolysis, peptidoglycan fragments can be detected in the germination exudate (13, 33).A number of bacterial spore germination-specific cortex-lytic enzymes (GSLEs) have been reported to be involved in cortex hydrolysis (9, 1820). A gene homologous to that encoding the GSLE from Bacillus cereus has been identified and inactivated in B. subtilis, and the resulting mutant germinates more slowly than the wild type (22). Recently a germination-specific muramidase isolated from a germination extract of Clostridium perfringens S40 has been purified and characterized (4).GSLEs have a high substrate specificity, requiring intact spore cortex for activity (9, 23). The muramidase from C. perfringens S40, however, hydrolyzes cortical fragments but has a strict requirement for the presence of the muramic δ-lactam residues (4). Thus, the GSLEs are highly specialized and may exist as proforms which are specifically activated during germination (9).Very little is known about the mechanism by which the cortex is hydrolyzed during germination and the autolytic enzymes involved. Muropeptide analysis provides a method for fine chemical structural determination of spore cortex (2, 24, 25). In this paper, we report the use of muropeptide analysis to determine the peptidoglycan structural dynamics which occur during spore germination of B. subtilis 168 and the evidence for a number of different enzyme activities.  相似文献   

14.
Plasmids in Clostridium botulinum and related Clostridium species.   总被引:8,自引:6,他引:2       下载免费PDF全文
Toxigenic Clostridium botulinum and nontoxigenic C. sporogenes, C. subterminale, and C. botulinum-like organisms from a variety of sources were screened for plasmids. Of the 68 toxigenic C. botulinum isolates, 56% carried one or more plasmids, ranging in mass from 2.1 to 81 megadaltons. Within individual groups (based on the type of neurotoxin produced), many strains showed identical plasmid banding patterns on agarose gels. Of the 15 nontoxigenic strains tested, 40% also carried one or more plasmids ranging from 1.7 to 25.0 megadaltons, with both unique and common banding patterns represented. A total of 67 plasmids from both toxigenic and nontoxigenic strains were detected. At this time, no phenotypic functions have been assessed for these plasmids, and they must therefore be considered cryptic. A variety of lysing and extraction techniques were necessary to detect plasmids in the different C. botulinum groups.  相似文献   

15.
The metabiotic effect of Bacillus licheniformis on Clostridium botulinum was examined. B. licheniformis elevated the pH of a model system with an initial pH of 4.4 so that C. botulinum grew and produced toxin. Toxin production was observed when spores from both species were coinoculated at levels as low as 10 spores per ml. When pint jars of tomatoes were used, canner size contributed to a 10,000-fold difference in the lethality of a boiling water bath process on B. licheniformis spores. Botulinal toxin was not detected in pH-elevated jars of tomatoes containing C. botulinum spores.  相似文献   

16.
The anthrax incidents in the United States in the fall of 2001 led to the use of electron beam (EB) processing to sanitize the mail for the U.S. Postal Service. This method of sanitization has prompted the need to further investigate the effect of EB irradiation on the destruction of Bacillus endospores. In this study, endospores of an anthrax surrogate, B. atrophaeus, were destroyed to demonstrate the efficacy of EB treatment of such biohazard spores. EB exposures were performed to determine (i) the inactivation of varying B. atrophaeus spore concentrations, (ii) a D10 value (dose required to reduce a population by 1 log10) for the B. atrophaeus spores, (iii) the effects of spore survival at the bottom of a standardized paper envelope stack, and (iv) the maximum temperature received by spores. A maximum temperature of 49.2°C was reached at a lethal dose of ~40 kGy, which is a significantly lower temperature than that needed to kill spores by thermal effects alone. AD10 value of 1.53 kGy was determined for the species. A surface EB dose between 25 and 32 kGy produced the appropriate killing dose of EB between 11 and 16 kGy required to inactivate 8 log10 spores, when spore samples were placed at the bottom of a 5.5-cm stack of envelopes.  相似文献   

17.
Bacteriophages of Clostridium botulinum.   总被引:13,自引:2,他引:11       下载免费PDF全文
  相似文献   

18.
Application of modern gene technology to strain improvement of the industrially important bacterium Bacillus amyloliquefaciens is reported. Several different plasmid constructions carrying the alpha-amylase gene (amyE) from B. amyloliquefaciens were amplified in this species either extrachromosomally or intrachromosomally. The amyE gene cloned on a pUB110-derived high copy plasmid pKTH10 directed the highest yields both in rich laboratory medium and in crude industrial medium. The alpha-amylase activity, when compared with the parental strain, was enhanced up to 20-fold in the pKTH 10 transformant. This strain showed decreased activities for other exoenzymes, such as proteases and beta-glucanase suggesting common limiting resources in the processing of these enzymes. Deletions were made in vitro in genes encoding neutral (nprE), alkaline (aprE) protease and beta-glucanase (bglA). The engineered genes were cloned into the thermosensitive plasmid pE194, and the resulting plasmids were used to replace the corresponding wild type chromosomal genes in B. amyloliquefaciens by integration-excision at non-permissive temperature. The double mutant deficient in the major proteases (delta nprE delta aprE) showed about a 2-fold further enhancement in alpha-amylase production in the industrial medium compared with the relevant wild type backgroud, both when plasmid-free and when transformed with pKTH10; this strain also produced elevated levels of the chromosomally-encoded beta-glucanase; pKTH10 was stably maintained both in the wild type strain and in the delta nprE delta aprE mutant. We suggest that the higher yields in alpha-amylase and beta-glucanase in the delta nprE delta aprE strain are primarily due to improved access to limiting resources, and that decreased proteolytic degradation may have had a secondary role in retaining the high activity obtained.  相似文献   

19.
20.
The mechanism by which potassium sorbate inhibits Bacillus cereus T and Clostridium botulinum 62A spore germination was investigated. Spores of B. cereus T were germinated at 35 degrees C in 0.08 M sodium-potassium phosphate buffers (pH 5.7 and 6.7) containing various germinants (L-alanine, L-alpha-NH2-n-butyric acid, and inosine) and potassium sorbate. Spores of C. botulinum 62A were germinated in the same buffers but with 10 mM L-lactic acid, 20 mM sodium bicarbonate, L-alanine or L-cysteine, and potassium sorbate. Spore germination was monitored by optical density measurements at 600 nm and phase-contrast microscopy. Inhibition of B. cereus T spore germination was observed when 3,900 micrograms of potassium sorbate per ml was added at various time intervals during the first 2 min of spore exposure to the pH 5.7 germination medium. C. botulinum 62A spore germination was inhibited when 5,200 micrograms of potassium sorbate per ml was added during the first 30 min of spore exposure to the pH 5.7 medium. Potassium sorbate inhibition of germination was reversible for both B. cereus T and C. botulinum 62A spores. Potassium sorbate inhibition of B. cereus T spore germination induced by L-alanine and L-alpha-NH2-n-butyric acid was shown to be competitive in nature. Potassium sorbate was also a competitive inhibitor of L-alanine- and L-cysteine-induced germination of C. botulinum 62A spores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号