首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用细胞外记录的方法,在单独刺激经典感受野(classical receptive field,CRF)或同时刺激CRF和感受野外区域(extra-receptive field,ERF)的情况下,测量了猫初级视觉皮层细胞的对比度响应函数。当刺激所用的中心和外周运动光栅的参数一致时,与仅刺激CRF相比,强的ERF抑制使对比度响应函数动态区增加,响应增益和对比度增益降低。当中心和外周光栅的方位相差90度时,与方位参数一致的情况相比,大部分细胞的ERF抑制减弱,对比度响应函数的动态区减小,对比度增益和响应增益增加;少数细胞的ERF对CRF的作用从抑制变为易化,其对比度响应函数的动态区与只刺激CRF相比还要小,而对比度增益和响应增益还要大。揭示了初级视觉皮层细胞的抑制型整合野在CRF和ERF图像的方位及对比度差异检测中的作用机制。  相似文献   

2.
We develop a unified model accounting simultaneously for the contrast invariance of the width of the orientation tuning curves (OT) and for the sigmoidal shape of the contrast response function (CRF) of neurons in the primary visual cortex (V1). We determine analytically the conditions for the structure of the afferent LGN and recurrent V1 inputs that lead to these properties for a hypercolumn composed of rate based neurons with a power-law transfer function. We investigate what are the relative contributions of single neuron and network properties in shaping the OT and the CRF. We test these results with numerical simulations of a network of conductance-based model (CBM) neurons and we demonstrate that they are valid and more robust here than in the rate model. The results indicate that because of the acceleration in the transfer function, described here by a power-law, the orientation tuning curves of V1 neurons are more tuned, and their CRF is steeper than those of their inputs. Last, we show that it is possible to account for the diversity in the measured CRFs by introducing heterogeneities either in single neuron properties or in the input to the neurons. We show how correlations among the parameters that characterize the CRF depend on these sources of heterogeneities. Comparison with experimental data suggests that both sources contribute nearly equally to the diversity of CRF shapes observed in V1 neurons.  相似文献   

3.
Hu M  Wang Y  Wang Y 《PloS one》2011,6(10):e25410
The visual information we receive during natural vision changes rapidly and continuously. The visual system must adapt to the spatiotemporal contents of the environment in order to efficiently process the dynamic signals. However, neuronal responses to luminance contrast are usually measured using drifting or stationary gratings presented for a prolonged duration. Since motion in our visual field is continuous, the signals received by the visual system contain an abundance of transient components in the contrast domain. Here using a modified reverse correlation method, we studied the properties of responses of neurons in the cat primary visual cortex to different contrasts of grating stimuli presented statically and transiently for 40 ms, and showed that neurons can effectively discriminate the rapidly changing contrasts. The change in the contrast response function (CRF) over time mainly consisted of an increment in contrast gain (CRF shifts to left) in the developing phase of temporal responses and a decrement in response gain (CRF shifts downward) in the decay phase. When the distribution range of stimulus contrasts was increased, neurons demonstrated decrement in contrast gain and response gain. Our results suggest that contrast gain control (contrast adaptation) and response gain control mechanisms are well established during the first tens of milliseconds after stimulus onset and may cooperatively mediate the rapid dynamic responses of visual cortical neurons to the continuously changing contrast. This fast contrast adaptation may play a role in detecting contrast contours in the context of visual scenes that are varying rapidly.  相似文献   

4.
Visual field maps in human cortex   总被引:7,自引:0,他引:7  
Wandell BA  Dumoulin SO  Brewer AA 《Neuron》2007,56(2):366-383
Much of the visual cortex is organized into visual field maps: nearby neurons have receptive fields at nearby locations in the image. Mammalian species generally have multiple visual field maps with each species having similar, but not identical, maps. The introduction of functional magnetic resonance imaging made it possible to identify visual field maps in human cortex, including several near (1) medial occipital (V1,V2,V3), (2) lateral occipital (LO-1,LO-2, hMT+), (3) ventral occipital (hV4, VO-1, VO-2), (4) dorsal occipital (V3A, V3B), and (5) posterior parietal cortex (IPS-0 to IPS-4). Evidence is accumulating for additional maps, including some in the frontal lobe. Cortical maps are arranged into clusters in which several maps have parallel eccentricity representations, while the angular representations within a cluster alternate in visual field sign. Visual field maps have been linked to functional and perceptual properties of the visual system at various spatial scales, ranging from the level of individual maps to map clusters to dorsal-ventral streams. We survey recent measurements of human visual field maps, describe hypotheses about the function and relationships between maps, and consider methods to improve map measurements and characterize the response properties of neurons comprising these maps.  相似文献   

5.
6.
The orientation tuning properties of the non-classical receptive field (nCRF or “surround”) relative to that of the classical receptive field (CRF or “center”) were tested for 119 neurons in the cat primary visual cortex (V1). The stimuli were concentric sinusoidal gratings generated on a computer screen with the center grating presented at an optimal orientation to stimulate the CRF and the surround grating with variable orientations stimulating the nCRF. Based on the presence or absence of surround suppression, measured by the suppression index at the optimal orientation of the cells, we subdivided the neurons into two categories: surround-suppressive (SS) cells and surround-non-suppressive (SN) cells. When stimulated with an optimally oriented grating centered at CRF, the SS cells showed increasing surround suppression when the stimulus grating was expanded beyond the boundary of the CRF, whereas for the SN cells, expanding the stimulus grating beyond the CRF caused no suppression of the center response. For the SS cells, strength of surround suppression was dependent on the relative orientation between CRF and nCRF: an iso-orientation grating over center and surround at the optimal orientation evoked strongest suppression and a surround grating orthogonal to the optimal center grating evoked the weakest or no suppression. By contrast, the SN cells showed slightly increased responses to an iso-orientation stimulus and weak suppression to orthogonal surround gratings. This iso-/orthogonal orientation selectivity between center and surround was analyzed in 22 SN and 97 SS cells, and for the two types of cells, the different center-surround orientation selectivity was dependent on the suppressive strength of the cells. We conclude that SN cells are suitable to detect orientation continuity or similarity between CRF and nCRF, whereas the SS cells are adapted to the detection of discontinuity or differences in orientation between CRF and nCRF.  相似文献   

7.
The human visual system has a remarkable ability to successfully operate under a variety of challenging viewing conditions. For example, our object-recognition capabilities are largely unaffected by low-contrast (e.g., foggy) environments. The basis for this ability appears to be reflected in the neural responses in higher cortical visual areas that have been characterized as being invariant to changes in luminance contrast: neurons in these areas respond nearly equally to low-contrast as compared to high-contrast stimuli. This response pattern is fundamentally different than that observed in earlier visual areas such as primary visual cortex (V1), which is highly dependent on contrast. How this invariance is achieved in higher visual areas is largely unknown. We hypothesized that directed spatial attention is an important prerequisite of the contrast-invariant responses in higher visual areas and tested this with functional MRI (fMRI) while subjects directed their attention either toward or away from contrast-varying shape stimuli. We found that in the lateral occipital complex (LOC), a visual area important for processing shape information, attention changes the form of the contrast response function (CRF). By directing attention away from the shape stimuli, the CRF in the LOC was similar to that measured in V1. We describe a number of mechanisms that could account for this important function of attention.  相似文献   

8.
Representation of visual stimuli in inferior temporal cortex.   总被引:5,自引:0,他引:5  
In primates, inferior temporal (IT) cortex is crucial for the processing and storage of visual information about form and colour. This article reviews the properties of IT neurons and considers how these properties may underlie the perceptual and mnemonic functions of IT cortex. The available evidence suggests that the processing of the facial image by IT cortex is similar to its processing of other visual patterns. Faces and other complex visual stimuli appear to be represented by the pattern of responses over a population of IT neurons rather than by the responses of specific 'feature detectors' or 'grandmother' cells. IT neurons with adult-like stimulus properties are present in monkeys as young as six weeks old.  相似文献   

9.
Receptive fields structure of neurons in primary visual cortex suggests that they process visual stimuli in the frequency domain, in a way similar to the frequency analysis performed in the auditory system. As a consequence, both psychophysicists and electrophysiologists have long probed the visual system using extended sine wave gratings that are well localized in the frequency domain but poorly defined in visual space. Meanwhile, how the brain processes the geometrical properties and the spatial and temporal relationships between stimulus parts has received less attention. Recent progress in visual neuroscience that uncovered long-range horizontal connections between cortical neurons and revealed the complex architecture of primary visual cortex and feedback connectivity led to new insights concerned with the processing of geometrical properties of visual stimuli in V1. This paper presents a short historical perspective of the emergence of new issues related to the cortical architecture and its functional consequences on the processing of geometrical properties.  相似文献   

10.
Many neurons in mammalian primary visual cortex have properties such as sharp tuning for contour orientation, strong selectivity for motion direction, and insensitivity to stimulus polarity, that are not shared with their sub-cortical counterparts. Successful models have been developed for a number of these properties but in one case, direction selectivity, there is no consensus about underlying mechanisms. We here define a model that accounts for many of the empirical observations concerning direction selectivity. The model describes a single column of cat primary visual cortex and comprises a series of processing stages. Each neuron in the first cortical stage receives input from a small number of on-centre and off-centre relay cells in the lateral geniculate nucleus. Consistent with recent physiological evidence, the off-centre inputs to cortex precede the on-centre inputs by a small (~4 ms) interval, and it is this difference that confers direction selectivity on model neurons. We show that the resulting model successfully matches the following empirical data: the proportion of cells that are direction selective; tilted spatiotemporal receptive fields; phase advance in the response to a stationary contrast-reversing grating stepped across the receptive field. The model also accounts for several other fundamental properties. Receptive fields have elongated subregions, orientation selectivity is strong, and the distribution of orientation tuning bandwidth across neurons is similar to that seen in the laboratory. Finally, neurons in the first stage have properties corresponding to simple cells, and more complex-like cells emerge in later stages. The results therefore show that a simple feed-forward model can account for a number of the fundamental properties of primary visual cortex.  相似文献   

11.
Song XM  Wang Y  Zhu Z  Li CY 《PloS one》2010,5(11):e15025
In V1 of cats and monkeys, activity of neurons evoked by stimuli within the receptive field can be modulated by stimuli in the extra-receptive field (ERF). This modulating effect can be suppressive (S-ERF) or facilitatory (F-ERF) and plays different roles in visual information processing. Little is known about the cellular bases underlying the different types of ERF modulating effects. Here, we focus on the morphological differences between the S-ERF and F-ERF neurons. Single unit activities were recorded from V1 of the cat. The ERF properties of each neuron were assessed by area-response functions using sinusoidal grating stimuli. On completion of the functional tests, the cells were injected intracellularly with biocytin. The labeled cells were reconstructed and morphologically characterized in terms of the ERF modulation effects. We show that the vast majority of S-ERF neurons and F-ERF neurons are pyramidal cells and that the two types of cells clearly differ in the size of the soma, in complexity of dendrite branching, in spine size and density, and in the range of innervations of the axon collaterals. We propose that different pyramidal cell phenotypes reflect a high degree of specificity of neuronal connections associated with different types of spatial modulation.  相似文献   

12.
Summary Neuroplastic changes in associational connections were investigated 3 weeks after the intrinsic organization of the visual cortex of rats had been partially damaged by small cylindrical lesions (type I). These lesions caused the degeneration of short intracortical connections and associational connections that form patches in the primary and secondary visual areas. The resulting terminal degeneration disappeared within 20 days p.o. after which only some fiber degeneration was evident in the infragranular layers.Patches of terminal degeneration reappeared in the vicinity of the stab wounds, when the associational connections between the retrosplenial and the primary visual cortex had been secondarily interrupted by elongated lesions (type II), which penetrated the paramedian cortex and subcortical white matter. When type-II lesions were made in the intact cortex, patches of degeneration were absent, although in both cases some terminal degeneration was diffusely distributed in the primary visual cortex.Horseradish peroxidase (HRP) was applied to sites similar to those where type-I lesions were applied. In the intact cortex, HRP caused a granular labeling of numerous neurons in various positions including the retrosplenial cortex and patches of the postero-median visual cortex. HRP was also applied to type-I lesions that had been made 3 weeks earlier. In these cases, apparently HRP labeled the same subpopulations of neurons as it did in the intact cortex. However, a fraction of the labeled neurons showed a Golgilike staining (e.g., 27% of the labeled neurons in the retrosplenial cortex) only when HRP was applied to stab wounds.These results suggest that the breakdown of corticocortical connections in foci of the primary visual cortex causes a focal augmentation of specific associational connections, which are weak and diffusely distributed in the intact adult cortex of rats. Re-innervation originates from subpopulations of associative neurons in the retrosplenial and postero-median visual cortex. Preliminary experiments indicate that the failure of neonatal treatment with 6-OHDA to suppress this lesion-induced plasticity is not dependent on an intact noradrenergic innervation.  相似文献   

13.
Stevens CF 《Neuron》2002,36(1):139-142
The number of neurons in the primary visual cortex (V1) is, across primate species, related to the number of neurons in the visual thalamus (the lateral geniculate nucleus [LGN]) by a power law with an exponent of 3/2. This evolutionary scaling law is explained by a simple relation according to which the fineness of resolution in cortex is related to the number of neurons in the area of cortex used to process the information from a single point of light (the point-spread area). The same theory provides a link between two functional properties of the visual cortex, the areal cortical magnification factor (ACMF) and the receptive field (RF) area.  相似文献   

14.
Recent work has established that cerebral blood flow is regulated at a spatial scale that can be resolved by high field fMRI to show cortical columns in humans. While cortical columns represent a cluster of neurons with similar response properties (spanning from the pial surface to the white matter), important information regarding neuronal interactions and computational processes is also contained within a single column, distributed across the six cortical lamina. A basic understanding of underlying neuronal circuitry or computations may be revealed through investigations of the distribution of neural responses at different cortical depths. In this study, we used T(2)-weighted imaging with 0.7 mm (isotropic) resolution to measure fMRI responses at different depths in the gray matter while human subjects observed images with either recognizable or scrambled (physically impossible) objects. Intact and scrambled images were partially occluded, resulting in clusters of activity distributed across primary visual cortex. A subset of the identified clusters of voxels showed a preference for scrambled objects over intact; in these clusters, the fMRI response in middle layers was stronger during the presentation of scrambled objects than during the presentation of intact objects. A second experiment, using stimuli targeted at either the magnocellular or the parvocellular visual pathway, shows that laminar profiles in response to parvocellular-targeted stimuli peak in more superficial layers. These findings provide new evidence for the differential sensitivity of high-field fMRI to modulations of the neural responses at different cortical depths.  相似文献   

15.
One of the reasons the visual cortex has attracted the interest of computational neuroscience is that it has well-defined inputs. The lateral geniculate nucleus (LGN) of the thalamus is the source of visual signals to the primary visual cortex (V1). Most large-scale cortical network models approximate the spike trains of LGN neurons as simple Poisson point processes. However, many studies have shown that neurons in the early visual pathway are capable of spiking with high temporal precision and their discharges are not Poisson-like. To gain an understanding of how response variability in the LGN influences the behavior of V1, we study response properties of model V1 neurons that receive purely feedforward inputs from LGN cells modeled either as noisy leaky integrate-and-fire (NLIF) neurons or as inhomogeneous Poisson processes. We first demonstrate that the NLIF model is capable of reproducing many experimentally observed statistical properties of LGN neurons. Then we show that a V1 model in which the LGN input to a V1 neuron is modeled as a group of NLIF neurons produces higher orientation selectivity than the one with Poisson LGN input. The second result implies that statistical characteristics of LGN spike trains are important for V1’s function. We conclude that physiologically motivated models of V1 need to include more realistic LGN spike trains that are less noisy than inhomogeneous Poisson processes.  相似文献   

16.
The primary visual cortex is organized into clusters of cells having similar receptive fields (RFs). A purely feedforward model has been shown to produce realistic simple cell receptive fields. The modeled cells capture a wide range of receptive field properties of orientation selective cortical cells. We have analyzed the responses of 78 nearby cell pairs to study which RF properties are clustered. Orientation preference shows strongest clustering. Orientation tuning width (hwhh) and tuning height (spikes/sec) at the preferred orientation are not as tightly clustered. Spatial frequency is also not as tightly clustered and RF phase has the least clustering. Clustering property of orientation preference, orientation tuning height and width depend on the location of cells in the orientation map. No such location dependence is observed for spatial frequency and RF phase. Our results agree well with experimental data.  相似文献   

17.
This study examines the binaural and frequency representation in the primary auditory cortex (AC) of the big brown bat, Eptesicus fuscus, by using an ear-phone stimulation system. All 306 cortical neurons studied were excited by contralateral sound stimulation but they were either excited, inhibited or not affected by ipsilateral sound stimulation. These cortical neurons were columnarly organized according to their binaural and frequency-tuning properties. The excitation-excitation columns which occupy about 15% of the AC are mainly aggregated within an oval-shaped area of the central AC. The excitation-inhibition neurons and binaural neurons with mixed properties are distributed in the remaining 85% of the surrounding primary AC. Although the best frequency (BF) of these neurons shows a tendency to decrease from high to low along the anteroposterior axis of the primary AC, systematic variation in BF is not always consistent across the entire mapping area. In particular, BFs of cortical neurons isolated in the anterior AC vary quite unsystematically such that neurons with similar BFs are aggregated in isolated patches. Isofrequency and binaural columns are segregated into bands that intersect each other. Accepted: 13 August 1997  相似文献   

18.
Freeman TC  Durand S  Kiper DC  Carandini M 《Neuron》2002,35(4):759-771
Neurons in primary visual cortex (V1) are thought to receive inhibition from other V1 neurons selective for a variety of orientations. Evidence for this inhibition is commonly found in cross-orientation suppression: responses of a V1 neuron to optimally oriented bars are suppressed by superimposed mask bars of different orientation. We show, however, that suppression is unlikely to result from intracortical inhibition. First, suppression can be obtained with masks drifting too rapidly to elicit much of a response in cortex. Second, suppression is immune to hyperpolarization (through visual adaptation) of cortical neurons responding to the mask. Signals mediating suppression might originate in thalamus, rather than in cortex. Thalamic neurons exhibit some suppression; additional suppression might arise from depression at thalamocortical synapses. The mechanisms of suppression are subcortical and possibly include the very first synapse into cortex.  相似文献   

19.
Corticotropin releasing factor (CRF) appears to be critical for the control of important aspects of the behavioral and physiological response to stressors and drugs of abuse. However, the extent to which the different brain CRF neuronal populations are similarly activated after stress and drug administration is not known. We then studied, using double immunohistochemistry for CRF and Fos protein, stress and amphetamine-induced activation of CRF neurons in cortex, central amygdala (CeA), medial parvocellular dorsal, and submagnocellular parvocellular regions of the paraventricular nucleus of the hypothalamus (PVNmpd and PVNsm, respectively) and Barrington nucleus (Bar). Neither exposure to a novel environment (hole-board, HB) nor immobilization (IMO) increased Fos-like immunoreactivity (FLI) in the CeA, but they did to the same extent in cortical regions. In other regions only IMO increased FLI. HB and IMO both failed to activate CRF+ neurons in cortical areas, but after IMO, some neurons expressing FLI in the PVNsm and most of them in the PVNmpd and Bar were CRF+. Amphetamine administration increased FLI in cortical areas and CeA (with some CRF+ neurons expressing FLI), whereas the number of CRF+ neurons increased only in the PVNsm, in contrast to the effects of IMO. The present results indicate that stress and amphetamine elicited a distinct pattern of brain Fos-like protein expression and differentially activated some of the brain CRF neuronal populations, despite similar levels of overall FLI in the case of IMO and amphetamine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号