首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscle or heart fatty acid-binding protein is a low molecular weight protein that binds long-chain fatty acids in the cytosol of muscle tissues. The three-dimensional structure of the human, bovine and insect proteins are known, either via X-ray or NMR techniques. The folding of the protein closely resembles that of the other FABPs: ten anti-parallel beta-strands are arranged to form a clam shell, closed at one end by two alpha-helices. This arrangement allows the formation of an internal cavity where the fatty acid can be accommodated, protected and isolated from the external environment. The fatty acid in the protein interior is stabilized by electrostatic and hydrogen bond interactions of its carboxylic head with charged or polar residues of the protein and by interactions of its tail with hydrophobic residues. The three-dimensional structure of different fatty acid-protein complexes along with molecular dynamics simulations are now providing insight into the molecular details of the specificity of the ligand binding.  相似文献   

2.
3.
Wang Q  Li H  Liu S  Wang G  Wang Y 《Animal biotechnology》2005,16(2):191-201
Fatty acid-binding proteins (FABPs) are members of a superfamily of lipid-binding proteins, occurring intracellularly in invertebrates and vertebrates. This study was designed to clone and characterize the genes of heart fatty acid-binding protein and intestine fatty acid-binding protein in the chicken. PCR primers were designed according to the chicken EST sequences to amplify cDNA of H-FABP and I-FABP genes from chicken heart and intestinal tissues. Analysis of sequence showed that the cDNA of the chicken H-FABP gene is 75 to 77% homologues to human, mouse, and pig H-FABP genes, and the chicken I-FABP gene is 71 to 72% homologues to human, mouse, and pig I-FABP genes. In addition, Northern blot analysis indicated that of the two genes, similar to the copartner of the mammal, H-FABP gene was expressed in a wide variety of tissues, and I-FABP gene was expressed only in intestinal tissues. The expression levels of the chicken H-FABP mRNA in heart and I-FABP mRNA in intestine had significant differences between the broilers from fat line and Bai'er layers at six weeks of age. The results of this study provided basic molecular information for studying the role of two FABPs in the regulation of fatty acid metabolism in avian species.  相似文献   

4.
While low levels of unesterified long chain fatty acids (LCFAs) are normal metabolic intermediates of dietary and endogenous fat, LCFAs are also potent regulators of key receptors/enzymes and at high levels become toxic detergents within the cell. Elevated levels of LCFAs are associated with diabetes, obesity and metabolic syndrome. Consequently, mammals evolved fatty acid-binding proteins (FABPs) that bind/sequester these potentially toxic free fatty acids in the cytosol and present them for rapid removal in oxidative (mitochondria, peroxisomes) or storage (endoplasmic reticulum, lipid droplets) organelles. Mammals have a large (15-member) family of FABPs with multiple members occurring within a single cell type. The first described FABP, liver-FABP (L-FABP or FABP1), is expressed in very high levels (2–5% of cytosolic protein) in liver as well as in intestine and kidney. Since L-FABP facilitates uptake and metabolism of LCFAs in vitro and in cultured cells, it was expected that abnormal function or loss of L-FABP would reduce hepatic LCFA uptake/oxidation and thereby increase LCFAs available for oxidation in muscle and/or storage in adipose. This prediction was confirmed in vitro with isolated liver slices and cultured primary hepatocytes from L-FABP gene-ablated mice. Despite unaltered food consumption when fed a control diet ad libitum, the L-FABP null mice exhibited age- and sex-dependent weight gain and increased fat tissue mass. The obese phenotype was exacerbated in L-FABP null mice pair fed a high-fat diet. Taken together with other findings, these data suggest that L-FABP could have an important role in preventing age- or diet-induced obesity.  相似文献   

5.
Heart-type fatty acid-binding protein (H-FABP) is a member of a family of 14–15 kDa lipid binding proteins which are believed to enhance intracellular transport of lipids by facilitating their cytoplasmic diffusion. To obtain sufficient amounts of protein for in vitro studies, we expressed rat H-FABP in Escherichia coli and compared its biochemical properties with the protein isolated from rat heart. An effective method was developed to purify recombinant rat H-FABP from cell lysates in a single step using anion-exchange chromatography. This method also proved to be applicable for purifying heterologously expressed human H-FABP. Recombinant rat H-FABP, which made up approximately 25% of the soluble proteins in E. coli, was obtained in a yield of 30–40 mg/l culture. Characterization showed that recombinant rat H-FABP was indistinguishable from the protein isolated from rat heart regarding molecular mass and oleic acid binding. Some heterogeneity upon isoelectric focusing was observed, presumably due to differences in N-terminal processing of the proteins. In conclusion, a method is presented for efficient high-yield production of recombinant rat H-FABP.  相似文献   

6.
脂肪酸结合蛋白的研究进展   总被引:4,自引:0,他引:4  
脂脉酸结合蛋白(FABP)是一族小分子细胞内蛋白质,对长链脂肪酸有很高的亲和力,能把脂肪酸从细胞膜转运到细胞内利用位点,在长链脂肪酸的代谢中起重要作用。本文就脂肪酸结合蛋白的结构、功能及其对脂肪酸代谢调节方面的研究进行了综述,并阐述了猪脂肪酸结合蛋白基因地对肌内脂肪合成的影响。  相似文献   

7.
In a previous study, we purified three selenium-binding proteins (molecular masses 56, 14, and 12 kDa) from mouse liver using column chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The aim of the present study was to determine the amino acid sequence of the 14-kDa protein thereby establishing any relationship with known proteins. Although the amino terminus of the 14-kDa protein was blocked, separate in situ digestions of the protein with endoproteinases Glu-c and Lys-c gave overlapping peptides that provided a continuous sequence of 93 amino acids. This sequence exhibited a 92.5% sequence homology with rat liver fatty acid-binding protein. In situ enzymatic digestion and partial sequencing of a 12-kDa selenium-binding protein revealed identical homology to the 14-kDa protein. The 14-kDa protein bound specifically to an oleate-affinity column from which the protein and 75Se coeluted. Delipidation or sodium dodecyl sulfate treatment failed to remove 75Se from the protein, indicating that the selenium moiety was tightly bound to the protein. These observations confirm that the mouse liver selenium-binding 14-kDa protein is a fatty acid-binding protein. The nature of the selenium linkage to the protein still needs to be explored.  相似文献   

8.
9.
Rat liver fatty acid-binding protein (FABP) is a 14.3-kDa cytosolic protein which binds long chain free fatty acids (ffa) and is believed to participate in intracellular movement and/or distribution of ffa. In the studies described here fluorescently labeled ffa were used to examine the physical nature of the ffa-binding site on FABP. The fluorescent analogues were 16- and 18-carbon ffa with an anthracene moiety covalently attached at eight different points along the length of the hydrocarbon chain (AOffa). Emission maxima of all FABP-bound AOffa were found to be considerably blue-shifted with respect to emission of phospholipid membrane-bound AOffa, suggesting a high degree of motional constraint for protein-bound ffa. Large fluorescence quantum yields and long excited state life-times indicate that the FABP-binding site for ffa is highly hydrophobic. Analysis of rotational correlation times for the FABP-bound AOffa suggest that the ffa are tightly bound to the protein. Variation of the quantum yield with attachment site suggests that the carboxylic acid group of the fatty acyl chain is located near the aqueous surface of the FABP. The rest of the ffa hydrocarbon chain is buried within the protein in a hydrophobic pocket and is particularly constrained at the midportion of the acyl chain.  相似文献   

10.
Fasciola hepatica adult flukes have a native protein complex denoted nFh12 and consisting of fatty acid binding proteins that comprise at least 8 isoforms. It is a potent immunogen because in several animal hosts it induces an early antibody response to F. hepatica infection. It is also a potent cross-protective immunogen because it induces a protective immune response in mice to challenge infection with Schistosoma mansoni cercariae. The gene encoding this protein has been cloned and sequenced. It produces a polypeptide of 132 amino acids with a predicted molecular mass of 14.7 kDa and is denoted rFh15. It also has a significant homology to a 14-kDa S. mansoni fatty acid binding protein (Sm14). In the present study, nFh12 was delipidated with charcoal treatment and then studied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Additionally, a lipid analysis of nFh12 was undertaken using gas chromatography-mass spectrometry to demonstrate that the nFh12 protein complex is, in fact, a complex of fatty acid binding proteins. Five long-chain saturated and unsaturated fatty acids were detected. The most abundant were palmitic acid (38%), stearic acid (24%), and oleic acid (13%). These fatty acid molecules do not have covalent bonds attached to the protein molecule. Because both nFh12 and Sm14 protect mice against challenge infection with F. hepatica and S. mansoni, it is possible that they have common protective epitopes in which fatty acids could be involved. Further studies are in progress to determine the chemical nature of these potential common epitopes.  相似文献   

11.
A novel role of fatty acid-binding protein as a vehicle of retinoids   总被引:1,自引:0,他引:1  
Intracellular transport and storage of retinoids were shown to be conducted by fatty acid-binding protein (FABP). When rat liver cytosol was gel filtrated, retinyl palmitate-binding activity was mainly eluted in the fraction with a Mr. of around 14,000, in which both FABP and cellular retinol-binding protein (CRBP) co-existed. From the binding analysis of purified FABP and CRBP to retinyl palmitate, FABP was found to have a relatively high affinity (Kd = 1.4 X 10(-6) M) to retinyl palmitate, while binding of retinyl palmitate to CRBP was scarcely detectable. By using anti-FABP serum, it was shown that FABP was distributed in organs relating to absorption and storage of retinoids, such as jejunum, ileum, and liver. In liver, the protein was localized in the parenchymal cells and with particularly high concentration in the perisinusoidal cells, probably fat-storing cells.  相似文献   

12.
Summary Although abundant in most biological tissues and chemically well characterized, the fatty acid-binding protein (FABP) was until recently in search of a function. Because of its strong affinity for long chain fatty acids and its cytoplasmic origin, this protein was repeatedly claimed in the literature to be the transcytoplasmic fatty acid carrier. However, techniques to visualize and quantify the movements of molecules in the cytoplasm are still in their infancy. Consequently the carrier function of FABP remains somewhat speculative. However, FABP binds not only fatty acids but also their CoA and carnitine derivatives, two typical molecules of mitochondrial origin. Moreover, it has been demonstrated and confirmed that FABP is not exclusively cytoplasmic, but also mitochondrial. A function for FABP in the mitochondrial metabolism of fatty acids plus CoA and carnitine derivatives would therefore be anticpated. Using spin-labelling techniques, we present here evidence that FABP is a powerful regulator of acylcarnitine flux entering the mitochondrial -oxidative system. In this perspective FABP appears to be an active link between the cytoplasm and the mitochondria, regulating the energy made available to the cell. This active participation of FABP is shown to be the consequence of its gradient-like distribution in the cardiac cell, and also of the coexistence of multispecies of this protein produced by self-aggregation.  相似文献   

13.
Characterization of a fatty acid-binding protein from rat heart   总被引:3,自引:0,他引:3  
A fatty acid-binding protein has been isolated from rat heart and purified by gel filtration chromatography on Sephadex G-75 and anion-exchange chromatography on DE52. The circular dichroic spectrum of this protein was not affected by protein concentration, suggesting that it does not aggregate into multimers. Computer analyses of the circular dichroic spectrum predicted that rat heart fatty acid-binding protein contains approximately 22% alpha-helix, 45% beta-form and 33% unordered structure. Immunological studies showed that the fatty acid-binding proteins from rat heart and rat liver are immunochemically unrelated. The amino acid composition and partial amino acid sequence of the heart protein indicated that it is structurally related to, but distinct from, other fatty acid-binding proteins from liver, intestine, and 3T3 adipocytes. Using a binding assay which measures the transfer of fatty acids between donor liposomes and protein (Brecher, P., Saouaf, R., Sugarman, J. M., Eisenberg, D., and LaRosa, K. (1984) J. Biol. Chem. 259, 13395-13401), it was shown that both rat heart and liver fatty acid-binding proteins bind 2 mol of oleic acid or palmitic acid/mol of protein. The structural and functional relationship of rat heart fatty acid-binding protein to fatty acid-binding proteins from other tissues is discussed.  相似文献   

14.
A 14 kDa polypeptide in rat ileal cytosol has been identified as the major intestinal cytosolic bile acid-binding protein (I-BABP) by photoaffinity labeling with the radiolabeled 7,7-azo derivative of taurocholate (7,7-azo-TC). To further characterize I-BABP, the protein was purified by lysylglycocholate Sepharose 4B affinity and DE-52 anion-exchange chromatography. The purified I-BABP contained a single 14 kDa band on SDS-PAGE. The 14 kDa protein showed a 26-fold increase in binding affinity for [3H]7,7-azo-TC compared to cytosolic protein. Immunoblotting of protein fractions separated by affinity chromatography showed that neither liver fatty acid binding protein (L-FABP) nor intestinal fatty acid binding protein (I-FABP) bind to the affinity column and that the 14 kDa protein which bound to the column and was subsequently eluted with detergent did not cross-react with anti-L-FABP or anti-I-FABP. The 14 kDa protein labeled with [3H]7,7-azo-TC was radioimmunoprecipitated from cytosol by rabbit antiserum raised against purified I-BABP. I-BABP was shown to have a blocked N-terminus; however, its mixed internal sequence generated from cyanogen bromide-cleaved protein and amino acid composition indicated that it was related to (although clearly distinct from) both I-FABP and L-FABP. These studies have isolated a 14 kDa bile acid-binding protein from rat ileal cytosol which is immunologically and biochemically distinct from I-FABP and L-FABP.  相似文献   

15.
Unlike other fatty acid-binding proteins, cutaneous (epidermal) fatty acid-binding proteins contain a large number of cysteine residues. The status of the five cysteine residues in rat cutaneous fatty acid-binding protein was examined by chemical and mass-spectrometric analyses. Two disulfide bonds were identified, between Cys-67 and Cys-87, and between Cys-120 and Cys-127, though extent of formation of the first disulfide bond was rather low in another preparation. Cys-43 was free cysteine. Homology modeling study of the protein indicated the close proximity of the sulfur atoms of these cysteine pairs, supporting the presence of the disulfide bonds. These disulfide bonds appear not to be directly involved in fatty acid-binding activity, because a recombinant rat protein expressed in Escherichia coli in which all five cysteines are fully reduced showed fatty acid-binding activity as examined by displacement of a fluorescent fatty acid analog by long-chain fatty acids. However, the fact that the evolutionarily distant shark liver fatty acid-binding protein also has a disulfide bond corresponding to the one between Cys-120 and Cys-127, and that fatty acid-binding proteins play multiple roles suggests that some functions of cutaneous fatty acid-binding protein might be regulated by the cellular redox state through formation and reduction of disulfide bonds. Although we cannot completely exclude the possibility of oxidation during preparation and analysis, it is remarkable that a protein in cytosol under normally reducing conditions appears to contain disulfide bonds.  相似文献   

16.
We describe here a fatty acid-binding protein (FABP) isolated and purified from the parasitic protozoon Giardia lamblia. The protein has a molecular mass of 8 kDa and an isoelectric point of 4.96. A Scatchard analysis of the data at equilibrium revealed a dissociation constant of 3.12 x 10(-8) M when the labeled oleic acid was displaced by a 10-fold greater concentration of unlabeled oleic acid. Testosterone, sodium desoxycholate, taurocholate, metronidazol, and alpha-tocopherol, together with butyric, arachidonic, palmitic, retinoic, and glycocholic acids, were also bound to the protein. Assays with polyclonal antibodies revealed that the protein is located in the ventral disk and also appears in the dorsal membrane, the cytoplasm, and in the vicinity of the lipid vacuoles.  相似文献   

17.
The last three C-terminal residues (129-131) of intestinal fatty acid-binding protein (IFABP) participate in four main-chain hydrogen bonds and two electrostatic interactions to sequentially distant backbone and side-chain atoms. To assess if these interactions are involved in the final adjustment of the tertiary structure during folding, we engineered an IFABP variant truncated at residue 128. An additional mutation, Trp-6-->Phe, was introduced to simplify the conformational analysis by optical methods. Although the changes were limited to a small region of the protein surface, they resulted in an IFABP with altered secondary and tertiary structure. Truncated IFABP retains some cooperativity, is monomeric, highly compact, and has the molecular dimensions and shape of the native protein. Our results indicated that residues 129-131 are part of a crucial conformational determinant in which several long-range interactions, essential for the acquisition of the native state, are established. This work suggests that carefully controlled truncation can populate equilibrium non-native states under physiological conditions. These non-native states hold a great promise as experimental models for protein folding.  相似文献   

18.
The inactive 2Fe species of the Fe protein of the nitrogenase of Klebsiella pneumoniae was generated by treating oxidized Fe protein (Kp2) with MgATP and chelator. Incubation of the 2Fe species of Kp2 with the sulphurtransferase rhodanese in the presence of thiosulphate, ferric citrate and reduced lipoate reproducibly restored activity. The extent of restoration of activity depended on the molar ratio of 2Fe Kp2 to rhodanese and was time-dependent. Re-activation did not occur in the reaction mixture lacking rhodanese.  相似文献   

19.
Cytosolic fatty acid-binding proteins (FABPs) have been described in rat and bovine whole brain. In the present study we investigated the distribution of FABP among white matter and gray matter as well as its changes during development. Fatty acid binding activity was similar in white and gray matter up to 40 days of age. In white matter it showed an age dependent increase thereafter, while in gray matter it remained constant throughout. Gel filtration (Sephadex G-75) of white matter cytosol of adult female rats resolved the fatty acid-binding activity in two peaks: A (Vo) and B (12-14 KDa; FABP). The specific binding activity in the FABP fraction was 10.4 pmol/micrograms of protein. The activity in peak A showed an age-dependent increase which paralleled myelin deposition. In contrast, the activity in the FABP fraction (peak B) remained undetectable up to 40 days of age, increasing thereafter. The differential distribution of cellular brain proteins with the capacity to bind fatty acids in gray matter and white matter suggests that this activity could be related to glial cells or to cell related structures such as myelin.  相似文献   

20.
Mechanisms of regulation of liver fatty acid-binding protein   总被引:2,自引:0,他引:2  
Liver fatty acid-binding protein (L-FABP) expression is modulated by developmental, hormonal, dietary, and pharmacological factors. The most pronounced induction is seen after treatment with peroxisome proliferators, which induce L-FABP coordinately with microsomal cytochrome P-450 4A1 and the enzymes of peroxisomal fatty acid -oxidation. These effects of peroxisome proliferators may be mediated by a receptor which has been shown to be activated by peroxisome proliferators in mammalian cell transfection studies. However, the peroxisome proliferators tested thus far do not bind to this receptor, known as the peroxisome proliferator-activated receptor (PPAR), and its endogenous ligand(s) also remain unknown. Peroxisome proliferators inhibit mitochondrial -oxidation, and one hypothesis is that the dicarboxylic fatty acid metabolites of accumulated LCFA, formed via the P-450 4A1 -oxidation pathway, serve as primary inducers of L-FABP and peroxisomal -oxidation. We have tested this hypothesis in primary hepatocyte cultures exposed to clofibrate (CF). Inhibition of P-450 4A1 markedly diminished, via a pre-translational mechanism, the CF induction of L-FABP and peroxisomal -oxidation. In further experiments, long-chain dicarboxylic acids, the final products of the P-450 4A1 -oxidation pathway, but not LCFA, induced L-FABP and peroxisomal -oxidation pre-translationally. These results suggest a role, in part, for long-chain dicarboxylic acids in mediating the peroxisome proliferator induction of L-FABP and peroxisomal -oxidation. We also found that LCFA, which undergo rapid hepatocellular metabolism, could become inducers of L-FABP and peroxisomal -oxidation under conditions where their metabolism was inhibited. The role of the PPAR in mediating these effects is unknown, but clearly warrants further study. The induction of L-FABP and peroxisomal -oxidation by LCFA and/or their -oxidized metabolites may provide a means for limiting the deleterious effects of increased intracellular concentrations of free LCFA, and thus act as an important hepatocellular adaptation to impairment or overload of mitochondrial LCFA oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号