首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L6 skeletal muscle myoblasts stably overexpressing glucose transporter GLUT1 or GLUT4 with exofacial myc-epitope tags were characterized for their response to insulin. In clonally selected cultures, 2-deoxyglucose uptake into L6-GLUT1myc myoblasts and myotubes was linear within the time of study. In L6-GLUT1myc and L6-GLUT4myc myoblasts, 100 nmol/L insulin treatment increased the GLUT1 content of the plasma membrane by 1.58±0.01 fold and the GLUT4 content 1.96±0.11 fold, as well as the 2-deoxyglucose uptake 1.53±0.09 and 1.86±0.17 fold respectively, all by a wortmannin-inhibitable manner. The phosphorylation of Akt in these two cell lines was increased by insulin. L6-GLUT1myc myoblasts showed a dose-dependent stimulation of glucose uptake by insulin, with unaltered sensitivity and maximal responsiveness compared with wild type cells. By contrast, the improved insulin responsiveness and sensitivity of glucose uptake were observed in L6-GLUT4myc myoblasts. Earlier studies indicated that forskolin might affect insulin-stimulated GLUT4 translocation. A 65% decrease of insulin-stimulated 2-deoxyglucose uptake in GLUT4myc cells was not due to an effect on GLUT4 mobilization to the plasma membrane, but instead on direct inhibition of GLUT4. Forskolin and dipyridamole are more potent inhibitors of GLUT4 than GLUT1. Alternatively, pentobarbital inhibits GLUT1 more than GLUT4. The use of these inhibitors confirmed that the overexpressed GLUT1 or GLUT4 are the major functional glucose transporters in unstimulated and insulin-stimulated L6 myoblasts. Therefore, L6-GLUT1myc and L6-GLUT4myc cells provide a platform to screen compounds that may have differential effects on GLUT isoform activity or may influence GLUT isoform mobilization to the cell surface of muscle cells.  相似文献   

2.
L6 skeletal muscle myoblasts stably overexpressing glucose transporter GLUT1 or GLUT4 with exofa- cial myc-epitope tags were characterized for their response to insulin. In clonally selected cultures, 2-deoxyglucose uptake into L6-GLUT1myc myoblasts and myotubes was linear within the time of study. In L6-GLUT1myc and L6-GLUT4myc myoblasts, 100 nmol/L insulin treatment increased the GLUT1 content of the plasma membrane by 1.58±0.01 fold and the GLUT4 content 1.96±0.11 fold, as well as the 2-deoxyglucose uptake 1.53±0.09 and 1.86±0.17 fold respectively, all by a wortmannin-inhibitable manner. The phosphorylation of Akt in these two cell lines was increased by insulin. L6-GLUT1myc myoblasts showed a dose-dependent stimulation of glucose uptake by insulin, with unaltered sensitiv- ity and maximal responsiveness compared with wild type cells. By contrast, the improved insulin re- sponsiveness and sensitivity of glucose uptake were observed in L6-GLUT4myc myoblasts. Earlier studies indicated that forskolin might affect insulin-stimulated GLUT4 translocation. A 65% decrease of insulin-stimulated 2-deoxyglucose uptake in GLUT4myc cells was not due to an effect on GLUT4 mobi- lization to the plasma membrane, but instead on direct inhibition of GLUT4. Forskolin and dipyridamole are more potent inhibitors of GLUT4 than GLUT1. Alternatively, pentobarbital inhibits GLUT1 more than GLUT4. The use of these inhibitors confirmed that the overexpressed GLUT1 or GLUT4 are the major functional glucose transporters in unstimulated and insulin-stimulated L6 myoblasts. Therefore, L6-GLUT1myc and L6-GLUT4myc cells provide a platform to screen compounds that may have differ- ential effects on GLUT isoform activity or may influence GLUT isoform mobilization to the cell surface of muscle cells.  相似文献   

3.
4.
1. Lactation results in decreased glucose and acetate utilization and increased lactate output by sheep adipose tissue. 2. The ability of insulin to stimulate acetate uptake was lost in adipose tissue from lactating sheep, whereas both the response and the sensitivity (ED50) for insulin for stimulation of glucose conversion into products other than lactate were decreased. These impairments were partly restored by prolonged incubation of adipose tissue for 48 h. 3. The ability of insulin to stimulate lactate output was not altered by lactation. 4. Dexamethasone inhibited glucose uptake, lactate output and glycerol output in adipose tissue from both non-lactating and lactating sheep, with an ED50 of about 1 nM. Dexamethasone inhibited acetate uptake by adipose tissue from non-lactating sheep, but this effect was not observed with adipose tissue from lactating sheep. 5. Dexamethasone inhibited the stimulation of glucose uptake at all concentrations of insulin used; the effect varied with insulin concentration and resulted in an accentuation of the insulin dose-response curve. The insulin dose-response curve in the presence of dexamethasone was muted during lactation. 6. The overall effect of these adaptations is to ensure that glucose and acetate utilization by adipose tissue after an insulin surge is diminished during lactation.  相似文献   

5.
In humans there is a correlation between the ratio of arachidonic acid (20:4n-6) to cis 8,11,14 eicosatrienoic acid (20:3n-6) in skeletal muscle phospholipids and insulin sensitivity. This has been interpreted as indicating a link between the activity of the delta5 desaturase enzyme and muscle insulin sensitivity. The present study addressed the possibility that insulin regulates delta5 desaturase activity using L6 rat myoblasts and hepG2 human hepatoma cells. Both cell lines responded to insulin by increasing the amount of D-[U-14C] glucose incorporated into glycogen. In L6 cells, insulin stimulated cis 8,11,14 eicosatrienoic acid uptake and arachidonic acid production but had no effect on the percentage conversion of cis 8,11,14 eicosatrienoic acid to arachidonic acid. In hepG2 cells, insulin had no effect on cis 8,11,14 eicosatrienoic acid uptake or arachidonic acid production. These results suggest that insulin has no direct effect on delta5 desaturase activity in the liver but can alter arachidonic acid production in muscle by altering substrate availability.  相似文献   

6.
Kewalramani G  Fink LN  Asadi F  Klip A 《PloS one》2011,6(10):e26947

Background

Macrophage-derived factors contribute to whole-body insulin resistance, partly by impinging on metabolically active tissues. As proof of principle for this interaction, conditioned medium from macrophages treated with palmitate (CM-PA) reduces insulin action and glucose uptake in muscle cells. However, the mechanism whereby CM-PA confers this negative response onto muscle cells remains unknown.

Methodology/Principal Findings

L6-GLUT4myc myoblasts were exposed for 24 h to palmitate-free conditioned medium from RAW 264.7 macrophages pre-treated with 0.5 mM palmitate for 6 h. This palmitate-free CM-PA, containing selective cytokines and chemokines, inhibited myoblast insulin-stimulated insulin receptor substrate 1 (IRS1) tyrosine phosphorylation, AS160 phosphorylation, GLUT4 translocation and glucose uptake. These effects were accompanied by a rise in c-Jun N-terminal kinase (JNK) activation, degradation of Inhibitor of κBα (IκBα), and elevated expression of proinflammatory cytokines in myoblasts. Notably, CM-PA caused IRS1 phosphorylation on Ser1101, and phosphorylation of novel PKCθ and ε. Co-incubation of myoblasts with CM-PA and the novel and conventional PKC inhibitor Gö6983 (but not with the conventional PKC inhibitor Gö6976) prevented PKCθ and ε activation, JNK phosphorylation, restored IκBα mass and reduced proinflammatory cytokine production. Gö6983 also restored insulin signalling and glucose uptake in myoblasts. Moreover, co-silencing both novel PKC θ and ε isoforms in myoblasts by RNA interference, but not their individual silencing, prevented the inflammatory response and restored insulin sensitivity to CM-PA-treated myoblasts.

Conclusions/Clinical Significance

The results suggest that the block in muscle insulin action caused by CM-PA is mediated by novel PKCθ and PKCε. This study re-establishes the participation of macrophages as a relay in the action of fatty acids on muscle cells, and further identifies PKCθ and PKCε as key elements in the inflammatory and insulin resistance responses of muscle cells to macrophage products. Furthermore, it portrays these PKC isoforms as potential targets for the treatment of fatty acid-induced, inflammation-linked insulin resistance.  相似文献   

7.
1. The effect of acetoacetate on glucose metabolism was compared in the soleus, a slow-twitch red muscle, and the extensor digitorum longus, a muscle composed of 50% fast-twitch red and 50% white fibres. 2. When incubated for 2h in a medium containing 5 mM-glucose and 0.1 unit of insulin/ml, rates of glucose uptake, lactate release and glucose oxidation in the soleus were 19.6, 18.6 and 1.47 micronmol/h per g respectively. Acetoacetate (1.7 mM) diminished all three rates by 25-50%; however, it increased glucose conversion into glycogen. In addition, it caused increases in tissue glucose, glucose 6-phosphate and fructose 6-phosphate, suggesting inhibition of phosphofructokinase. The concentrations of citrate, an inhibitor of phosphofructokinase, and of malate were also increased. 3. Rates of glucose uptake and lactate release in the extensor digitorum longus were 50-80% of those in the soleus. Acetoacetate caused moderate increases in tissue glucose 6-phosphate and possibly citrate, but it did not decrease glucose uptake or lactate release. 4. The rate of glycolysis in the soleus was approximately five times that previously observed in the perfused rat hindquarter, a muscle preparation in which acetoacetate inhibits glucose oxidation, but does not alter glucose uptake or glycolysis. A similar rate of glycolysis was observed when the soleus was incubated with a glucose-free medium. Under these conditions, tissue malate and the lactate/pyruvate ratio in the medium were decreased, and acetoacetate did not decrease lactate release or increase tissue citrate or glucose 6-phosphate. An intermediate rate of glycolysis, which was not decreased by acetoacetate, was observed when the soleus was incubated with glucose, but not insulin. 5. The data suggest that acetoacetate glucose inhibits uptake and glycolysis in red muscle under conditions that resemble mild to moderate exercise. They also suggest that the accumulation of citrate in these circumstances is linked to the rate of glycolysis, possibly through the generation of cytosolic NADH and malate formation.  相似文献   

8.
Skeletal muscle stretch increases resting metabolism and causes hypertrophy. We have examined the effect of mechanical stretch in vitro on glucose transport activity and transporter contents in L6 muscle cells. Long-term (24-48 h) stretch-relaxation (25% maximal elongation at 30 cycles per min) of cell monolayers significantly increased glucose uptake by 1.6- to 2-fold in myotubes but not in myoblasts. The presence of serum was required for the stretch-relaxation induced increase in glucose uptake. Cycloheximide inhibited the mechanical stimulation of glucose uptake, and the latter response was not additive to the stimulatory effect of long-term exposure to insulin. GLUT1 and GLUT4 glucose transporter contents were not changed in total cell membranes from mechanically stimulated cells relative to controls. These results indicate that mechanical stimulation through passive stretch may be an important regulation of nutrient uptake in fetal myotubes independent of innervation.  相似文献   

9.
Brewer's yeast preparations influence glucose metabolism in vivo and in isolated tissues. We have studied the effect of a brewer's yeast extract on glucose metabolism and grwoth of rat hepatoma and human embryonic cells. Growth of the rat hepatoma cells was very much stimulated by the extract in a concentration-dependent manner. Glucose uptake was, on the other hand, appreciably inhibited, and lactate uptake completely abolished by the extract. Insulin stimulated cell growth and inhibited lactate uptake but did not affect the glucose level. Insulin and the extract had additive effects on growth and lactate uptake of the hepatoma cells. The inhibition by the brewer's yeast extract of glucose uptake was, however, antagonized by insulin. Niacin or Cr3+, which are suggested to be components of a “glucose tolerance factor” of brewer's yeast, did not affect growth or glucose and lactate uptake. The glucose uptake of the human embryonic cells was strongly inhibited by the brewer's yeast extract. Cell growth and lactate production were not influenced by the extract or by insulin; however, when both insulin and extract were present simultaneously, a slight stimulation of growth and inhibition of lactate production was observed. The results indicate that brewer's yeast can have appreciable direct effects on cells and that not all of these effects are “insulin-like”.  相似文献   

10.
Insulin stimulated protein synthesis in L6 myoblasts but did not increase the labelling of DAG or the release of phosphocholine from phosphatidylcholine. The DAG lipase inhibitor, RHC 80267, more than doubled the amount of label appearing in DAG but did not stimulate protein synthesis. Even in the presence of the DAG lipase inhibitor insulin failed to have any effect on DAG labelling, and conversely RHC 80267 did not modify the insulin-induced increase in protein synthesis. These results suggest that endogenous DAG production is not involved in the stimulation of protein synthesis by insulin. However, exogenous diacylglycerols (1-oleoyl-2-acetyl glycerol and 1-stearoyl-2-arachidonoyl glycerol) both stimulated protein synthesis in L6 myoblasts. The efficacy of the former (arachidonatefree) DAG suggested that their action was by activation of protein kinase C rather than by arachidonate release and prostaglandin formation. Ibuprofen, an inhibitor of cyclo-oxygenase failed to block the effects of insulin whereas a second cyclo-oxygenase inhibitor, indomethacin had only a partial inhibitory effect. The protein kinase C (PKC) inhibitor, RO-31-8220, totally blocked the effect of insulin. Since indomethacin is also recognised to inhibit phospholipase A2, the data suggests that insulin acts on protein synthesis in myoblasts by arachidonate activation of PKC.  相似文献   

11.
Insulin stimulates glucose uptake in skeletal muscle cells and fat cells by promoting the rapid translocation of GLUT4 glucose transporters to the plasma membrane. Recent work from our laboratory supports the concept that insulin also stimulates the intrinsic activity of GLUT4 through a signaling pathway that includes p38 MAPK. Here we show that regulation of GLUT4 activity by insulin develops during maturation of skeletal muscle cells into myotubes in concert with the ability of insulin to stimulate p38 MAPK. In L6 myotubes expressing GLUT4 that carries an exofacial myc-epitope (L6-GLUT4myc), insulin-stimulated GLUT4myc translocation equals in magnitude the glucose uptake response. Inhibition of p38 MAPK with SB203580 reduces insulin-stimulated glucose uptake without affecting GLUT4myc translocation. In contrast, in myoblasts, the magnitude of insulin-stimulated glucose uptake is significantly lower than that of GLUT4myc translocation and is insensitive to SB203580. Activation of p38 MAPK by insulin is considerably higher in myotubes than in myoblasts, as is the activation of upstream kinases MKK3/MKK6. In contrast, the activation of all three Akt isoforms and GLUT4 translocation are similar in myoblasts and myotubes. Furthermore, GLUT4myc translocation and phosphorylation of regulatory sites on Akt in L6-GLUT4myc myotubes are equally sensitive to insulin, whereas glucose uptake and phosphorylation of regulatory sites on p38 MAPK show lower sensitivity to the hormone. These observations draw additional parallels between Akt and GLUT4 translocation and between p38 MAPK and GLUT4 activation. Regulation of GLUT4 activity by insulin develops upon muscle cell differentiation and correlates with p38 MAPK activation by insulin.  相似文献   

12.
The aim of these studies was to investigate the effect of hyperglycemia with or without hyperinsulinemia on hepatic gluconeogenic flux, with the hypothesis that inhibition would be greatest with combined hyperglycemia/hyperinsulinemia. A glycogen phosphorylase inhibitor (BAY R3401) was used to inhibit glycogen breakdown in the conscious overnight-fasted dog, and the effects of a twofold rise in plasma glucose level (HI group) accompanied by 1) euinsulinemia (HG group) or 2) a fourfold rise in plasma insulin were assessed over a 5-h experimental period. Hormone levels were controlled using somatostatin with portal insulin and glucagon infusion. In the HG group, net hepatic glucose uptake and net hepatic lactate output substantially increased. There was little or no effect on the net hepatic uptake of gluconeogenic precursors other than lactate (amino acids and glycerol) or on the net hepatic uptake of free fatty acids compared with the control group. Consequently, whereas hyperglycemia had little effect on gluconeogenic flux to glucose 6-phosphate (G-6-P), net hepatic gluconeogenic flux was reduced because of increased hepatic glycolytic flux during hyperglycemia. Net hepatic glycogen synthesis was increased by hyperglycemia. The effect of hyperglycemia on gluconeogenic flux to G-6-P and net hepatic gluconeogenic flux was similar. We conclude that, in the absence of appreciable glycogen breakdown, the increase in glycolytic flux that accompanies hyperglycemia results in decreased net carbon flux to G-6-P but no effect on gluconeogenic flux to G-6-P.  相似文献   

13.
The aim of this study was to investigate the acute effects of troglitazone on several pathways of glucose and fatty acid (FA) partitioning and the molecular mechanisms involved in these processes in skeletal muscle. Exposure of L6 myotubes to troglitazone for 1 h significantly increased phosphorylation of AMPK and ACC, which was followed by approximately 30% and approximately 60% increases in palmitate oxidation and carnitine palmitoyl transferase-1 (CPT-1) activity, respectively. Troglitazone inhibited basal ( approximately 25%) and insulin-stimulated ( approximately 35%) palmitate uptake but significantly increased basal and insulin-stimulated glucose uptake by approximately 2.2- and 2.7-fold, respectively. Pharmacological inhibition of AMPK completely prevented the effects of troglitazone on palmitate oxidation and glucose uptake. Interestingly, even though troglitazone exerted an insulin sensitizing effect, it reduced basal and insulin-stimulated rates of glycogen synthesis, incorporation of glucose into lipids, and glucose oxidation to values corresponding to approximately 30%, approximately 60%, and 30% of the controls, respectively. These effects were accompanied by an increase in basal and insulin-stimulated phosphorylation of Akt(Thr308), Akt(Ser473), and GSK3alpha/beta. Troglitazone also powerfully suppressed pyruvate decarboxylation, which was followed by a significant increase in basal ( approximately 3.5-fold) and insulin-stimulated ( approximately 5.5-fold) rates of lactate production by muscle cells. In summary, we provide novel evidence that troglitazone exerts acute insulin sensitizing effects by increasing FA oxidation, reducing FA uptake, suppressing pyruvate dehydrogenase activity, and shifting glucose metabolism toward lactate production in muscle cells. These effects seem to be at least partially dependent on AMPK activation and may account for potential acute PPAR-gamma-independent anti-diabetic effects of thiazolidinediones in skeletal muscle.  相似文献   

14.
In this study we show that serotonin (5-hydroxytryptamine (5-HT)) causes a rapid stimulation in glucose uptake by approximately 50% in both L6 myotubes and isolated rat skeletal muscle. This activation is mediated via the 5-HT2A receptor, which is expressed in L6, rat, and human skeletal muscle. In L6 cells, expression of the 5-HT2A receptor is developmentally regulated based on the finding that receptor abundance increases by over 3-fold during differentiation from myoblasts to myotubes. Stimulation of the 5-HT2A receptor using methylserotonin (m-HT), a selective 5-HT2A agonist, increased muscle glucose uptake in a manner similar to that seen in response to 5-HT. The agonist-mediated stimulation in glucose uptake was attributable to an increase in the plasma membrane content of GLUT1, GLUT3, and GLUT4. The stimulatory effects of 5-HT and m-HT were suppressed in the presence of submicromolar concentrations of ketanserin (a selective 5-HT2A antagonist) providing further evidence that the increase in glucose uptake was specifically mediated via the 5-HT2A receptor. Treatment of L6 cells with insulin resulted in tyrosine phosphorylation of IRS1, increased cellular production of phosphatidylinositol 3,4,5-phosphate and a 41-fold activation in protein kinase B (PKB/Akt) activity. In contrast, m-HT did not modulate IRS1, phosphoinositide 3-kinase, or PKB activity. The present results indicate that rat and human skeletal muscle both express the 5-HT2A receptor and that 5-HT and specific 5-HT2A agonists can rapidly stimulate glucose uptake in skeletal muscle by a mechanism which does not depend upon components that participate in the insulin signaling pathway.  相似文献   

15.
Elevation of plasma lactate levels induces peripheral insulin resistance, but the underlying mechanisms are unclear. We examined whether lactate infusion in rats suppresses glycolysis preceding insulin resistance and whether lactate-induced insulin resistance is accompanied by altered insulin signaling and/or insulin-stimulated glucose transport in skeletal muscle. Hyperinsulinemic euglycemic clamps were conducted for 6 h in conscious, overnight-fasted rats with or without lactate infusion (120 micromol x kg(-1) x min(-1)) during the final 3.5 h. Lactate infusion increased plasma lactate levels about fourfold. The elevation of plasma lactate had rapid effects to suppress insulin-stimulated glycolysis, which clearly preceded its effect to decrease insulin-stimulated glucose uptake. Both submaximal and maximal insulin-stimulated glucose transport decreased 25-30% (P < 0.05) in soleus but not in epitrochlearis muscles of lactate-infused rats. Lactate infusion did not alter insulin's ability to phosphorylate the insulin receptor, the insulin receptor substrate (IRS)-1, or IRS-2 but decreased insulin's ability to stimulate IRS-1- and IRS-2-associated phosphatidylinositol 3-kinase activities and Akt/protein kinase B activity by 47, 75, and 55%, respectively (P < 0.05 for all). In conclusion, elevation of plasma lactate suppressed glycolysis before its effect on insulin-stimulated glucose uptake, consistent with the hypothesis that suppression of glucose metabolism could precede and cause insulin resistance. In addition, lactate-induced insulin resistance was associated with impaired insulin signaling and decreased insulin-stimulated glucose transport in skeletal muscle.  相似文献   

16.
1. The infusion of sodium dichloroacetate into rats with severe diabetic ketoacidosis over 4h caused a 2mM decrease in blood glucose, and small falls in blood lactate and pyruvate concentrations. Similar findings had been reported in normal rats (Blackshear et al., 1974). In contrast there was a marked decrease in blood ketone-body concentration in the diabetic ketoacidotic rats after dichloroacetate treatment. 2. The infusion of insulin alone rapidly decreased blood glucose and ketone bodies, but caused an increase in blood lactate and pyruvate. 3. Dichloroacetate did not affect the response to insulin of blood glucose and ketone bodies, but abolished the increase of lactate and pyruvate seen after insulin infusion. 4. Neither insulin nor dichloroacetate stimulated glucose disappearance after functional hepatectomy, but both agents decreased the accumulation in blood of lactate, pyruvate and alanine. 5. Dichloroacetate inhibited 3-hydroxybutyrate uptake by the extra-splachnic tissues; insulin reversed this effect. Ketone-body production must have decreased, as hepatic ketone-body content was unchanged by dicholoracetate yet blood concentrations decreased. 6. It was concluded that: (a) dichloroacetate had qualitatively similar effects on glucose metabolism in severely ketotic rats to those observed in non-diabetic starved animals; (b) insulin and dichloroacetate both separately and together, decreased the net release of lactate, pyruvate and alanine from the extra-splachnic tissues, possibly through a similar mechanism; (c) insulin reversed the inhibition of 3-hydroxybutyrate uptake caused by dichloroacetate; (d) dichloroacetate inhibited ketone-body production in severe ketoacidosis.  相似文献   

17.
The dose-dependent effects of chromium chloride (CrCl3) and chromium picolinate (CrPic) were evaluated for their glucose uptake, superoxide anion (O 2 ) production, activity of glucose-6-phosphate dehydrogenase, and phagocytosis of incubated pulmonary alveolar macrophages in medium containing no or 5 × 10−8 M insulin. Glucose uptake was found to increase in cells treated with 20 μg/L CrCl3. Incubation with 20 μg/L of CrPic enhanced glucose uptake and O 2 production in an insulin-dependent manner. However, the inclusion of CrPic to 100 μg/L in the medium absent of insulin also increased O 2 production. The activity of glucose-6-phosphate dehydrogenase was not affected by either the addition of Cr or insulin. The phagocytosis of Escherichia coli by macrophages was enhanced significantly (p<0.05) in medium containing 10–100 μg/L CrCl3 or 20–100 μg/L CrPic in the presence of insulin. These results suggest that the addition of 10–20 μg/L CrCl3 enhances directly the cellular activity of macrophages, whereas the effect of CrPic requires the cooperative action of insulin in enhancing their glucose uptake and phagocytosis.  相似文献   

18.
The skeletal muscle cells are one of the main sites of glucose uptake through glucose transporter 4 (GLUT4) in response to insulin. In muscle cells, 5' adenosine monophosphate-activated protein kinase (AMPK) is known as another GLUT4 translocation promoter. Natural compounds that activate AMPK have a possibility to overcome insulin resistance in the diabetic state. Piceatannol is a natural analog and a metabolite of resveratrol, a known AMPK activator. In this study, we investigate the in vitro effect of piceatannol on glucose uptake, AMPK phosphorylation and GLUT4 translocation to plasma membrane in L6 myocytes, and its in vivo effect on blood glucose levels in type 2 diabetic model db/db mice. Piceatannol was found to promote glucose uptake, AMPK phosphorylation and GLUT4 translocation by Western blotting analyses in L6 myotubes under a condition of insulin absence. Promotion by piceatannol of glucose uptake as well as GLUT4 translocation to plasma membrane by immunocytochemistry was also demonstrated in L6 myoblasts transfected with a glut4 cDNA-coding vector. Piceatannol suppressed the rises in blood glucose levels at early stages and improved the impaired glucose tolerance at late stages in db/db mice. These in vitro and in vivo findings suggest that piceatannol may be preventive and remedial for type 2 diabetes and become an antidiabetic phytochemical.  相似文献   

19.
20.
《BBA》2014,1837(2):270-276
Insulin is essential for the regulation of fuel metabolism and triggers the uptake of glucose by skeletal muscle. The imported glucose is either stored or broken down, as insulin stimulates glycogenesis and ATP synthesis. The mechanism by which ATP production is increased is incompletely understood at present and, generally, relatively little functional information is available on the effect of insulin on mitochondrial function. In this paper we have exploited extracellular flux technology to investigate insulin effects on the bioenergetics of rat (L6) and human skeletal muscle myoblasts and myotubes. We demonstrate that a 20-min insulin exposure significantly increases (i) the cell respiratory control ratio, (ii) the coupling efficiency of oxidative phosphorylation, and (iii) the glucose sensitivity of anaerobic glycolysis. The improvement of mitochondrial function is explained by an insulin-induced immediate decrease of mitochondrial proton leak. Palmitate exposure annuls the beneficial mitochondrial effects of insulin. Our data improve the mechanistic understanding of insulin-stimulated ATP synthesis, and reveal a hitherto undisclosed insulin sensitivity of cellular bioenergetics that suggests a novel way of detecting insulin responsiveness of cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号