首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There are many routes to exploiting tolerance processes to ensure long-term graft survival. Complete tolerance although attractive as a goal, may not be the most practical in the clinic. Instead simple and low-impact procedures that harness tolerance processes used in conjunction with low doses of immunosuppressive drugs may prove the most reliable and user-friendly of approaches.  相似文献   

2.
3.
A large number of bacterial pathogens targets cell adhesion molecules to establish an intimate contact with host cells and tissues. Members of the integrin, cadherin and immunoglobulin-related cell adhesion molecule (IgCAM) families are frequently recognized by specific bacterial surface proteins. Binding can trigger bacterial internalization following cytoskeletal rearrangements that are initiated upon receptor clustering. Moreover, signals emanating from the occupied receptors can result in cellular responses such as gene expression events that influence the phenotype of the infected cell. This review will address recent advances in our understanding of bacterial engagement of cellular adhesion molecules by discussing the binding of integrins by Staphylococcus aureus as well as the exploitation of IgCAMs by pathogenic Neisseria species.  相似文献   

4.
The mechanisms of allograft tolerance have been classified as deletion, anergy, ignorance and suppression/regulation. Deletion has been implicated in central tolerance, whereas peripheral tolerance has generally been ascribed to clonal anergy and/or active immunoregulatory states. Here, we used two distinct systems to assess the requirement for T-cell deletion in peripheral tolerance induction. In mice transgenic for Bcl-xL, T cells were resistant to passive cell death through cytokine withdrawal, whereas T cells from interleukin-2-deficient mice did not undergo activation-induced cell death. Using either agents that block co-stimulatory pathways or the immunosuppressive drug rapamycin, which we have shown here blocks the proliferative component of interleukin-2 signaling but does not inhibit priming for activation-induced cell death, we found that mice with defective passive or active T-cell apoptotic pathways were resistant to induction of transplantation tolerance. Thus, deletion of activated T cells through activation-induced cell death or growth factor withdrawal seems necessary to achieve peripheral tolerance across major histocompatibility complex barriers.  相似文献   

5.
6.
Circulating alloantibodies in transplant recipients are often associated with increased Ab-mediated as well as cellular rejection. We tested the hypothesis that alloantibodies facilitate cellular rejection by functioning as opsonins to enhance T cell activation using a BALB/c to C57BL/6 heart or skin transplant model. Long-term heart and skin survival induced with anti-CD154 alone or in combination with donor-specific transfusion (DST), respectively, was abrogated by the presence of anti-K(d) mAbs, and alloreactive T cell activation as well as acute rejection was observed. The prevention of graft acceptance in the skin model was dependent on anti-K(d) binding to and converting DST from tolerigenic to immunogenic. Adoptive transfer of CFSE-labeled TCR-transgenic T cells into B6 recipients treated with anti-CD154/DST revealed the ability of anti-K(d) to enhance the proliferation of anti-K(d)-specific T cells via the indirect pathway as well as of non-K(d)-reactive, recipient MHC-restricted CD4(+) and CD8(+) T cells. Thus, alloantibodies with restricted specificity are able to facilitate the indirect presentation as well as the cross-presentation of a larger repertoire of "linked" donor-derived Ags. These observations highlight the ability of alloantibodies to function not only in classical humoral rejection but also as opsonins that facilitate the CD40-CD154-independent activation of alloreactive T cells.  相似文献   

7.
Posttransplant infusion of donor bone marrow cells (BMC) induces tolerance to allografts in adult mice, dogs, nonhuman primates, and probably humans. Here we used a mouse skin allograft model and an allogeneic radiation chimera model to examine the role of MHC Ags in tolerance induction. Infusion of MHC class II Ag-deficient (CIID) BMC failed to prolong C57BL/6 (B6) skin grafts in ALS- and rapamycin-treated B10.A mice, whereas wild-type B6 or MHC class I Ag-deficient BMC induced prolongation. Removal of class II Ag-bearing cells from donor BMC markedly reduced the tolerogenic effect compared with untreated BMC, although graft survival was significantly longer in mice given depleted BMC than that in control mice given no BMC. Infusion of CIID BMC into irradiated syngeneic B6 or allogeneic B10.A mice produced normal lymphoid cell reconstitution including CD4+ T cells except for the absence of class II Ag-positive cells. However, irradiated B10.A mice reconstituted with CIID BMC rejected all B6 and a majority of CIID skin grafts despite continued maintenance of high degree chimerism. B10.A mice reconstituted with B6 BMC maintained chimerism and accepted both B6 and CIID skin grafts. Thus, expression of MHC class II Ag on BMC is essential for allograft tolerance induction and peripheral chimerism with cells deficient in class II Ag does not guarantee allograft acceptance.  相似文献   

8.
Mice made neonatally tolerant to alloantigens were found to develop an immunologic disease resembling systemic lupus erythematosus. In BALB/c mice neonatally injected with C57BL/6 X BALB/c F1 hybrid spleen cells, features of autoimmunity were observed first. After 5-24 wk, antinuclear, anti-SS DNA, thymocytotoxic, and rheumatoid factor-like antibodies were detected in association with hypergammaglobulinemia and with the occurrence of circulating immune complexes and cryoglobulins. Some of the antinuclear antibodies were found to be produced by F1 donor B cells persisting in the host. Second, immunopathologic changes were detected in tolerant mice. In the kidneys, an immune complex glomerulonephritis of the membranous type was observed. Immunoglobulin deposits were also found in the choroid plexus and at the dermoepidermal junction. In addition, thrombocytopenia was a common finding, and a positive direct Coomb's test occasionally was detected. Features of autoimmune disease were closely associated with the effective induction of transplantation tolerance, as revealed by the inability of spleen cells to generate in vitro cytolytic responses against C57BL/6 alloantigens. It is suggested that, although transplantation tolerance is associated with a lack of cytolytic reaction of the host against F1 hybrid donor alloantigens, other types of allogeneic interactions could lead in this model to the development of autoimmunity and immunopathology.  相似文献   

9.
10.
We have examined two T lymphocyte cell surface molecules, CD4 and CD7, as targets for specific delivery of drugs from antibody-directed liposomes. The efficiency of uptake by peripheral lymphocytes, thymocytes, and two CEM sublines (CEM.MRS and CEM-T4) of anti-CD4 and anti-CD7 liposomes containing methotrexate was evaluated by the methotrexate-mediated inhibition of the incorporation of d-[3H]Urd into DNA. This was compared with similar liposomes targeted to MHC-encoded HLA class I molecules, which are known to be efficiently taken up by T cells. Despite the lower expression of CD7 molecules relative to HLA class I on most cell lines, CD7 was shown to be a good target for drug delivery. The results of an internalization study using radiolabeled Protein A showed that a higher proportion of CD7 molecules was internalized than HLA class I molecules. CD4-targeted liposomes, in contrast, were relatively ineffective for drug delivery for lymphoid cells, and only partially inhibited CEM-T4 cells. The lack of toxicity correlated with poor internalization of the target molecule on most cell lines. The drug effect of anti-CD4 liposomes was more pronounced on HeLa-T4, which is an epithelial cell line transfected with the CD4 gene. In contrast to lymphoid cells, these cells efficiently internalized CD4 molecules. PMA is known to down-regulate surface expression of CD4 molecules on various T cells. Internalization of CD4 was induced by PMA, but PMA failed to induce cytotoxicity of CD4-targeted liposomes for CEM.MRS. The internalized drug was probably degraded rapidly because internalized anti-CD4 antibody-bound Protein A was degraded very rapidly.  相似文献   

11.
Calcium ions have important roles in cellular processes including intracellular signaling, protein folding, enzyme activation and initiation of programmed cell death. Cells maintain low levels of calcium in their cytosol in order to regulate these processes. When activation of calcium-dependent processes is needed, cells can release calcium stored in the endoplasmic reticulum (ER) into the cytosol to initiate the processes. This can also initiate activation of plasma membrane channels that allow entry of additional calcium from the extracellular milieu. The change in calcium levels is referred to as calcium flux. A key protein involved in initiation of calcium flux is Stromal Interaction Molecule 1 (STIM1), which has recently been identified as a sensor of ER calcium levels. STIM1 is an ER transmembrane protein that is activated by a drop in ER calcium levels. Upon activation, STIM1 interacts with a plasma membrane protein, ORAI1, to activate ORAI-containing calcium-selective plasma membrane channels. Dysregulation of calcium flux has been reported in cancers, autoimmune diseases and other diseases. STIM1 is a promising target in drug discovery due to its key role early in calcium flux. Here we review the involvement and importance of STIM1 in diseases and why STIM1 is a viable target for drug discovery. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

12.
Mitochondrial malfunctioning is implicated in the pathogenesis of a variety of disorders, including cancer and multiple neurodegenerative diseases, such as Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and Huntington’s disease. Disturbance of mitochondrial vital functions, e.g., production of ATP, calcium buffering capacity, and generation of reactive oxygen species, can be potentially involved in disease pathogenesis. Neurological disorders caused by mitochondrial deterioration are often associated with cell loss within specific brain regions. In contrast, mitochondrial alterations in tumor cells and the “Warburg effect” might lead to cell survival and resistance of tumor cells to chemotherapy. This review is devoted to the role of mitochondria in neurodegeneration and tumor formation, and describes how targeting of mitochondria can be beneficial in the therapy of these diseases, which affect a large human population.  相似文献   

13.
14.
L Zhong  NZ Gerges 《PloS one》2012,7(7):e41275
Calcium entry and the subsequent activation of CaMKII trigger synaptic plasticity in many brain regions. The induction of long-term potentiation (LTP) in the CA1 region of the hippocampus requires a relatively high amount of calcium-calmodulin. This requirement is usually explained, based on in vitro and theoretical studies, by the low affinity of CaMKII for calmodulin. An untested hypothesis, however, is that calmodulin is not randomly distributed within the spine and its targeting within the spine regulates LTP. We have previously shown that overexpression of neurogranin enhances synaptic strength in a calmodulin-dependent manner. Here, using post-embedding immunogold labeling, we show that calmodulin is not randomly distributed, but spatially organized in the spine. Moreover, neurogranin regulates calmodulin distribution such that its overexpression concentrates calmodulin closer to the plasma membrane, where a high level of CaMKII immunogold labeling is also found. Interestingly, the targeting of calmodulin by neurogranin results in lowering the threshold for LTP induction. These findings highlight the significance of calmodulin targeting within the spine in synaptic plasticity.  相似文献   

15.
The gut associated lymphoid tissue has effective mechanisms in place to maintain tolerance to food antigens. These can be exploited to induce antigen-specific tolerance for the prevention and treatment of autoimmune diseases and severe allergies and to prevent serious immune responses in protein replacement therapies for genetic diseases. An oral tolerance approach for the prevention of peanut allergy in infants proved highly efficacious and advances in treatment of peanut allergy have brought forth an oral immunotherapy drug that is currently awaiting FDA approval. Several other protein antigens made in plant cells are in clinical development. Plant cell-made proteins are protected in the stomach from acids and enzymes after their oral delivery because of bioencapsulation within plant cell wall, but are released to the immune system upon digestion by gut microbes. Utilization of fusion protein technologies facilitates their delivery to the immune system, oral tolerance induction at low antigen doses, resulting in efficient induction of FoxP3+ and latency-associated peptide (LAP)+ regulatory T cells that express immune suppressive cytokines such as IL-10. LAP and IL-10 expression represent potential biomarkers for plant-based oral tolerance. Efficacy studies in hemophilia dogs support clinical development of oral delivery of bioencapsulated antigens to prevent anti-drug antibody formation. Production of clinical grade materials in cGMP facilities, stability of antigens in lyophilized plant cells for several years when stored at ambient temperature, efficacy of oral delivery of human doses in large animal models and lack of toxicity augur well for clinical advancement of this novel drug delivery concept.  相似文献   

16.
IL-2 was previously shown to induce cytotoxic effectors with a broad spectrum of target specificities in thymus and spleen cell cultures. This study was designed to show whether T cells activated by H-2 allogeneic cells in MLC or by syngeneic tumor cells in MLTC are also potential targets for these cytotoxic effectors. We found that thymocytes activated in vitro for 5 days by rIL-2 were capable of killing tumor cells as well as activated T cells. Thymocytes activated by IL-2 were accordingly utilized as a means of effecting clonal deletion of T cells activated by H-2 allogeneic target cells in MLC. To establish whether the unresponsiveness is specific. IL-2-activated thymocytes were added as third party cells to MLC and MLTC. The results showed that both T cells, proliferating in response to H-2 allogeneic cells, and CTL, reactive against syngeneic tumors or H-2 allogeneic cells, are eliminated from the T cell pool. Only alloreactive T cells are specifically eliminated in MLC by IL-2-activated thymocytes, as the remaining T cells are capable of proliferating and generating CTL in response to antigenically unrelated third party allogeneic cells. The possibility that unresponsiveness might be due to soluble factors was ruled out by studies performed with a diffusable "chamber insert" culture system. The results provide evidence that IL-2-activated thymocytes induce in vitro T cell tolerance.  相似文献   

17.
The MHC class I allochimeric protein containing donor‐type epitopes on recipient‐type heavy chains induces indefinite survival of heterotopic cardiac allografts in rats. We analyzed gene expression profile of heart allograft tissue. Mutated peptide [α1h1/u]‐RT1.Aa that contains donor‐type (Wistar Furth, WF; RT1u) immunogenic epitopes displayed on recipient‐type (ACI, RT1a) was delivered into ACI recipients of WF hearts at the time of transplantation in addition to a 3 days course of oral cyclosporine. Microarray analysis was performed using Affymetrix Rat 230 2.0 Microarray. Allochimeric molecule treatment caused upregulation of genes involved in structural integrity of heart muscle, downregulation of IL‐1β a key modulator of the immune response, and downregulation of partitioning defective six homolog gamma PAR6, which is involved in T cell polarity, motility, and ability to scan dendritic cells (DC). These indicate that the immunosuppressive function of allochimeric molecule and/or the establishment of allograft tolerance depend on the induction of genes responsible for the heart tissue integrity, the suppression of cytokine pathway(s), and possibly the impairment of T cells mobility and their DC scanning ability. These novel findings may have important clinical implications for inhibition of chronic rejection in transplant recipients. genesis 48:8–19, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
β淀粉样蛋白的分泌酶与阿尔采末病的治疗   总被引:2,自引:0,他引:2  
Luo HM  Gu F 《生理科学进展》2003,34(2):189-192
β淀粉样蛋白(Aβ)级联反应在阿尔采末病(AD)发病过程中起主要作用,Aβ由分泌酶中的β和γ分泌酶水解β淀粉样蛋白前体蛋白(APP)而来。本文综述了参与APP水解的三种分泌酶(α、β和γ)的发现、研究进展及其在调节β淀粉样蛋白过程中的作用。选择性地激活α分泌薄或抑制β和γ分泌酶格减少Aβ产生,为AD治疗提供新的研究思路,以分泌酶为靶点可能成为治疗AD的理想途径。  相似文献   

19.
Secretases as targets for the treatment of Alzheimer's disease   总被引:5,自引:0,他引:5  
Alzheimer's disease (AD) is the major cause of dementia in most developed countries. Treatment to modify this disease is currently unavailable, but needed urgently. The amyloid-cascade hypothesis proposes that amyloid beta-peptide (Abeta), found in the plaques characteristic of AD, plays an early, critical role in the disease process. It follows that preventing the generation of Abeta could be therapeutically useful in all cases of AD. Inhibition of the secretases that produce Abeta from a large precursor protein is the main approach to achieve this goal.  相似文献   

20.
DNA topoisomerases as targets for chemotherapy   总被引:5,自引:0,他引:5  
K M Rose 《FASEB journal》1988,2(9):2474-2478
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号