首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
2.
Chromatin insulators, or boundary elements, appear to control eukaryotic gene expression by regulating interactions between enhancers and promoters. Boundaries have been identified in the 3' cis-regulatory region of Abd-B, which is subdivided into a series of separate iab domains. Boundary elements such as Mcp, Fab-7, and Fab-8 and adjacent silencers flank the iab domains and restrict the activity of the iab enhancers. We have identified an insulator in the 755-bp Mcp fragment that is linked to the previously characterized Polycomb response element (PRE) and silences the adjacent genes. This insulator blocks the enhancers of the yellow and white genes and protects them from PRE-mediated repression. The interaction between the Mcp elements, each containing the insulator and PRE, allows the eye enhancer to activate the white promoter over the repressed yellow domain. The same level of white activation was observed when the Mcp element combined with the insulator alone was interposed between the eye enhancer and the promoter, suggesting that the insulator is responsible for the interaction between the Mcp elements.  相似文献   

3.
Fine regulation of complex gene loci in higher eukaryotes is realized through the interaction of promoters with enhancers and repressors, which can be located long distance from the promoter regulated. A question arises, what mechanisms determine proper contacts between the regulatory elements over large distances in the genome. It is suggested that the important role in this process is played by a special class of regulatory elements, insulators, which block the interaction of enhancer and promoter, if they are positioned between them. Furthermore, enhancers do not directly inactivate the activities of enhancer and promoter. Nevertheless, an enhancer, isolated from one of the promoters by an insulator, can activate another, not isolated promoter. The best studied insulator of Drosophila melanogaster was found in the 5′ regulatory region of retrotransposon MDG4. It consists of 12 binding sites for the Su(Hw) protein, which is critical for the activity of this insulator. It was demonstrated that Su(Hw) insulator could protect the gene expression from the negative influence of heterochromatin and from repression, induced by the Polycomb group proteins (Pc proteins). In the present study, it was demonstrated that in transgenic lines, two or three copies of the Su(Hw) insulator could determine the interaction of the miniwhite enhancer and Pc dependant silencer with the miniwhite promoter. Thus, it was first demonstrated that insulators could participate in the regulation of the contacts between promoter and functionally opposite elements, responsible for either gene activation, or repression. Original Russian Text ? M.V. Kostyuchenko, E.E. Savitskaya, M.N. Krivega, P.G. Georgiev, 2008, published in Genetika, 2008, Vol. 44, No. 12, pp. 1693–1697.  相似文献   

4.
Morris JR  Petrov DA  Lee AM  Wu CT 《Genetics》2004,167(4):1739-1747
Eukaryotic enhancers act over very long distances, yet still show remarkable specificity for their own promoter. To better understand mechanisms underlying this enhancer-promoter specificity, we used transvection to analyze enhancer choice between two promoters, one located in cis to the enhancer and the other in trans to the enhancer, at the yellow gene of Drosophila melanogaster. Previously, we demonstrated that enhancers at yellow prefer to act on the cis-linked promoter, but that mutation of core promoter elements in the cis-linked promoter releases enhancers to act in trans. Here, we address the mechanism by which these elements affect enhancer choice. We consider and explicitly test three models that are based on promoter competency, promoter pairing, and promoter identity. Through targeted gene replacement of the endogenous yellow gene, we show that competency of the cis-linked promoter is a key parameter in the cis-trans choice of an enhancer. In fact, complete replacement of the yellow promoter with both TATA-containing and TATA-less heterologous promoters maintains enhancer action in cis.  相似文献   

5.
Chen Q  Lin L  Smith S  Lin Q  Zhou J 《Developmental biology》2005,286(2):629-636
In complex genomes, insulators set up chromatin domain boundaries and protect promoters from inappropriate activation by enhancers from neighboring genes. The Drosophila Abdominal-B locus uses insulator elements to organize its large regulatory region into several body segment-specific chromatin domains. This organization leads to a problem in enhancer-promoter communication, that is, how do distal enhancers activate the Abd-B promoter when there are several insulators in between? This issue is partially resolved by the Promoter Targeting Sequence, which can overcome the enhancer blocking effect of an insulator. In this study, we describe a new Promoter Targeting Sequence, PTS-6, from the Abd-B 3' regulatory region. PTS-6, comprised of approximately 200 bp, was found to bypass both homologous Abdominal-B insulators, such as Fab-7 and Fab-8, and a heterologous insulator, suHw. Most importantly, it also overcomes a combination of two insulators such as Fab-7/Fab-8. Thus, PTS-6 could, in principle, target remote enhancers that are separated from the Abd-B promoter by multiple insulators. In addition, PTS-6 selectively targets the distal enhancer to only one transgenic promoter, and it strongly facilitates Abd-B enhancers. These results suggest that promoter targeting is necessary for long-range enhancer-promoter communication in Abd-B, and PTS elements could be a common occurrence in large, complex genetic loci.  相似文献   

6.
The Suppressor of the Hairy wing [Su(Hw)] binding region within the gypsy retrotransposon is the best known chromatin insulator in Drosophila melanogaster. According to previous data, two copies of the gypsy insulator inserted between an enhancer and a promoter neutralize each other's actions, which is indicative of an interaction between the protein complexes bound to the insulators. We have investigated the role of pairing between the gypsy insulators located on homologous chromosomes in trans interaction between yellow enhancers and a promoter. It has been shown that trans activation of the yellow promoter strongly depends on the site of the transposon insertion, which is evidence for a role of surrounding chromatin in homologous pairing. The presence of the gypsy insulators in both homologous chromosomes even at a distance of 9 kb downstream from the promoter dramatically improves the trans activation of yellow. Moreover, the gypsy insulators have proved to stabilize trans activation between distantly located enhancers and a promoter. These data suggest that gypsy insulator pairing is involved in communication between loci in the Drosophila genome.  相似文献   

7.
8.
9.
Insulators are regulatory DNA elements restricting gene activation by enhancers. Interactions between insulators can lead to both insulation and activation of promoters by enhancers. In this work, we analyzed the effects of interaction of two Drosophila insulators, Wari and Su(Hw). The functional interaction between these insulators was found to enhance the activity of the Su(Hw) insulator only, but not of the Wari insulator. This suggests that the formation of a chromatin loop between interacting insulators is not a key factor for enhancement of insulation, which is in disagreement with the main idea of structural models. In addition, the effect of interaction between Wari and Su(Hw) depends on a distance between them and on the position in the system relative to other regulatory elements.  相似文献   

10.
11.
12.
13.
14.
Insulators are regulatory DNA elements that participate in the modulation of the interactions between enhancers and promoters. Depending on the situation, insulators can either stabilize or destroy the contacts between enhancers and promoters. A possible explanation for the activity of insulators is their ability to directly interact with gene promoters. In the present study, it was demonstrated that, in model systems, a 1A2 insulator could interact with the core sequence of an hsp70 promoter. In this case, the insulator protein CP190 is found on the hsp70 promoter, which depends on the presence of an insulator in the transgene. The data obtained are consistent with the model, which implies that direct contacts between insulators and promoters make a considerable contribution to the modulation of the interactions between insulators and promoters.  相似文献   

15.
16.
17.
18.
19.
The Su(Hw) insulator found in the gypsy retrotransposon is the most potent enhancer blocker in Drosophila melanogaster. However, two such insulators in tandem do not prevent enhancer-promoter communication, apparently because of their pairing interaction that results in mutual neutralization. Furthering our studies of the role of insulators in the control of gene expression, here we present a functional analysis of a large set of transgenic constructs with various arrangements of regulatory elements, including two or three insulators. We demonstrate that their interplay can have quite different outcomes depending on the order of and distance between elements. Thus, insulators can interact with each other over considerable distances, across interposed enhancers or promoters and coding sequences, whereby enhancer blocking may be attenuated, cancelled, or restored. Some inferences concerning the possible modes of insulator action are made from collating the new data and the relevant literature, with tentative schemes illustrating the regulatory situations in particular model constructs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号