首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Inactivation of the tumour suppressor p53 is central to carcinogenesis and acquisition of resistance to drug-induced apoptosis. The majority of alterations are missense mutations and occur within the DNA-binding domain. However, little is known about the point mutations in the tetramerization domain (TD). Here we investigated the properties of a new p53 mutant (Lys 351 to Asn) in the TD identified in a cisplatin-resistant ovarian carcinoma cell line (A2780 CIS). We found that K351N substitution significantly reduces the thermodynamic stability of p53 tetramers without affecting the overall half-life of the protein. Moreover, p53 K351N has a reduced ability to bind DNA and to trans-activate its specific target gene promoters, such as bax. Data obtained from the analysis of p53 subcellular localization revealed that K351N mutation inhibits the nuclear export of p53 and accumulation in the cytoplasm induced by cisplatin treatment. These results identify p53 K351N as a new cancer associated mutant with reduced tumour suppressor activity and altered functions in response to apoptotic stimuli.  相似文献   

2.
p53 functions to prevent malignant progression, in part by inhibiting proliferation or inducing the death of potential tumour cells. One of the most important regulators of p53 is MDM2, a RING domain E3 ligase that ubiquitinates p53, leading to both proteasomal degradation and relocation of p53 from the nucleus to the cytoplasm. Previous studies have suggested that although polyubiquitination is required for degradation, monoubiquitination of p53 is sufficient for nuclear export. Using a p53-ubiquitin fusion protein we show that ubiquitination contributes to two steps before export: exposure of a carboxy-terminal nuclear export sequence (NES), and dissociation of MDM2. Monoubiquitination can directly promote further modifications of p53 with ubiquitin-like proteins and MDM2 promotes the interaction of the SUMO E3 ligase PIASy with p53, enhancing both sumoylation and nuclear export. Our results suggest that modifications such as sumoylation can regulate the strength of the p53-MDM2 interaction and participate in driving the export of p53.  相似文献   

3.
4.
Wild-type p53 is a conformationally labile protein that undergoes nuclear-cytoplasmic shuttling. MDM2-mediated ubiquitination promotes p53 nuclear export by exposing or activating a nuclear export signal (NES) in the C terminus of p53. We observed that cancer-derived p53s with a mutant (primary antibody 1620-/pAb240+) conformation localized in the cytoplasm to a greater extent and displayed increased susceptibility to ubiquitination than p53s with a more wild-type (primary antibody 1620+/pAb240-) conformation. The cytoplasmic localization of mutant p53s required the C-terminal NES and an intact ubiquitination pathway. Mutant p53 ubiquitination occurred at lysines in both the DNA-binding domain (DBD) and C terminus. Interestingly, Lys to Arg mutations that inhibited ubiquitination restored nuclear localization to mutant p53 but had no apparent effect on p53 conformation. Further studies revealed that wild-type p53, like mutant p53, is ubiquitinated by MDM2 in both the DBD and C terminus and that ubiquitination in both regions contributes to its nuclear export. MDM2 binding can induce a conformational change in wild-type p53, but this conformational change is insufficient to promote p53 nuclear export in the absence of MDM2 ubiquitination activity. Taken together, these results support a stepwise model for mutant and wild-type p53 nuclear export. In this model, the conformational change induced by either the cancer-derived mutation or MDM2 binding precedes p53 ubiquitination. The addition of ubiquitin to DBD and C-terminal lysines then promotes nuclear export via the C-terminal NES.  相似文献   

5.
The product of the Mdm2 oncogene directly interacts with p53 and promotes its ubiquitination and proteasomal degradation. Initial biological studies identified nuclear export sequences (NES), similar to that of the Rev protein from the human immunodeficiency virus, both in Mdm2 and p53. The reported phenotypes resulting from mutation of these NESs, together with results obtained using the nuclear export inhibitor leptomycin B (LMB), have led to a model according to which nuclear export of p53 (via either the NES of Mdm2 or its own NES) is required for efficient p53 degradation. In this study we demonstrate that Mdm2 can promote degradation of p53 in the nucleus or in the cytoplasm, provided both proteins are colocalized. We also investigated if nuclear export is an obligate step on the p53 degradation pathway. We find that (1) when proteasome activity is inhibited, ubiquitinated p53 accumulates in the nucleus and not in the cytoplasm; (2) Mdm2 with a mutated NES can efficiently mediate degradation of wild type p53 or p53 with a mutated NES; (3) the nuclear export inhibitor LMB can increase the steady-state level of p53 by inhibiting Mdm2-mediated ubiquitination of p53; and (4) LMB fails to inhibit Mdm2-mediated degradation of the p53NES mutant, demonstrating that Mdm2-dependent proteolysis of p53 is feasible in the nucleus in the absence of any nuclear export. Therefore, given cocompartmentalization, Mdm2 can promote ubiquitination and proteasomal degradation of p53 with no absolute requirement for nuclear to cytoplasmic transport.  相似文献   

6.
Nuclear export sequences (NESs) have been identified in many cellular proteins, but it remains unclear how different NESs compare in activity. We describe a sensitive new in vivo export assay which we have used to assess the relative export activity of different types of NES. The most common type of export sequence resembles that first identified in the HIV-1 Rev protein and typically comprises a core of large hydrophobic amino acids that specify recognition by the CRM1 export receptor. We compared 10 previously identified Rev-type NESs in our assay, and whereas all were functional, the relative export activities of these signals varied considerably. We further identified 3 new Rev-type NESs from a computer database search, and each export signal was assigned a score of 1 to 9 and ranked in order of activity (e.g., PKI > c-ABL > Ran-BP1 > FMRP > PML > IkappaB-alpha > hdm2). The weakest NESs were found in the p53 tumor suppressor and the p53-regulated proteins p21 and hdm2, which are all normally localized to the nucleus. All of the Rev-type NESs were inactivated by mutation of key hydrophobic residues and by treatment with the CRM1-specific export inhibitor, leptomycin B. In contrast, a different type of export signal, the KNS shuttling element derived from hnRNP K, exhibited a modest export activity that was insensitive to leptomycin B treatment. KNS thus appears to mediate export via a CRM1-independent pathway. Mutagenesis of the KNS sequence identified, for the first time, specific serines and acidic residues necessary for its export activity, thereby distinguishing KNS from other types of nuclear transport signal. We have shown that different nuclear export signals can vary profoundly in activity and therefore conclude that the nuclear export rate of a specific shuttling protein largely depends on both the strength and the accessibility of its NES.  相似文献   

7.
MDM2 can bind to p53 and promote its ubiquitination and subsequent degradation by the proteasome. Current models propose that nuclear export of p53 is required for MDM2-mediated degradation, although the function of MDM2 in p53 nuclear export has not been clarified. Here we show that MDM2 can promote the nuclear export of p53 in transiently transfected cells. This activity requires the nuclear-export signal (NES) of p53, but not the NES of MDM2. A mutation within the MDM2 RING-finger domain that inhibits p53 ubiquitination also inhibits the ability of MDM2 to promote p53 nuclear export. Finally, inhibition of nuclear export stabilizes wild-type p53 and leads to accumulation of ubiquitinated p53 in the nucleus. Our results indicate that MDM2-mediated ubiquitination, or other activities associated with the RING-finger domain, can stimulate the export of p53 to the cytoplasm through the activity of the p53 NES.  相似文献   

8.
The ubiquitin-proteasome pathway has become an increasingly important regulatory mechanism for protein function. Countless proteins are degraded by the addition of polymeric ubiquitin chains, but more recently, monoubiquitination has emerged as a mechanism for regulatory functions other than proteasomal degradation. Monoubiquitination acts as a signal in nuclear export for the tumor suppressor protein p53. Different levels of Mdm2 are capable of inducing both mono- and polyubiquitination in a dosage dependent manner, thus determining p53's fate. Our findings demonstrate monoubiquitin-mediated protein trafficking can be expanded to nuclear-cytoplasmic shuttling, and also imply similar scenarios may apply to other cellular factors.  相似文献   

9.
The ubiquitin-proteasome pathway has become an increasingly important regulatory mechanism for protein function. Countless proteins are degraded by the addition of polymeric ubiquitin chains, but more recently, monoubiquitination has emerged as a mechanism for regulatory functions other than proteasomal degradation. Monoubiquitination acts as a signal in nuclear export for the tumor suppressor protein p53. Different levels of Mdm2 are capable of inducing both mono- and polyubiquitination in a dosage dependent manner, thus determining p53’s fate. Our findings demonstrate monoubiquitin-mediated protein trafficking can be expanded to nuclear-cytoplasmic shuttling, and also imply similar scenarios may apply to other cellular factors.  相似文献   

10.
It has been demonstrated that MDM2 can differentially regulate subcellular distribution of p53 and its close structural homologue p73. In contrast to MDM2-mediated p53 nuclear export, p73 accumulates in the nucleus as aggregates that colocalize with MDM2. Distinct distribution patterns of p53 and p73 suggest the existence of unique structural elements in the two homologues that determine their MDM2-mediated relocalization in the cell. Using a series of p53/p73 chimeric proteins, we demonstrate that three regions of p53 are involved in the regulation of MDM2-mediated nuclear export. The DNA binding domain (DBD) is involved in the maintenance of a proper conformation that is required for functional activity of the nuclear export sequence (NES) of p53. The extreme C terminus of p53 harbors several lysine residues whose ubiquitination by MDM2 appears to be the initial event in p53 nuclear export, as evidenced by the impaired nucleocytoplasmic shuttling of p53 mutants bearing simultaneous substitutions of lysines 370, 372, 373, 381, 382, and 386 to arginines (6KR) or alanines (6KA). Finally, the region between the DBD and the oligomerization domain of p53, specifically lysine 305, also plays a critical role in fully revealing p53NES. We conclude that MDM2-mediated nuclear export of p53 depends on a series of ubiquitination-induced conformational changes in the p53 molecule that lead to the activation of p53NES. In addition, we demonstrate that the p53NES may be activated without necessarily disrupting the p53 tetramer.  相似文献   

11.
C-Terminal Ubiquitination of p53 Contributes to Nuclear Export   总被引:9,自引:0,他引:9       下载免费PDF全文
The growth inhibitory functions of p53 are controlled in unstressed cells by rapid degradation of the p53 protein. One of the principal regulators of p53 stability is MDM2, a RING finger protein that functions as an E3 ligase to ubiquitinate p53. MDM2 promotes p53 nuclear export, and in this study, we show that ubiquitination of the C terminus of p53 by MDM2 contributes to the efficient export of p53 from the nucleus to the cytoplasm. In contrast, MDM2 did not promote nuclear export of the p53-related protein, p73. p53 nuclear export was enhanced by overexpression of the export receptor CRM1, although no significant relocalization of MDM2 was seen in response to CRM1. However, nuclear export driven by CRM1 overexpression did not result in the degradation of p53, and nuclear export was not essential for p53 degradation. These results indicate that MDM2 mediated ubiquitination of p53 contributes to both nuclear export and degradation of p53 but that these activities are not absolutely dependent on each other.  相似文献   

12.
13.
Appropriate subcellular localization is crucial for regulating p53 function. We show that p53 export is mediated by a highly conserved leucine-rich nuclear export signal (NES) located in its tetramerization domain. Mutation of NES residues prevented p53 export and hampered tetramer formation. Although the p53-binding protein MDM2 has an NES and has been proposed to mediate p53 export, we show that the intrinsic p53 NES is both necessary and sufficient for export. This report also demonstrates that the cytoplasmic localization of p53 in neuroblastoma cells is due to its hyperactive nuclear export: p53 in these cells can be trapped in the nucleus by the export-inhibiting drug leptomycin B or by binding a p53-tetramerization domain peptide that masks the NES. We propose a model in which regulated p53 tetramerization occludes its NES, thereby ensuring nuclear retention of the DNA-binding form. We suggest that attenuation of p53 function involves the conversion of tetramers into monomers or dimers, in which the NES is exposed to the proteins which mediate their export to the cytoplasm.  相似文献   

14.
MDM2 can bind the N terminus of p53 and promote its ubiquitination and export from the nucleus to the cytoplasm, where p53 can then be degraded by cytoplasmic proteasomes. Several studies have reported that an intact MDM2 binding domain is necessary for p53 to be targeted for ubiquitination, nuclear export, and degradation by MDM2. In the current study, we examined whether the MDM2 binding domain of p53 could be provided in trans through oligomerization between two p53 molecules. p53 proteins mutated in their MDM2 binding domains were unable to bind MDM2 directly and were resistant to MDM2-mediated ubiquitination, nuclear export, and degradation when expressed with MDM2 alone. However, these same p53 mutants formed a complex with MDM2 and were efficiently ubiquitinated, exported from the nucleus, and degraded when co-expressed with MDM2 and wild-type p53. Moreover, this effect required MDM2 binding by wild-type p53 as well as oligomerization between wild-type p53 and the MDM2 binding-deficient p53 mutants. Taken together, these results support a model whereby MDM2 binding-deficient forms of p53 can bind MDM2 indirectly through oligomerization with wild-type p53 and are subsequently targeted for ubiquitination, nuclear export, and degradation. These findings may have important implications regarding the DNA damage response of p53.  相似文献   

15.
FlhA is an integral membrane component of the Salmonella type III flagellar protein export apparatus. It consists of 692 amino acid residues and has two domains: the N-terminal transmembrane domain consisting of the first 327 amino acid residues, and the C-terminal cytoplasmic domain (FlhAC) comprising the remainder. Here, we have investigated the structure and function of FlhAC. DNA sequence analysis revealed that temperature-sensitive flhA mutations, which abolish flagellar protein export at the restrictive temperature, lie in FlhAC, indicating that FlhAC plays an important role in the protein export process. Limited proteolysis of purified His-FlhAC by trypsin and V8 showed that only a small part of FlhAC near its N terminus (residues 328-351) is sensitive to proteolysis. FlhAC38K, the smallest fragment produced by V8 proteolysis, is monomeric and has a spherical shape as judged by analytical gel filtration chromatography and analytical ultracentrifugation. The far-UV CD spectrum of FlhAC38K showed that it contains considerable amounts of secondary structure. FlhA(Delta328-351) missing residues 328-351 failed to complement the flhA mutant, indicating that the proteolytically sensitive region of FlhA is important for its function. FlhA(Delta328-351) was inserted into the cytoplasmic membrane, and exerted a strong dominant negative effect on wild-type cells, suggesting that it retains the ability to interact with other export components within the cytoplasmic membrane. Overproduced FlhAC38K inhibited both motility and flagellar protein export of wild-type cells to some degree, suggesting that FlhAC38K is directly involved in the translocation reaction. Amino acid residues 328-351 of FlhA appear to be a relatively flexible linker between the transmembrane domain and FlhAC38K.  相似文献   

16.
17.
Nuclear export modulates the cytoplasmic Sir2 homologue Hst2   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

18.
We show that p27 localization is cell cycle regulated and we suggest that active CRM1/RanGTP-mediated nuclear export of p27 may be linked to cytoplasmic p27 proteolysis in early G1. p27 is nuclear in G0 and early G1 and appears transiently in the cytoplasm at the G1/S transition. Association of p27 with the exportin CRM1 was minimal in G0 and increased markedly during G1-to-S phase progression. Proteasome inhibition in mid-G1 did not impair nuclear import of p27, but led to accumulation of p27 in the cytoplasm, suggesting that export precedes degradation for at least part of the cellular p27 pool. p27-CRM1 binding and nuclear export were inhibited by S10A mutation but not by T187A mutation. A putative nuclear export sequence in p27 is identified whose mutation reduced p27-CRM1 interaction, nuclear export, and p27 degradation. Leptomycin B (LMB) did not inhibit p27-CRM1 binding, nor did it prevent p27 export in vitro or in heterokaryon assays. Prebinding of CRM1 to the HIV-1 Rev nuclear export sequence did not inhibit p27-CRM1 interaction, suggesting that p27 binds CRM1 at a non-LMB-sensitive motif. LMB increased total cellular p27 and may do so indirectly, through effects on other p27 regulatory proteins. These data suggest a model in which p27 undergoes active, CRM1-dependent nuclear export and cytoplasmic degradation in early G1. This would permit the incremental activation of cyclin E-Cdk2 leading to cyclin E-Cdk2-mediated T187 phosphorylation and p27 proteolysis in late G1 and S phase.  相似文献   

19.
As a shuttling protein, p53 is constantly transported through the nuclear pore complex. p53 nucleocytoplasmic transport is carried out by a bipartite nuclear localization signal (NLS) located at its C-terminal domain and two nuclear export signals (NES) located in its N- and C-terminal regions, respectively. The role of nucleocytoplasmic shuttling in p53 ubiquitination and degradation has been a subject of debate. Here we show that the two basic amino acid groups in the p53 bipartite NLS function collaboratively to import p53. Mutations disrupting individual amino acids in the NLS, although causing accumulation of p53 in the cytoplasm to various degrees, reduce but do not eliminate the NLS activity, and these mutants remain sensitive to MDM2 degradation. However, disrupting both parts of the bipartite NLS completely blocks p53 from entering the nucleus and causes p53 to become resistant to MDM2-mediated degradation. Similarly, mutations disrupting four conserved hydrophobic amino acids in the p53 C-terminal NES block p53 export and prohibit it from MDM2 degradation. We also show that colocalization of a nonshuttling p53 with MDM2 either in the nucleus or in the cytoplasm is sufficient for MDM2-induced p53 polyubiquitination but not degradation. Our data provide new insight into the mechanism and regulation of p53 nucleocytoplasmic shuttling and degradation.  相似文献   

20.
Complexes containing adenovirus E4orf6 and E1B55K proteins play critical roles in productive infection. Both proteins interact directly with the cellular tumor suppressor p53, and in combination they promote its rapid degradation. To examine the mechanism of this process, degradation of exogenously expressed p53 was analyzed in p53-null human cells infected with adenovirus vectors encoding E4orf6 and/or E1B55K. Coexpression of E4orf6 and E1B55K greatly reduced both the level and the half-life of wild-type p53. No effect was observed with the p53-related p73 proteins, which did not appear to interact with E4orf6 or E1B55K. Mutant forms of p53 were not degraded if they could not efficiently bind E1B55K, suggesting that direct interaction between p53 and E1B55K may be required. Degradation of p53 was independent of both MDM2 and p19ARF, regulators of p53 stability in mammalian cells, but required an extended region of E4orf6 from residues 44 to 274, which appeared to possess three separate biological functions. First, residues 39 to 107 were necessary to interact with E1B55K. Second, an overlapping region from about residues 44 to 218 corresponded to the ability of E4orf6 to form complexes with cellular proteins of 19 and 14 kDa. Third, the nuclear retention signal/amphipathic arginine-rich alpha-helical region from residues 239 to 253 was required. Interestingly, neither the E4orf6 nuclear localization signal nor the nuclear export signal was essential. These results suggested that if nuclear-cytoplasmic shuttling is involved in this process, it must involve another export signal. Degradation was significantly blocked by the 26S proteasome inhibitor MG132, but unlike the HPV E6 protein, E4orf6 and E1B55K were unable to induce p53 degradation in vitro in reticulocyte lysates. Thus, this study implies that the E4orf6-E1B55K complex may direct p53 for degradation by a novel mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号