首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Microtubules, MAPs and plant directional cell expansion   总被引:1,自引:0,他引:1  
Plant microtubules (MTs) polymerize and depolymerize in a process termed dynamic instability. This allows the assembly, reorganization, and disassembly of at least four MT arrays throughout the cell cycle. The cortical MT array lines the plasma membrane during interphase and plays a central role in directional cell expansion. Microtubule-associated proteins (MAPs) decorate cortical MTs with distinct patterns, regulating MT dynamic instability, MT severing, and other array-ordering processes. The Arabidopsis root has emerged as a highly useful system for identifying and studying cell-expansion-related MAPs. Here, we review how cortical MTs are thought to behave and become ordered in expanding root cells, and we discuss the emerging picture of how MAPs fundamentally govern MT ordering and directional growth processes.  相似文献   

2.
《Biophysical journal》2020,118(12):2938-2951
The dynamic instability of microtubules (MTs), which refers to their ability to switch between polymerization and depolymerization states, is crucial for their function. It has been proposed that the growing MT ends are protected by a “GTP cap” that consists of GTP-bound tubulin dimers. When the speed of GTP hydrolysis is faster than dimer recruitment, the loss of this GTP cap will lead the MT to undergo rapid disassembly. However, the underlying atomistic mechanistic details of the dynamic instability remains unclear. In this study, we have performed long-time atomistic molecular dynamics simulations (1 μs for each system) for MT patches as well as a short segment of a closed MT in both GTP- and GDP-bound states. Our results confirmed that MTs in the GDP state generally have weaker lateral interactions between neighboring protofilaments (PFs) and less cooperative outward bending conformational change, where the difference between bending angles of neighboring PFs tends to be larger compared with GTP ones. As a result, when the GDP state tubulin dimer is exposed at the growing MT end, these factors will be more likely to cause the MT to undergo rapid disassembly. We also compared simulation results between the special MT seam region and the remaining material and found that the lateral interactions between MT PFs at the seam region were comparatively much weaker. This finding is consistent with the experimental suggestion that the seam region tends to separate during the disassembly process of an MT.  相似文献   

3.
Individual microtubules (MTs) repeat alternating phases of polymerization and depolymerization, a process known as "dynamic instability." The dynamic instability is regulated by various protein factors according to the requirement of cellular conditions. Heat-stable MAPs regulate the dynamic instability by increasing the rescue frequency. To explore the influence of MAP2, a heat-stable MAPs abundant in neuron, on in vitro MT dynamics, the distribution of MAP2 on individual MTs was correlated with the dynamic phase changes of the same MTs by optical microscopy. MAP2 distributed inhomogeneously along the length of MTs by forming high-density regions, clusters. Stops of depolymerization were always found to occur only at the cluster sites. Every cluster did not stop depolymerization, but depolymerization did always stop at a cluster site. We suggest that mode of distribution along MT is an important factor of the function of heat-stable MAPs.  相似文献   

4.
BACKGROUND: In migrating cells, the retrograde flow of filamentous actin (f-actin) from the leading edge toward the cell body is accompanied by the synchronous motion of microtubules (MTs, ), whose plus ends undergo net growth. Thus, MTs must depolymerize elsewhere in the cell to maintain polymer mass over time. The source and location of depolymerized MTs is unknown. Here, we test the hypothesis that MT polymer loss occurs in central cell regions and is induced by the convergence of actin retrograde and anterograde flow, which buckles and breaks associated MTs and promotes minus-end depolymerization. RESULTS: We characterized the effects of calyculin A and ML-7 on the movement of f-actin and MTs by multi-spectral fluorescence recovery after photobleaching (FRAP) and fluorescent speckle microscopy (FSM). Our studies show that these drugs affect the rate of f-actin and MT convergence and MT buckling in a central cell region we call the "convergence zone." Increases in f-actin convergence are associated with faster MT turnover and an increase in both MT breakage and minus-end depolymerization, but they have no effect on MT plus end dynamic instability. CONCLUSIONS: We propose that f-actin movement into the convergence zone plays a major role in spatially modulating MT turnover during cell migration by regulating MT breakage, and thus minus-end dynamics, in central cell regions.  相似文献   

5.
Stabilization of overlapping microtubules by fission yeast CLASP   总被引:3,自引:0,他引:3  
Many microtubule (MT) structures contain dynamic MTs that are bundled and stabilized in overlapping arrays. CLASPs are conserved MT-binding proteins implicated in the regulation of MT plus ends. Here, we show that the Schizosaccharomyces pombe CLASP, cls1p/peg1p, mediates the stabilization of overlapping MTs within the mitotic spindle and interphase bundles. cls1p localizes to these regions but not to interphase MT plus ends. Inactivation of cls1p leads to the rapid depolymerization of spindle midzone MTs. cls1p also stabilizes a subset of MTs within interphase bundles. cls1p prevents disassembly of the entire microtubule, while still allowing for plus-end growth. It has no measurable effects on MT nucleation, polymerization, catastrophe, or bundling. A direct interaction with ase1p (PRC1/MAP65) targets cls1p to regions of antiparallel MT overlap. These findings show how a MT-stabilizing factor attached to specific sites on MTs can help to generate MT structures that have both dynamic and stable components.  相似文献   

6.
MAP4, a ubiquitous heat-stable MAP, is composed of an asymmetric structure common to the heat-stable MAPs, consisting of an N-terminal projection (PJ) domain and a C-terminal microtubule (MT)-binding (MTB) domain. Although the MTB domain has been intensively studied, the role of the PJ domain, which protrudes from MT-wall and does not bind to MTs, remains unclear. We investigated the roles of the PJ domain on the dynamic instability of MTs by dark-field microscopy using various PJ domain deletion constructs of human MAP4 (PJ1, PJ2, Na-MTB and KDM-MTB). There was no obvious difference in the dynamic instability between the wtMAP4 and any fragments at 0.1 microM, the minimum concentration required to stabilize MTs. The individual MTs stochastically altered between polymerization and depolymerization phases with similar profiles of length change as had been observed in the presence of MAP2 or tau. We also examined the effects at the increased concentrations of 0.7 microM, and found that in some cases the dynamic instability was almost entirely attenuated. The length of both the polymerization and depolymerization phases decreased and "pause-phases" were occasionally observed, especially in the case of PJ1, PJ2 or Na-MTB. No obvious change was observed in the increased concentration of wtMAP4 and KDM-MTB. Additionally, the profiles of MT length change were quite different in 0.7 microM PJ2. Relatively rapid and long depolymerization phases were sometimes observed among quite slow length changes. Perhaps, this unusual profile could be due to the uneven distribution of PJ2 along the MT lattice. These results indicate that the PJ domain of MAP4 participates in the regulation of the dynamic instability.  相似文献   

7.
Individual microtubules (MTs) repeat alternating phases of polymerization and depolymerization, a process known as dynamic instability. Microtubule-associated proteins (MAPs) regulate the dynamic instability by increasing the rescue frequency. To explore the influence of MAP2 on in vitro MT dynamics, we correlated the distribution of MAP2 on individual MTs with the dynamic phase changes of the same MTs. MAP2 was modified selectively on its projection region by X-rhodamine iodoacetamide without altering the MT-binding activity. When the labeled MAP2 was added to MTs, the fluorescence was distributed along almost the entire length of individual MTs. However, the inhomogeneity of the distribution gradually became obvious due to the fluorescence bleaching, and the MTs appeared to consist of rapidly bleached portions (RBPs) and slowly bleached portions (SBPs), which were distributed randomly along the MT. By measuring the duration of fluorescence bleaching, the density of MAP2 in SBP was estimated to be approximately 2.5 times higher than the RBP. The average tubulin:MAP2 ratio in SBP was calculated to be 16. When the MT dynamics were observed by dark-field microscopy after determining the MAP2 distribution, rescues were always found to occur only at the SBPs. MTs also displayed intermittent shortening by repeated depolymerization phases separated by pause phases. In these cases, depolymerization phases stopped only at the SBPs. Not every SBP stopped depolymerization, but depolymerization always stopped at an SBP. Taken together, we suggest that there is a minimum density of MAP2 that is necessary to stop depolymerization.  相似文献   

8.
The metaphase spindle is a dynamic bipolar structure crucial for proper chromosome segregation, but how microtubules (MTs) are organized within the bipolar architecture remains controversial. To explore MT organization along the pole-to-pole axis, we simulated meiotic spindle assembly in two dimensions using dynamic MTs, a MT cross-linking force, and a kinesin-5-like motor. The bipolar structures that form consist of antiparallel fluxing MTs, but spindle pole formation requires the addition of a NuMA-like minus-end cross-linker and directed transport of MT depolymerization activity toward minus ends. Dynamic instability and minus-end depolymerization generate realistic MT lifetimes and a truncated exponential MT length distribution. Keeping the number of MTs in the simulation constant, we explored the influence of two different MT nucleation pathways on spindle organization. When nucleation occurs throughout the spindle, the simulation quantitatively reproduces features of meiotic spindles assembled in Xenopus egg extracts.  相似文献   

9.
Microtubules (MTs) are cytoskeletal polymers that exhibit dynamic instability, the random alternation between growth and shrinkage. MT dynamic instability plays an essential role in cell development, division, and motility. To investigate dynamic instability, simulation models have been widely used. However, conditions under which the concentration of free tubulin fluctuates as a result of growing or shrinking MTs have not been studied before. Such conditions can arise, for example, in small compartments, such as neuronal growth cones. Here we investigate by means of computational modeling how concentration fluctuations caused by growing and shrinking MTs affect dynamic instability. We show that these fluctuations shorten MT growth and shrinkage times and change their distributions from exponential to non-exponential, gamma-like. Gamma-like distributions of MT growth and shrinkage times, which allow optimal stochastic searching by MTs, have been observed in various cell types and are believed to require structural changes in the MT during growth or shrinkage. Our results, however, show that these distributions can already arise as a result of fluctuations in the concentration of free tubulin due to growing and shrinking MTs. Such fluctuations are possible not only in small compartments but also when tubulin diffusion is slow or when many MTs (de)polymerize synchronously. Volume and all other factors that influence these fluctuations can affect MT dynamic instability and, consequently, the processes that depend on it, such as neuronal growth cone behavior and cell motility in general.  相似文献   

10.
In living cells microtubules (MTs) continuously grow and shorten. This feature of MTs was discovered in vitro and named dynamic instability. Comparison of dynamic instability of MTs in vitro and in vivo shows a number of differences. MTs in vivo rapidly grow (up to 20 microns/min), duration of their shortening is small (on average 15-20 s), and pauses are prominent. In different animal cells MTs grow from the centrosome and form a radial array. In such cells growth of MTs is persistent, i.e. undergo without interruptions until plus end of a MT reaches cell margin. Analysis of literature and original data shows that interconvertion between phases of growth, shortening and pause is asymmetric: growth often converts into pause, while shortening always converts into growth without pause. We suggest dynamic instability described near the cell margin in numerous publications results not only from intrinsic properties of MTs, but also because of the external obstacles for their growth. MT behavior in the cells with radial array of long MTs could be treated as dynamic instability with boundary conditions. One boundary is the centrosome responsible for rapid initiation of MT growth. Another boundary is cell margin limiting MT elongation. MT growth occurs with constant mean velocity, and potential duration of growth phase might exceed cell radius. MT shortening is usually smaller than MT length however velocity of shortening increases with time. Random episodes of rapid shortening are sufficient for the exchange of MTs in 10-20 min in the cells not more than 40-50 microns in diameter. Experimental data show that similar rate of exchange of MTs is in the large cells. This is achieved employing another mechanism, namely release of MTs and depolymerization from the minus end. In the minus end pathway time required for the exchange of MTs does not depend on cell radius and is determined primarily by the frequency of releases. Thus a small number of free MTs with metastable minus ends significantly reduce time required for the renovation of the radial MT array. Summarizing all experimental data we suggest the life cycle scheme for the MT in a cell. MT is initiated at the centrosome and grows rapidly until it reaches cell margin. At the margin the plus end oscillates, and finally MT depolimerizes. MT "death" comes from a random catastrophe (shortening from the plus end) in small cells or from release and depolymerization of the minus end in large cells.  相似文献   

11.
Abstract: Microtubule-associated protein (MAP) binding to assembled microtubules (MTs) can be reduced by the addition of polyglutamate without significant MT depolymerization or interference with MT elongation reactions. Ensuing polymer length redistribution in MAP-depleted MTs occurs on a time scale characteristic of that observed with MAP-free MTs. The redistribution phase occurs even in the absence of mechanical shearing and without appreciable effects from end-to-end annealing, as indicated by the time course of incremental changes in polymer length and MT number concentration. We also observed higher rates of MT length redistribution when the [MAP]/[tubulin] ratio was decreased. Together, these results demonstrate that MT length redistribution rates are greatly influenced by MAP content, and the data are compatible with the dynamic instability model. We also found that a peptide analogue corresponding to the second repeated sequence in the MT-binding region of MAP-2 can also markedly retard MT length redistribution kinetics, a finding that accords with the ability of this peptide to promote tubulin polymerization in the absence of MAPs and to displace MAP-2 from MTs. These results provide further evidence that MAPs can modulate MT assembly/disassembly dynamics and that peptide analogues can mimic the action of intact MAPs without the need for three contiguous repeated sequences in the MT-binding region.  相似文献   

12.
The effects of triethyl lead chloride (TriEL) on the in vitro assembly and disassembly of microtubules (MTs) from porcine brain were studied by turbidometry at 350 nm and by electron microscopy. TriEL inhibited MT assembly at 50 microM concentration and caused an almost complete disassembly of preformed MTs. The drug depolymerized MTs more effectively than colchicine. Concentrations higher than 50 microM TriEL caused an aberrant assembly process. Fibers about 10 nm width were formed in addition to aggregates of amorphous material. In vivo TriEL also caused MT depolymerization in interphase and mitotic PtK-1 and Ehrlich ascites tumor (EAT) cells as monitored by indirect immuno-fluorescent staining of tubulin and electron microscopy. The extent of MT depolymerization was concentration- and time-dependent. Recovery occurred as early as 5 min after removal of the drug. The fluorescent actin pattern in PtK-1 cells typical of stress fibers and subcortical filaments seemed not to be altered by the presence of TriEL. The vimentin intermediate filament system was, however, rearranged as a juxtanuclear complex after TriEL treatment. Furthermore, TriEL effected the inhibition of cellular growth (100% inhibition at about 10(-5) M). Cytokinesis is prevented to a great extent, resulting in the formation of binucleate cells which can additionally possess some micronuclei.  相似文献   

13.
Elongation of the mitotic spindle during anaphase B contributes to chromosome segregation in many cells. Here, we quantitatively test the ability of two models for spindle length control to describe the dynamics of anaphase B spindle elongation using experimental data from Drosophila embryos. In the slide-and-flux-or-elongate (SAFE) model, kinesin-5 motors persistently slide apart antiparallel interpolar microtubules (ipMTs). During pre-anaphase B, this outward sliding of ipMTs is balanced by depolymerization of their minus ends at the poles, producing poleward flux, while the spindle maintains a constant length. Following cyclin B degradation, ipMT depolymerization ceases so the sliding ipMTs can push the poles apart. The competing slide-and-cluster (SAC) model proposes that MTs nucleated at the equator are slid outward by the cooperative actions of the bipolar kinesin-5 and a minus-end-directed motor, which then pulls the sliding MTs inward and clusters them at the poles. In assessing both models, we assume that kinesin-5 preferentially cross-links and slides apart antiparallel MTs while the MT plus ends exhibit dynamic instability. However, in the SAC model, minus-end-directed motors bind the minus ends of MTs as cargo and transport them poleward along adjacent, parallel MT tracks, whereas in the SAFE model, all MT minus ends that reach the pole are depolymerized by kinesin-13. Remarkably, the results show that within a narrow range of MT dynamic instability parameters, both models can reproduce the steady-state length and dynamics of pre-anaphase B spindles and the rate of anaphase B spindle elongation. However, only the SAFE model reproduces the change in MT dynamics observed experimentally at anaphase B onset. Thus, although both models explain many features of anaphase B in this system, our quantitative evaluation of experimental data regarding several different aspects of spindle dynamics suggests that the SAFE model provides a better fit.  相似文献   

14.
The dynamic assembly and disassembly of microtubules (MTs) is essential for cell function. Although leaf senescence is a well-documented process, the role of the MT cytoskeleton during senescence in plants remains unknown. Here, we show that both natural leaf senescence and senescence of individually darkened Arabidopsis (Arabidopsis thaliana) leaves are accompanied by early degradation of the MT network in epidermis and mesophyll cells, whereas guard cells, which do not senesce, retain their MT network. Similarly, entirely darkened plants, which do not senesce, retain their MT network. While genes encoding the tubulin subunits and the bundling/stabilizing MT-associated proteins (MAPs) MAP65 and MAP70-1 were repressed in both natural senescence and dark-induced senescence, we found strong induction of the gene encoding the MT-destabilizing protein MAP18. However, induction of MAP18 gene expression was also observed in leaves from entirely darkened plants, showing that its expression is not sufficient to induce MT disassembly and is more likely to be part of a Ca(2+)-dependent signaling mechanism. Similarly, genes encoding the MT-severing protein katanin p60 and two of the four putative regulatory katanin p80s were repressed in the dark, but their expression did not correlate with degradation of the MT network during leaf senescence. Taken together, these results highlight the earliness of the degradation of the cortical MT array during leaf senescence and lead us to propose a model in which suppression of tubulin and MAP genes together with induction of MAP18 play key roles in MT disassembly during senescence.  相似文献   

15.
Histone H2B monoubiquitination (H2Bub1) is recognized as a regulatory mechanism that controls a range of cellular processes. We previously showed that H2Bub1 was involved in responses to biotic stress in Arabidopsis. However, the molecular regulatory mechanisms of H2Bub1 in controlling responses to abiotic stress remain limited. Here, we report that HISTONE MONOUBIQUITINATION1 (HUB1) and HUB2 played important regulatory roles in response to salt stress. Phenotypic analysis revealed that H2Bub1 mutants confer decreased tolerance to salt stress. Further analysis showed that H2Bub1 regulated the depolymerization of microtubules (MTs), the expression of PROTEIN TYROSINE PHOSPHATASE1 (PTP1) and MAP KINASE PHOSPHATASE (MKP) genes – DsPTP1, MKP1, IBR5, PHS1, and was required for the activation of mitogen‐activated protein kinase3 (MAP kinase3, MPK3) and MPK6 in response to salt stress. Moreover, both tyrosine phosphorylation and the activation of MPK3 and MPK6 affected MT stability in salt stress response. Thus, the results indicate that H2Bub1 regulates salt stress‐induced MT depolymerization, and the PTP–MPK3/6 signalling module is responsible for integrating signalling pathways that regulate MT stability, which is critical for plant salt stress tolerance.  相似文献   

16.
The plus ends of microtubules (MTs) alternate between phases of growth, pause, and shrinkage, a process called "dynamic instability." Cryo-EM of in vitro-assembled MTs indicates that the dynamic state of the plus end corresponds with a particular MT plus-end conformation. Frayed ("ram's horn like"), blunt, and sheet conformations are associated with shrinking, pausing, and elongating plus ends, respectively. A number of new conformations have recently been found in situ but their dynamic states remained to be confirmed. Here, we investigated the dynamics of MT plus ends in the peripheral area of interphase mouse fibroblasts (3T3s) using electron microscopical and tomographical analysis of cryo-fixed, freeze-substituted, and flat-embedded sections. We identified nine morphologically distinct plus-end conformations. The frequency of these conformations correlates with their proximity to the cell border, indicating that the dynamic status of a plus end is influenced by features present in the periphery. Shifting dynamic instability toward depolymerization with nocodazole enabled us to address the dynamic status of these conformations. We suggest a new transition path from growth to shrinkage via the so-called sheet-frayed and flared ends, and we present a kinetic model that describes the chronology of events taking place in nocodazole-induced MT depolymerization.  相似文献   

17.
The mitotic spindle contains several classes of microtubules (MTs) whose lengths change independently during mitosis. Precise control over MT polymerization and depolymerization during spindle formation, anaphase chromosome movements, and spindle breakdown is necessary for successful cell division. This model proposes the site of addition and removal of MT subunits in each of four classes of spindle MTs at different stages of mitosis, and suggests how this addition and removal is controlled. We propose that spindle poles and kinetochores significantly alter the assembly-disassembly kinetics of associated MT ends. Control of MT length is further modulated by localized forces affecting assembly and disassembly kinetics of individual sets of MTs.  相似文献   

18.
A variety of microtubule-associated proteins (MAPs) have been reported in higher plants. Microtubule (MT) polymerization starts from the γ-tubulin complex (γTuC), a component of the MT nucleation site. MAP200/MOR1 and katanin regulate the length of the MT by promoting the dynamic instability of MTs and cutting MTs, respectively. In construction of different MT structures, MTs are bundled or are associated with other components—actin filaments, the plasma membrane, and organelles. The MAP65 family and some of kinesin family are important in bundling MTs. MT plus-end-tracking proteins (+TIPs) including end-binding protein 1 (EB1), Arabidopsis thaliana kinesin 5 (ATK5), and SPIRAL 1 (SPR1) localize to the plus end of MTs. It has been suggested that +TIPs are involved in binding of MT to other structures. Phospholipase D (PLD) is a possible candidate responsible for binding of MTs to the plasma membrane. Many candidates have been reported as actin-binding MAPs, for example calponin-homology domain (KCH) family kinesin, kinesin-like calmodulin-binding protein (KCBP), and MAP190. RNA distribution and translation depends on MT structures, and several RNA-related MAPs have been reported. This article gives an overview of predicted roles of these MAPs in higher plants.  相似文献   

19.
Arabidopsis spiral1 (spr1) mutants show a right-handed helical growth phenotype in roots and etiolated hypocotyls due to impaired directional growth of rapidly expanding cells. SPR1 encodes a small protein with as yet unknown biochemical functions, though its localization to cortical microtubules (MTs) suggests that SPR1 maintains directional cell expansion by regulating cortical MT functions. The Arabidopsis genome contains five SPR1-LIKE (SP1L) genes that share high sequence identity in N- and C-terminal regions. Overexpression of SP1Ls rescued the helical growth phenotype of spr1, indicating that SPR1 and SP1L proteins share the same biochemical functions. Expression analyses revealed that SPR1 and SP1L genes are transcribed in partially overlapping tissues. A combination of spr1 and sp1l mutations resulted in randomly oriented cortical MT arrays and isotropic expansion of epidermal cells. These observations suggest that SPR1 and SP1Ls act redundantly in maintaining the cortical MT organization essential for anisotropic cell growth, and that the helical growth phenotype of spr1 results from a partially compromised state of cortical MTs. Additionally, inflorescence stems of spr1 sp1l multiple mutants showed a right-handed tendril-like twining growth, indicating that a directional winding response may be conferred to the non-directional nutational movement by modulating the expression of SPR1 homologs.  相似文献   

20.
In eukaryotic cells, the actin and microtubule (MT) cytoskeletal networks are dynamic structures that organize intracellular processes and facilitate their rapid reorganization. In plant cells, actin filaments (AFs) and MTs are essential for cell growth and morphogenesis. However, dynamic interactions between these two essential components in live cells have not been explored. Here, we use spinning-disc confocal microscopy to dissect interaction and cooperation between cortical AFs and MTs in Arabidopsis thaliana, utilizing fluorescent reporter constructs for both components. Quantitative analyses revealed altered AF dynamics associated with the positions and orientations of cortical MTs. Reorganization and reassembly of the AF array was dependent on the MTs following drug-induced depolymerization, whereby short AFs initially appeared colocalized with MTs, and displayed motility along MTs. We also observed that light-induced reorganization of MTs occurred in concert with changes in AF behavior. Our results indicate dynamic interaction between the cortical actin and MT cytoskeletons in interphase plant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号