首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe here purification and biochemical characterization of the F(1)F(o)-ATP synthase from the thermoalkaliphilic organism Bacillus sp. strain TA2.A1. The purified enzyme produced the typical subunit pattern of an F(1)F(o)-ATP synthase on a sodium dodecyl sulfate-polyacrylamide gel, with F(1) subunits alpha, beta, gamma, delta, and epsilon and F(o) subunits a, b, and c. The subunits were identified by N-terminal protein sequencing and mass spectroscopy. A notable feature of the ATP synthase from strain TA2.A1 was its specific blockage in ATP hydrolysis activity. ATPase activity was unmasked by using the detergent lauryldimethylamine oxide (LDAO), which activated ATP hydrolysis >15-fold. This activation was the same for either the F(1)F(o) holoenzyme or the isolated F(1) moiety, and therefore latent ATP hydrolysis activity is an intrinsic property of F(1). After reconstitution into proteoliposomes, the enzyme catalyzed ATP synthesis driven by an artificially induced transmembrane electrical potential (Deltapsi). A transmembrane proton gradient or sodium ion gradient in the absence of Deltapsi was not sufficient to drive ATP synthesis. ATP synthesis was eliminated by the electrogenic protonophore carbonyl cyanide m-chlorophenylhydrazone, while the electroneutral Na(+)/H(+) antiporter monensin had no effect. Neither ATP synthesis nor ATP hydrolysis was stimulated by Na(+) ions, suggesting that protons are the coupling ions of the ATP synthase from strain TA2.A1, as documented previously for mesophilic alkaliphilic Bacillus species. The ATP synthase was specifically modified at its c subunits by N,N'-dicyclohexylcarbodiimide, and this modification inhibited ATP synthesis.  相似文献   

2.
Extracellular ATP synthesis on human umbilical vein endothelial cells (HUVECs) was examined, and it was found that HUVECs possess high ATP synthesis activity on the cell surface. Extracellular ATP generation was detected within 5 s after addition of ADP and inorganic phosphate and reached a maximal level at 15 s. This type of ATP synthesis was almost completely inhibited by mitochondrial H(+)-ATP synthase inhibitors (e.g., efrapeptins, resveratrol, and piceatannol), which target the F(1) catalytic domain. Oligomycin and carbonyl cyanide m-chlorophenylhydrazone, but not potassium cyanide, also inhibited extracellular ATP synthesis on HUVECs, suggesting that cell surface ATP synthase employs the transmembrane electrochemical potential difference of protons to synthesize ATP as well as mitochondrial H(+)-ATP synthase. The F(1)-targeting H(+)-ATP synthase inhibitors markedly inhibited the proliferation of HUVECs, but intracellular ATP levels in HUVECs treated with these inhibitors were only slightly affected, as shown by comparison with the control cells. Interestingly, piceatannol inhibited only partially the activation of Syk (a nonreceptor tyrosine kinase), which has been shown to play a role in a number of endothelial cell functions, including cell growth and migration. These findings suggest that H(+)-ATP synthase-like molecules on the surface of HUVECs play an important role not only in extracellular ATP synthesis but also in the proliferation of HUVECs. The present results demonstrate that the use of small molecular H(+)-ATP synthase inhibitors targeting the F(1) catalytic domain may lead to significant advances in potential antiangiogenic cancer therapies.  相似文献   

3.
Methanosarcina mazei Gö1 couples the methyl transfer from methyl-tetrahydromethanopterin to 2-mercaptoethanesulfonate (coenzyme M) with the generation of an electrochemical sodium ion gradient (delta mu Na+) and the reduction of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreoninephosphate with the generation of an electrochemical proton gradient (delta muH+). Experiments with washed inverted vesicles were performed to investigate whether both ion gradients are used directly for the synthesis of ATP. delta mu Na+ and delta mu H+ were both able to drive the synthesis of ATP in the vesicular system. ATP synthesis driven by heterodisulfide reduction (delta mu H+) or an artificial delta pH was inhibited by the protonophore SF6847 but not by the sodium ionophore ETH157, whereas ETH157 but not SF6847 inhibited ATP synthesis driven by a chemical sodium ion gradient (delta pNa) as well as the methyl transfer reaction (delta mu Na+). Inhibition of the Na+/H+ antiporter led to a stimulation of ATP synthesis driven by the methyl transfer reaction (delta mu Na+), as well as by delta pNa. These experiments indicate that delta mu Na+ and delta mu H+ drive the synthesis of ATP via an Na(+)- and an H(+)-translocating ATP synthase, respectively. Inhibitor studies were performed to elucidate the nature of the ATP synthase(s) involved. delta pH-driven ATP synthesis was specifically inhibited by bafilomycin A1, whereas delta pNa-driven ATP synthesis was exclusively inhibited by 7-chloro-4-nitro-2-oxa-1,3-diazole, azide, and venturicidin. These results are evidence for the presence of an F(1)F(0)-ATP synthase in addition to the A(1)A(0)-ATP synthase in membranes of M. Mazei Gö1 and suggest that the F(1)F(0)-type enzyme is an Na+-translocating ATP synthase, whereas the A(1)A(0)-ATP synthase uses H+ as the coupling ion.  相似文献   

4.
Aphanothece halophytica is a halotolerant alkaliphilic cyanobacterium that can grow in media of up to 3.0 m NaCl and pH 11. Here, we show that in addition to a typical H(+)-ATP synthase, Aphanothece halophytica contains a putative F(1)F(0)-type Na(+)-ATP synthase (ApNa(+)-ATPase) operon (ApNa(+)-atp). The operon consists of nine genes organized in the order of putative subunits β, ε, I, hypothetical protein, a, c, b, α, and γ. Homologous operons could also be found in some cyanobacteria such as Synechococcus sp. PCC 7002 and Acaryochloris marina MBIC11017. The ApNa(+)-atp operon was isolated from the A. halophytica genome and transferred into an Escherichia coli mutant DK8 (Δatp) deficient in ATP synthase. The inverted membrane vesicles of E. coli DK8 expressing ApNa(+)-ATPase exhibited Na(+)-dependent ATP hydrolysis activity, which was inhibited by monensin and tributyltin chloride, but not by the protonophore, carbonyl cyanide m-chlorophenyl hydrazone (CCCP). The Na(+) ion protected the inhibition of ApNa(+)-ATPase by N,N'-dicyclohexylcarbodiimide. The ATP synthesis activity was also observed using the Na(+)-loaded inverted membrane vesicles. Expression of the ApNa(+)-atp operon in the heterologous cyanobacterium Synechococcus sp. PCC 7942 showed its localization in the cytoplasmic membrane fractions and increased tolerance to salt stress. These results indicate that A. halophytica has additional Na(+)-dependent F(1)F(0)-ATPase in the cytoplasmic membrane playing a potential role in salt-stress tolerance.  相似文献   

5.
Extracellular ATP formation from ADP and inorganic phosphate, attributed to the activity of a cell surface ATP synthase, has so far only been reported in cultures of some proliferating and tumoral cell lines. We now provide evidence showing the presence of a functionally active ecto-F(o)F(1)-ATP synthase on the plasma membrane of normal tissue cells, i.e. isolated rat hepatocytes. Both confocal microscopy and flow cytometry analysis show the presence of subunits of F(1) (alpha/beta and gamma) and F(o) (F(o)I-PVP(b) and OSCP) moieties of ATP synthase at the surface of rat hepatocytes. This finding is confirmed by immunoblotting analysis of the hepatocyte plasma membrane fraction. The presence of the inhibitor protein IF(1) is also detected on the hepatocyte surface. Activity assays show that the ectopic-ATP synthase can work both in the direction of ATP synthesis and hydrolysis. A proton translocation assay shows that both these mechanisms are accompanied by a transient flux of H(+) and are inhibited by F(1) and F(o)-targeting inhibitors. We hypothesise that ecto-F(o)F(1)-ATP synthase may control the extracellular ADP/ATP ratio, thus contributing to intracellular pH homeostasis.  相似文献   

6.
Cultured rat hepatocytes were treated with potassium cyanide, an inhibitor of cytochrome oxidase; valinomycin, a K+ ionophore; carbonyl cyanide m-chlorophenylhydrazone (CCCP), a protonophore; and the ATP synthetase inhibitor oligomycin. The effect of these agents on the viability of the cells was related to changes in ATP content and the deenergization of the mitochondria. The ATP content was reduced by over 90% by each inhibitor. All of the agents except oligomycin killed the cells within 4 h. With the exception of oligomycin, the mitochondrial membrane potential as measured by the distribution of [3H]triphenylmethylphosphonium collapsed with each of the agents. Monensin, a H+/Na+ ionophore, potentiated the toxicity of cyanide and CCCP, whereas the toxicity of valinomycin was reduced. The effect of cyanide and monesin on the cytoplasmic pH of cultured hepatocytes was measured with the fluorescent probe, 2',7'-biscarboxyethyl-5,6-carboxyfluorescein. Cyanide promptly acidified the cytosol, and the addition of 10 microM monensin caused a rapid alkalinization of the cytosol. A reduction of pH of the culture medium from 7.4 to 6.6 and 6.0 prevented the cell killing both by cyanide alone and by cyanide in the presence of monensin. However, neither monensin nor extracellular acidosis had any effect on the loss of mitochondrial energization in the presence of cyanide. It is concluded that ATP depletion per se is insufficient to explain the cell killing with cyanide, CCCP, and valinomycin. Rather, cell killing is better correlated with a loss of mitochondrial energization. With cyanide an intracellular acidosis interferes with the mechanism that couples collapse of the mitochondrial membrane potential to lethal cell injury.  相似文献   

7.
A strain of Bacillus designated TA2.A1, isolated from a thermal spring in Te Aroha, New Zealand, grew optimally at pH 9.2 and 70 degrees C. Bacillus strain TA2.A1 utilized glutamate as a sole carbon and energy source for growth, and sodium chloride (>5 mM) was an obligate requirement for growth. Growth on glutamate was inhibited by monensin and amiloride, both inhibitors that collapse the sodium gradient (DeltapNa) across the cell membrane. N, N-Dicyclohexylcarbodiimide inhibited the growth of Bacillus strain TA2.A1, suggesting that an F1F0-ATPase (H type) was being used to generate cellular ATP needed for anabolic reactions. Vanadate, an inhibitor of V-type ATPases, did not affect the growth of Bacillus strain TA2.A1. Glutamate transport by Bacillus strain TA2.A1 could be driven by an artificial membrane potential (DeltaPsi), but only when sodium was present. In the absence of sodium, the rate of DeltaPsi-driven glutamate uptake was fourfold lower. No glutamate transport was observed in the presence of DeltapNa alone (i.e., no DeltaPsi). Glutamate uptake was specifically inhibited by monensin, and the Km for sodium was 5.6 mM. The Hill plot had a slope of approximately 1, suggesting that sodium binding was noncooperative and that the glutamate transporter had a single binding site for sodium. Glutamate transport was not affected by the protonophore carbonyl cyanide m-chlorophenylhydrazone, suggesting that the transmembrane pH gradient was not required for glutamate transport. The rate of glutamate transport increased with increasing glutamate concentration; the Km for glutamate was 2.90 microM, and the Vmax was 0.7 nmol. min-1 mg of protein. Glutamate transport was specifically inhibited by glutamate analogues.  相似文献   

8.
Clostridium paradoxum is an anaerobic thermoalkaliphilic bacterium that grows rapidly at pH 9.8 and 56 degrees C. Under these conditions, growth is sensitive to the F-type ATP synthase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD), suggesting an important role for this enzyme in the physiology of C. paradoxum. The ATP synthase was characterized at the biochemical and molecular levels. The purified enzyme (30-fold purification) displayed the typical subunit pattern for an F1Fo-ATP synthase but also included the presence of a stable oligomeric c-ring that could be dissociated by trichloroacetic acid treatment into its monomeric c subunits. The purified ATPase was stimulated by sodium ions, and sodium provided protection against inhibition by DCCD that was pH dependent. ATP synthesis in inverted membrane vesicles was driven by an artificially imposed chemical gradient of sodium ions in the presence of a transmembrane electrical potential that was sensitive to monensin. Cloning and sequencing of the atp operon revealed the presence of a sodium-binding motif in the membrane-bound c subunit (viz., Q28, E61, and S62). On the basis of these properties, the F1Fo-ATP synthase of C. paradoxum is a sodium-translocating ATPase that is used to generate an electrochemical gradient of + that could be used to drive other membrane-bound bioenergetic processes (e.g., solute transport or flagellar rotation). In support of this proposal are the low rates of ATP synthesis catalyzed by the enzyme and the lack of the C-terminal region of the epsilon subunit that has been shown to be essential for coupled ATP synthesis.  相似文献   

9.
A correlation between the rate of ATP synthesis by F0F1 ATP synthase and formate oxidation by formate hydrogen lyase (FHL) has been found in inside-out membrane vesicles of the Escherichia coli mutant JW 136 (Δhyahyb) with double deletions of hydrogenases 1 and 2, grown anaerobically on glucose in the absence of external electron acceptors at pH 6.5. ATP synthesis was suppressed by the H+-ATPase inhibitors N,N′-dicyclohexylcarbodiimide, sodium azide, and the uncoupler carbonyl cyanide m-chlorophenylhydrazone. Copper ions inhibited formate-dependent hydrogenase and ATP-synthase activities but did not affect the ATPase activity of the vesicles. The maximal rate of ATP synthesis (0.83 μmol/min per mg protein) was determined at simultaneous application of sodium formate, ADP, and inorganic phosphate, and was stimulated by K+ ions. The results confirm the assumption of a dual role of hydrogenase 3, the formate hydrogen lyase subunit that can couple the reduction of protons to H2 and their translocation through membrane with chemiosmotic synthesis of ATP.  相似文献   

10.
F(o)F(1)-ATP synthase mediates coupling of proton flow in F(o) and ATP synthesis/hydrolysis in F(1) through rotation of central rotor subunits. A ring structure of F(o)c subunits is widely believed to be a part of the rotor. Using an attached actin filament as a probe, we have observed the rotation of the F(o)c subunit ring in detergent-solubilized F(o)F(1)-ATP synthase purified from Escherichia coli. Similar studies have been performed and reported recently [Sambongi et al. (1999) Science 286, 1722-1724]. However, in our hands this rotation has been observed only for the preparations which show poor sensitivity to dicyclohexylcarbodiimde, an F(o) inhibitor. We have found that detergents which adequately disperse the enzyme for the rotation assay also tend to transform F(o)F(1)-ATP synthase into an F(o) inhibitor-insensitive state in which F(1) can hydrolyze ATP regardless of the state of the F(o). Our results raise the important issue of whether rotation of the F(o)c ring in isolated F(o)F(1)-ATP synthase can be demonstrated unequivocally with the approach adopted here and also used by Sambongi et al.  相似文献   

11.
By means of a yeast genome database search, we have identified an open reading frame located on chromosome XVI of Saccharomyces cerevisiae that encodes a protein with 53% amino acid similarity to the 11.3-kDa subunit g of bovine mitochondrial F1F0-ATP synthase. We have designated this ORF ATP20, and its product subunit g. A null mutant strain, constructed by insertion of the HIS3 gene into the coding region of ATP20, retained oxidative phosphorylation function. Assembly of F1F0-ATP synthase in the atp20-null strain was not affected in the absence of subunit g and levels of oligomycin-sensitive ATP hydrolase activity in mitochondria were normal. Immunoprecipitation of F1F0-ATP synthase from mitochondrial lysates prepared from atp20-null cells expressing a variant of subunit g with a hexahistidine motif indicated that this polypeptide was associated with other well-characterized subunits of the yeast complex. Whilst mitochondria isolated from the atp20-null strain had the same oxidative phosphorylation efficiency (ATP : O) as that of the control strain, the atp20-null strain displayed approximately a 30% reduction in both respiratory capacity and ATP synthetic rate. The absence of subunit g also reduced the activity of cytochrome c oxidase, and altered the kinetic control of this complex as demonstrated by experiments titrating ATP synthetic activity with cyanide. These results indicate that subunit g is associated with F1F0-ATP synthase and is required for maximal levels of respiration, ATP synthesis and cytochrome c oxidase activity in yeast.  相似文献   

12.
J Teissié 《Biochemistry》1986,25(2):368-373
The total cytoplasmic ATP content (bound and free) increased in Escherichia coli when the bacteria were submitted to electric pulses with field strengths of 1-6 kV/cm and a decay time of 7-20 microseconds. The electron-transport chain was blocked by cyanide, and ATP synthesis was detected by a luminescence assay. The amount of newly formed ATP depends on the field strength. A total of 150 pmol of ATP was formed per milligram of bacteria submitted to a 3 kV/cm pulse. Synthesis was blocked by uncouplers and ionophores (valinomycin). The F1F0-ATP synthase inhibitor dicyclohexylcarbodiimide blocked a large part of this synthesis. Synthesis was not induced in unc mutants (unc B, unc D). The synthesis of ATP is related to the induced transmembrane potential, not to the Joule heating. A minimum 35-50-mV increase in membrane potential must be maintained for at least 12 microseconds to trigger this synthesis. This very fast energy transduction in bacteria is in good agreement with our previous results concerning submitochondrial particles. Because of the localized character of the induced membrane potential, these results are in agreement with the recent hypothesis of "mosaic proton coupling".  相似文献   

13.
F(o)F(1)-ATP synthase is one of the most ubiquitous enzymes; it is found widely in the biological world, including the plasma membrane of bacteria, inner membrane of mitochondria and thylakoid membrane of chloroplasts. However, this enzyme has a unique mechanism of action: it is composed of two mechanical rotary motors, each driven by ATP hydrolysis or proton flux down the membrane potential of protons. The two molecular motors interconvert the chemical energy of ATP hydrolysis and proton electrochemical potential via the mechanical rotation of the rotary shaft. This unique energy transmission mechanism is not found in other biological systems. Although there are other similar man-made systems like hydroelectric generators, F(o)F(1)-ATP synthase operates on the nanometre scale and works with extremely high efficiency. Therefore, this enzyme has attracted significant attention in a wide variety of fields from bioenergetics and biophysics to chemistry, physics and nanoscience. This review summarizes the latest findings about the two motors of F(o)F(1)-ATP synthase as well as a brief historical background.  相似文献   

14.
We explored the concentration gradient effects of the sodium and lithium ions and the deuterium isotope's effects on the activities of H+-ATP synthase from chloroplasts (CF0F1). We found that the sodium concentration gradient can drive the ATP synthesis reaction of CF0F1. In contrast, the lithium ion can be an efficient enzyme-inhibitor by blocking the entrance channel of the ion translocation pathway in CF0. In the presence of sodium or lithium ions and with the application of a membrane potential, unexpected enzyme behaviors of CF0F1 were evident. To account for these observations, we propose that both of the sodium and lithium ions could undergo localized hydrolysis reactions in the chemical environment of the ion channel of CF0. The protons generated locally could proceed to complete the ion translocation process in the ATP synthesis reaction of CF0F1. Experimental and theoretical deuterium isotope effects of the localized hydrolysis on the activities of CF0F1, and the energetics of these related reactions, support this proposed mechanism. Our experimental observations could be understood in the framework of the well-established ion translocation models for the H+-ATP synthase from Escherichia coli, and the Na+-ATP synthase from Propionigenium modestum and Ilyobacter tartaricus.  相似文献   

15.
Fritz M  Müller V 《The FEBS journal》2007,274(13):3421-3428
Previous preparations of the Na(+) F(1)F(0)-ATP synthase solubilized by Triton X-100 lacked some of the membrane-embedded motor subunits [Reidlinger J & Müller V (1994) Eur J Biochem233, 275-283]. To improve the subunit recovery, we revised our purification protocol. The ATP synthase was solubilized with dodecylmaltoside and further purified to apparent homogeneity by chromatographic techniques. The preparation contained, along with the F(1) subunits, the entire membrane-embedded motor with the stator subunits a and b, and the heterooligomeric c ring, which contained the V(1)V(0)-like subunit c(1) and the F(1)F(0)-like subunits c(2) and c(3). After incorporation into liposomes, ATP synthesis could be driven by an electrochemical sodium ion potential or a potassium ion diffusion potential, but not by a sodium ion potential. This is the first demonstration that an ATPase with a V(0)-F(0) hybrid motor is capable of ATP synthesis.  相似文献   

16.
Mammalian mitochondrial DNA (mtDNA) encodes 13 polypeptide components of oxidative phosphorylation complexes. Consequently, cells that lack mtDNA (termed rho degrees cells) cannot maintain a membrane potential by proton pumping. However, most mitochondrial proteins are encoded by nuclear DNA and are still imported into mitochondria in rho degrees cells by a mechanism that requires a membrane potential. This membrane potential is thought to arise from the electrogenic exchange of ATP4- for ADP3- by the adenine nucleotide carrier. An intramitochondrial ATPase, probably an incomplete FoF1-ATP synthase lacking the two subunits encoded by mtDNA, is also essential to ensure sufficient charge flux to maintain the potential. However, there are considerable uncertainties about the magnitude of this membrane potential, the nature of the intramitochondrial ATPase and the ATP flux required to maintain the potential. Here we have investigated these factors in intact and digitonin-permeabilized mammalian rho degrees cells. The adenine nucleotide carrier and ATP were essential, but not sufficient to generate a membrane potential in rho degrees cells and an incomplete FoF1-ATP synthase was also required. The maximum value of this potential was approximately 110 mV in permeabilized cells and approximately 67 mV in intact cells. The membrane potential was eliminated by inhibitors of the adenine nucleotide carrier and by azide, an inhibitor of the incomplete FoF1-ATP synthase, but not by oligomycin. This potential is sufficient to import nuclear-encoded proteins but approximately 65 mV lower than that in 143B cells containing fully functional mitochondria. Subfractionation of rho degrees mitochondria showed that the azide-sensitive ATPase activity was membrane associated. Further analysis by blue native polyacrylamide gel electrophoresis (BN/PAGE) followed by activity staining or immunoblotting, showed that this ATPase activity was an incomplete FoF1-ATPase loosely associated with the membrane. Maintenance of this membrane potential consumed about 13% of the ATP produced by glycolysis. This work has clarified the role of the adenine nucleotide carrier and an incomplete FoF1-ATP synthase in maintaining the mitochondrial membrane potential in rho degrees cells.  相似文献   

17.
For functional characterization, we isolated the F1FO-ATP synthase of the thermophilic cyanobacterium Thermosynechococcus elongatus. Because of the high content of phycobilisomes, a combination of dye-ligand chromatography and anion exchange chromatography was necessary to yield highly pure ATP synthase. All nine single F1FO subunits were identified by mass spectrometry. Western blotting revealed the SDS stable oligomer of subunits c in T. elongatus. In contrast to the mass archived in the database (10,141 Da), MALDI-TOF-MS revealed a mass of the subunit c monomer of only 8238 Da. A notable feature of the ATP synthase was its ability to synthesize ATP in a wide temperature range and its stability against chaotropic reagents. After reconstitution of F1FO into liposomes, ATP synthesis energized by an applied electrochemical proton gradient demonstrated functional integrity. The highest ATP synthesis rate was determined at the natural growth temperature of 55 °C, but even at 95 °C ATP production occurred. In contrast to other prokaryotic and eukaryotic ATP synthases which can be disassembled with Coomassie dye into the membrane integral and the hydrophilic part, the F1FO-ATP synthase possessed a particular stability. Also with the chaotropic reagents sodium bromide and guanidine thiocyanate, significantly harsher conditions were required for disassembly of the thermophilic ATP synthase.  相似文献   

18.
FoF1-ATP synthase is the nanomotor responsible for most of ATP synthesis in the cell. In physiological conditions, it carries out ATP synthesis thanks to a proton gradient generated by the respiratory chain in the inner mitochondrial membrane. We previously reported that isolated myelin vesicles (IMV) contain functional FoF1-ATP synthase and respiratory chain complexes and are able to conduct an aerobic metabolism, to support the axonal energy demand. In this study, by biochemical assay, Western Blot (WB) analysis and immunofluorescence microscopy, we characterized the IMV FoF1-ATP synthase. ATP synthase activity decreased in the presence of the specific inhibitors (olygomicin, DCCD, FCCP, valynomicin/nigericin) and respiratory chain inhibitors (antimycin A, KCN), suggesting a coupling of oxygen consumption and ATP synthesis. ATPase activity was inhibited in low pH conditions. WB and microscopy analyses of both IMV and optic nerves showed that the Inhibitor of F1 (IF1), a small protein that binds the F1 moiety in low pH when of oxygen supply is impaired, is expressed in myelin sheath. Data are discussed in terms of the role of IF1 in the prevention of the reversal of ATP synthase in myelin sheath during central nervous system ischemic events. Overall, data are consistent with an energetic role of myelin sheath, and may shed light on the relationship among demyelination and axonal degeneration.  相似文献   

19.
The most prominent residue of subunit a of the F(1)F(o) ATP synthase is a universally conserved arginine (aR227 in Propionigenium modestum), which was reported to permit no substitution with retention of ATP synthesis or H(+)-coupled ATP hydrolysis activity. We show here that ATP synthases with R227K or R227H mutations in the P.modestum a subunit catalyse ATP-driven Na(+) transport above or below pH 8.0, respectively. Reconstituted F(o) with either mutation catalysed 22Na(+)(out)/Na(+)(in) exchange with similar pH profiles as found in ATP-driven Na(+) transport. ATP synthase with an aR227A substitution catalysed Na(+)-dependent ATP hydrolysis, which was completely inhibited by dicyclohexylcarbodiimide, but not coupled to Na(+) transport. This suggests that in the mutant the dissociation of Na(+) becomes more difficult and that the alkali ions remain therefore permanently bound to the c subunit sites. The reconstituted mutant enzyme was also able to synthesise ATP in the presence of a membrane potential, which stopped at elevated external Na(+) concentrations. These observations reinforce the importance of aR227 to facilitate the dissociation of Na(+) from approaching rotor sites. This task of aR227 was corroborated by other results with the aR227A mutant: (i) after reconstitution into liposomes, F(o) with the aR227A mutation did not catalyse 22Na(+)(out)/Na(+)(in) exchange at high internal sodium concentrations, and (ii) at a constant (Delta)pNa(+), 22Na(+) uptake was inhibited at elevated internal Na(+) concentrations. Hence, in mutant aR227A, sodium ions can only dissociate from their rotor sites into a reservoir of low sodium ion concentration, whereas in the wild-type the positively charged aR227 allows the dissociation of Na(+) even into compartments of high Na(+) concentration.  相似文献   

20.
The half-ABC transporter Mdl1 is localized in the inner membrane of mitochondria and mediates the export of peptides generated upon proteolysis of mitochondrial proteins. The physiological role of the peptides released from mitochondria is currently not understood. Here, we have analyzed the oligomeric state of Mdl1 in the inner membrane and demonstrate nucleotide-dependent binding to the F(1)F(0)-ATP synthase. Mdl1 forms homo-oligomeric, presumably dimeric complexes in the presence of ATP, but was found in association with the F(1)F(0)-ATP synthase at low ATP levels. Mdl1 binds membrane-embedded parts of the ATP synthase complex after the assembly of the F(1) and F(0) moieties. Although independent of Mdl1 activity, complex formation is impaired upon inhibition of the F(1)F(0)-ATP synthase with oligomycin or N,N'-dicyclohexylcarbodiimide. These results are consistent with an activation of Mdl1 upon dissociation from the ATP synthase and suggest a link of peptide export from mitochondria to the activity of the F(1)F(0)-ATP synthase and the cellular energy metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号