首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homodimeric archaeal histones and heterodimeric eukaryotic histones share a conserved structure but fold through different kinetic mechanisms, with a correlation between faster folding/association rates and the population of kinetic intermediates. Wild-type hMfB (from Methanothermus fervidus) has no intrinsic fluorophores; Met35, which is Tyr in hyperthermophilic archaeal histones such as hPyA1 (from Pyrococcus strain GB-3A), was mutated to Tyr and Trp. Two Tyr-to-Trp mutants of hPyA1 were also characterized. All fluorophores were introduced into the long, central alpha-helix of the histone fold. Far-UV circular dichroism (CD) indicated that the fluorophores did not significantly alter the helical content of the histones. The equilibrium unfolding transitions of the histone variants were two-state, reversible processes, with DeltaG degrees (H2O) values within 1 kcal/mol of the wild-type dimers. The hPyA1 Trp variants fold by two-state kinetic mechanisms like wild-type hPyA1, but with increased folding and unfolding rates, suggesting that the mutated residues (Tyr-32 and Tyr-36) contribute to transition state structure. Like wild-type hMfB, M35Y and M35W hMfB fold by a three-state mechanism, with a stopped-flow CD burst-phase monomeric intermediate. The M35 mutants populate monomeric intermediates with increased secondary structure and stability but exhibit decreased folding rates; this suggests that nonnative interactions occur from burial of the hydrophobic Tyr and Trp residues in this kinetic intermediate. These results implicate the long central helix as a key component of the structure in the kinetic monomeric intermediates of hMfB as well as the dimerization transition state in the folding of hPyA1.  相似文献   

2.
3.
Histones and nucleosomes in Archaea and Eukarya: a comparative analysis   总被引:4,自引:0,他引:4  
Archaeal histones from mesophilic, thermophilic, and hyperthermophilic members of the Euryarchaeota have primary sequences, the histone fold, tertiary structures, and dimer formation in common with the eukaryal nucleosome core histones H2A, H2B, H3, and H4. Archaeal histones form nucleoprotein complexes in vitro and in vivo, designated archaeal nucleosomes, that contain histone tetramers and protect approximately 60 base pairs of DNA from nuclease digestion. Based on the sequence and structural homologies and experimental data reviewed here, archaeal nucleosomes appear similar, and may be homologous in evolutionary terms and function, to the structure at the center of the eukaryal nucleosome formed by the histone (H3+H4)2 tetramer. Received: January 22, 1998 / Accepted: February 16, 1998  相似文献   

4.
5.
6.
7.
Histone tails play an important role in nucleosome structure and dynamics. Here we investigate the effect of truncation of histone tails H3, H4, H2A and H2B on nucleosome structure with 100 ns all-atom molecular dynamics simulations. Tail domains of H3 and H2B show propensity of α-helics formation during the intact nucleosome simulation. On truncation of H4 or H2B tails no structural change occurs in histones. However, H3 or H2A tail truncation results in structural alterations in the histone core domain, and in both the cases the structural change occurs in the H2Aα3 domain. We also find that the contacts between the histone H2A C terminal docking domain and surrounding residues are destabilized upon H3 tail truncation. The relation between the present observations and corresponding experiments is discussed.  相似文献   

8.
In eukaryotic cell nuclei, DNA associates with the core histones H2A, H2B, H3 and H4 to form nucleosomal core particles. DNA binding to histones is regulated by posttranslational modifications of N-terminal tails (e.g., acetylation and methylation of histones). These modifications play important roles in the epigenetic control of chromatin structure. Recently, evidence that biotinidase and holocarboxylase synthetase (HCS) catalyze the covalent binding of biotin to histones has been provided. The primary aim of this study was to identify biotinylation sites in histone H2A and its variant H2AX. Secondary aims were to determine whether acetylation and methylation of histone H2A affect subsequent biotinylation and whether biotinidase and HCS localize to the nucleus in human cells. Biotinylation sites were identified using synthetic peptides as substrates for biotinidase. These studies provided evidence that K9 and K13 in the N-terminus of human histones H2A and H2AX are targets for biotinylation and that K125, K127 and K129 in the C-terminus of histone H2A are targets for biotinylation. Biotinylation of lysine residues was decreased by acetylation of adjacent lysines but was increased by dimethylation of adjacent arginines. The existence of biotinylated histone H2A in vivo was confirmed by using modification-specific antibodies. Antibodies to biotinidase and HCS localized primarily to the nuclear compartment, consistent with a role for these enzymes in regulating chromatin structure. Collectively, these studies have identified five novel biotinylation sites in human histones; histone H2A is unique among histones in that its biotinylation sites include amino acid residues from the C-terminus.  相似文献   

9.
Histones have been identified recently in many prokaryotes. These histones, unlike their eukaryotic homologs, are of a single uniform type that is thought to resemble the archetypal ancestor of the eukaryotic histone family. In this paper we report the finding, the cloning and the phylogenetic analysis of the sequence of a prokaryotic histone from the hyperthermophile Methanopyrus kandleri . Unlike previously described prokaryotic histones, the Methanopyrus sequence has a novel structure consisting of two tandemly repeated histone fold motifs in a single polypeptide. Sequence analyses indicate that the N-terminal repeat is most closely related to eukaryotic H2A and H4 histones, whereas the C-terminal repeat resembles that found in prokaryotic histones. These results imply an early divergence within the histone gene family prior to the emergence of eukaryotes and may represent an evolutionary step leading to eukaryotic histones.  相似文献   

10.
11.
Core histones of the amitochondriate protist, Giardia lamblia   总被引:3,自引:0,他引:3  
Genes coding for the core histones H2a, H2b, H3, and H4 of Giardia lamblia were sequenced. A conserved organism- and gene-specific element, GRGCGCAGATTTVGG, was found upstream of the coding region in all core histone genes. The derived amino acid sequences of all four histones were similar to their homologs in other eukaryotes, although they were among the most divergent members of this protein family. Comparative protein structure modeling combined with energy evaluation of the resulting models indicated that the G. lamblia core histones individually and together can assume the same three-dimensional structures that were established by X-ray crystallography for Xenopus laevis histones and the nucleosome core particle. Since G. lamblia represents one of the earliest-diverging eukaryotes in many different molecular trees, the structure of its histones is potentially of relevance to understanding histone evolution. The G. lamblia proteins do not represent an intermediate stage between archaeal and eukaryotic histones.  相似文献   

12.
Histone tails and their posttranslational modifications play important roles in regulating the structure and dynamics of chromatin. For histone H4, the basic patch K(16)R(17)H(18)R(19) in the N-terminal tail modulates chromatin compaction and nucleosome sliding catalyzed by ATP-dependent ISWI chromatin remodeling enzymes while acetylation of H4 K16 affects both functions. The structural basis for the effects of this acetylation is unknown. Here, we investigated the conformation of histone tails in the nucleosome by solution NMR. We found that backbone amides of the N-terminal tails of histones H2A, H2B, and H3 are largely observable due to their conformational disorder. However, only residues 1-15 in H4 can be detected, indicating that residues 16-22 in the tails of both H4 histones fold onto the nucleosome core. Surprisingly, we found that K16Q mutation in H4, a mimic of K16 acetylation, leads to a structural disorder of the basic patch. Thus, our study suggests that the folded structure of the H4 basic patch in the nucleosome is important for chromatin compaction and nucleosome remodeling by ISWI enzymes while K16 acetylation affects both functions by causing structural disorder of the basic patch K(16)R(17)H(18)R(19).  相似文献   

13.
Placek BJ  Gloss LM 《Biochemistry》2002,41(50):14960-14968
The histone proteins of the core nucleosome are highly basic and form heterodimers in a "handshake motif." The N-terminal tails of the histones extend beyond the canonical histone fold of the hand-shake motif and are the sites of posttranslational modifications, including lysine acetylations and serine phosphorylations, which influence chromatin structure and activity as well as alter the charge state of the tails. However, it is not well understood if these modifications are signals for recruitment of other cellular factors or if the removal of net positive charge from the N-terminal tail plays a role in the overall structure of chromatin. To elucidate the effects of the N-terminal tails on the structure and stability of histones, the highly charged N-terminal tails were truncated from the H2A and H2B histones. Three mutant dimers were studied: DeltaN-H2A/WT H2B; WT H2A/DeltaN-H2B, and DeltaN-H2A/DeltaN-H2B. The CD spectra, stabilities to urea-denaturation, and the salt-dependent stabilization of the three truncated dimers were compared with those of the wild-type dimer. The data support four conclusions regarding the effects of the N-terminal tails of H2A and H2B: (1) Removal of the N-terminal tails of H2A and H2B enhance the helical structure of the mutant heterodimers. (2) Relative to the full-length WT heterodimer, the DeltaN-H2A/WT H2B dimer is destabilized, while the WT H2A/DeltaN-H2B and DeltaN-H2A/DeltaN-H2B dimers are slightly stabilized. (3) The truncated dimers exhibit decreased m values, relative to the WT dimer, supporting the hypothesis that the N-terminal tails in the isolated dimer adopt a collapsed structure. (4) Electrostatic repulsion in the N-terminal tails decreases the stability of the H2A-H2B dimer.  相似文献   

14.
NASP has been described as a histone H1 chaperone in mammals. However, the molecular mechanisms involved have not yet been characterized. Here, we show that this protein is not only present in mammals but is widely distributed throughout eukaryotes both in its somatic and testicular forms. The secondary structure of the human somatic version consists mainly of clusters of α-helices and exists as a homodimer in solution. The protein binds nonspecifically to core histone H2A-H2B dimers and H3-H4 tetramers but only forms specific complexes with histone H1. The formation of the NASP-H1 complexes is mediated by the N-and C-terminal domains of histone H1 and does not involve the winged helix domain that is characteristic of linker histones. In vitro chromatin reconstitution experiments show that this protein facilitates the incorporation of linker histones onto nucleosome arrays and hence is a bona fide linker histone chaperone.  相似文献   

15.
The yeast nucleosome assembly protein 1 (yNap1) plays a role in chromatin maintenance by facilitating histone exchange as well as nucleosome assembly and disassembly. It has been suggested that yNap1 carries out these functions by regulating the concentration of free histones. Therefore, a quantitative understanding of yNap1-histone interactions also provides information on the thermodynamics of chromatin. We have developed quantitative methods to study the affinity of yNap1 for histones. We show that yNap1 binds H2A/H2B and H3/H4 histone complexes with low nm affinity, and that each yNap1 dimer binds two histone fold dimers. The yNap1 tails contribute synergistically to histone binding while the histone tails have a slightly repressive effect on binding. The (H3/H4)(2) tetramer binds DNA with higher affinity than it binds yNap1.  相似文献   

16.
DNA in eukaryotic organisms does not exist free in cells, but instead is present as chromatin, a complex assembly of DNA, histone proteins, and chromatin-associated proteins. Chromatin exhibits a complex hierarchy of structures, but in its simplest form it is composed of long linear arrays of nucleosomes. Nucleosomes contain 147 base pairs of DNA wrapped around a histone octamer, consisting of two copies each of histones H2A, H2B, H3 and H4, where 15-38 amino terminal residues of each histone protein extends past the DNA gyres to form histone “tails” 1. Chromatin provides a versatile regulatory platform for nearly all cellular processes that involve DNA, and improper chromatin regulation results in a wide range of diseases, including various cancers and congenital defects. One major way that chromatin regulates DNA utilization is through a wide range of post-translational modification of histones, including serine and threonine phosphorylation, lysine acetylation, methylation, ubiquitination, and sumoylation, and arginine methylation 2. Histone H4 K16 acetylation is a modification that occurs on the H4 histone tail and is one of the most frequent of the known histone modifications. We have demonstrated that this mark both disrupts formation of higher-order chromatin structure and changes the functional interaction of chromatin-associated proteins 3. Our results suggest a dual mechanism by which H4 K16 acetylation can ultimately facilitate genomic functions.  相似文献   

17.
18.
Archaeal histones and the origin of the histone fold   总被引:1,自引:0,他引:1  
Histone sequences have been identified in many archaeal genomes and in environmental samples, and they constitute a family of proteins that are structural homologs of the eukaryotic core histones. Most archaeal histones conform to the single histone-fold structural models that have been described, but a few histone variants exhibit short insertions, additional domains or fusions. Interpretation of these structural variations offers clues to the steps that might have occurred during the evolution and specialization of eukaryotic core histones.  相似文献   

19.
The H2A/H2B heterodimer is a component of the nucleosome core particle, the fundamental repeating unit of chromatin in all eukaryotic cells. The kinetic folding mechanism for the H2A/H2B dimer has been determined from unfolding and refolding kinetics as a function of urea using stopped-flow, circular dichroism and fluorescence methods. The kinetic data are consistent with a three-state mechanism: two unfolded monomers associate to form a dimeric intermediate in the dead-time of the SF instrument (approximately 5 ms); this intermediate is then converted to the native dimer by a slower, first-order reaction. Analysis of the burst-phase amplitudes as a function of denaturant indicates that the dimeric kinetic intermediate possesses approximately 50% of the secondary structure and approximately 60% of the surface area burial of the native dimer. The stability of the dimeric intermediate is approximately 30% of that of the native dimer at the monomer concentrations employed in the SF experiments. Folding-to-unfolding double-jump experiments were performed to monitor the formation of the native dimer as a function of folding delay times. The double-jump data demonstrate that the dimeric intermediate is on-pathway and obligatory. Formation of a transient dimeric burst-phase intermediate has been observed in the kinetic mechanism of other intertwined, segment-swapped, alpha-helical, DNA-binding dimers, such as the H3-H4 histone dimer, Escherichia coli factor for inversion stimulation and E.coli Trp repressor. The common feature of a dimeric intermediate in these folding mechanisms suggests that this intermediate may accelerate protein folding, when compared to the folding of archael histones, which do not populate a transient dimeric species and fold more slowly.  相似文献   

20.
UV laser irradiation has been used to covalently crosslink histones to DNA in nuclei, chromatin and core particles and the presence of the different histone species in the covalently linked material was detected immunochemically. When nuclei were irradiated and then trypsinized to cleave the N- and C- terminal histone tails, no histones have been found covalently linked to DNA. This finding shows that UV laser-induced crosslinking of histones to DNA is accomplished via the non-structured domains only. This unexpected way of crosslinking operated in chromatin, H1-depleted chromatin and core particles, i.e. independently of the chromatin structure. The efficiency of crosslinking, however, showed such a dependence: whilst the yield of crosslinks was similar in total and H1-depleted chromatin, in core particles the efficiency was 3-4 times lower for H2A, H2B and H4 and 10-12 times lower for H3. The decreased crosslinking efficiency, especially dramatic in the case of H3, is attributed to a reduced number of binding sites, and, respectively, is considered as a direct evidence for interaction of nonstructured tails of core histones with linker DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号