首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pediococcus cerevisiae/AMr, resistant to amethopterin, possesses a higher dihydrofolate reductase (5, 6, 7, 8-tetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.3) activity than the parent, a folate-permeable and thus amethopterin-susceptible strain and than the wild-type. The properties of dihydrofolate reductase from the three strains have been compared. Temperature, pH optima, heat stability, as well amethopterin binding did not reveal significant differences between the enzymes from the susceptible and resistant strains. The enzyme from the wild-type was 10 times more sensitive to inhibition by amethopterin and more susceptible to heat denaturation. The apparent Km values for dihydrofolate in enzymes from the three strains were in the range of 4.8–7.2 μM and for NADPH 6.5–8.0 μM. The amethopterin-resistant strain exhibited cross-resistance to trimethoprim and was about 40-fold more resistant to the latter than the sensitive parent and the wild-type. The resistance to trimethoprim appears to be a direct result of the increased dihydrofolate reductase activity. Inhibition of dihydrofolate reductase activity by this drug was similar in the three strains. 10–20 nmol caused 50% inhibition of 0.02 enzyme unit. Trimethoprim was about 10 000 times less effective inhibitor of dihydrofolate reductase than amethopterin. The cell extract of the AMr strain possessed a folate reductase activity three times higher than that of the sensitive strain. The activities of other folate-related enzymes like thymidylate synthethase and 10-formyltetra-hydrofolate synthetase (formate: tetrahydrofolate ligase (ADP)-forming), EC 6.3.4.3) were similar in the three strains studied.  相似文献   

2.
Pediococcus cerevisiae/AMr, resistant to amethopterin, possesses a higher dihydrofolate reductase (5, 6, 7, 8-tetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.3) activity than the parent, a folate-permeable and thus amethopterin-susceptible strain and than the wild-type. The properties of dihydrofolate reductase from the three strains have been compared. Temperature, pH optima, heat stability, as well amethopterin binding did not reveal significant differences between the enzymes from the susceptible and resistant strains. The enzyme from the wild-type was 10 times more sensitive to inhibition by amethopterin and more susceptible to heat denaturation. The apparent Km values for dihydrofolate in enzymes from the three strains were in the range of 4.8--7.2 muM and for NADPH 6.5--8.0 muM. The amethopterin-resistant strain exhibited cross-resistance to trimethoprim and was about 40-fold more resistant to the latter than the sensitive parent and the wild-type. The resistance to trimethoprim appears to be a direct result of the increased dihydrofolate reductase activity. Inhibition of dihydrofolate reductase activity by this drug was similar in the three strains. 10--20 nmol caused 50% inhibition of 0.02 enzyme unit. Trimethoprim was about 10 000 times less effective inhibitor of dihydrofolate reductase than amethopterin. The cell extract of the AMr strain possessed a folate reductase activity three times higher than that of the sensitive strain. The activities of other folate-related enzymes like thymidylate synthetase and 10-formyltetrahydrofolate synthetase (formate: tetrahydrofolate ligase (ADP-forming), EC 6.3.4.3) were similar in the three strains studied.  相似文献   

3.
the accumulation of amethopterin in a Pediococcus cerevisiae strain resistant to this analogue was about 30% of that in P. cerevisiae/PteGlu, the sensitive parent. The uptake in the resistant strain was strictly glucose dependent, whereas in the sensitive parent about 16% accumulation occurred in absence of glucose. The transport in both strains was inhibited by iodoacetate and KF. Amethopterin uptake exhibited saturation kinetics with an apparent Km of 5 muM in P. cerevisiae/AMr and 0.5 muM in P. cerevisiae/PteGlu. The apparent V was 0.2 nmol per min per mg cells (dry weight); the same for both strains. The optimum pH for the uptake of amethopterin by P. cerevisiae/AMr and P. cerevisiae/PteGlu was pH 6.0. Folate and methyltetrahydrofolate competitivity inhibited amethopterin uptake with apparent Ki values of 8 and 0.7 muM, respectively. The uptake of folate exhibited a slightly increased Km value as compared to that of the sensitive strain, whereas the uptake activity velocity was in the same range. Methyltetrahydrofolate accumulated up to about 60-fold higher intracellular concentration than that of the medium, which is a markedly lower accumulation from that in the sensitive strain. The uptake was glucose dependent and inhibited by iodoacetate and KF. The pH optimum for methyltetrahydrofolate uptake in the resistant strain was the same as that in the sensitive parent (pH 5.7--6). In contrast to the increase in the apparent Km value for amethopterin in the resistant strain, the affinity of the carrier for methyltetrahydrofolate was apparently unchanged, whereas the V value was about 16 times lower than that in the sensitive strain. The Ki for amethopterin when added to increasing concentrations of methyltetrahydrofolate was 5.2 muM, a value about the same as that of the Km.  相似文献   

4.
Resistance to the antifolates methasquin and amethopterin has been studied in new strains of Streptococcus faecium var. durans. Two methasquin-resistant strains (SF/MQ, SF/MQ(T)) and an amethopterin-resistant strain (SF/AM) were selected independently from the wild-type S. faecium var. durans (SF/O). SF/MQ(T) is a thymine auxotroph. Total dihydrofolate reductase activity was elevated in each of the resistant strains. The greatest increase (36-fold) was observed in extracts of SF/AM. The methasquin-resistant strains, SF/MQ and SF/MQ(T), had 29-fold and 8-fold, respectively, more dihydrofolate reductase activity than the parental strain. Total dihydrofolate reductase activity of SF/O was separable by gel filtration into two components: a folate reductase (11%) and a specific dihydrofolate reductase (89%). Folate reductase activity was associated with 88% of the total dihydrofolate reductase activity of SF/MQ(T), with specific dihydrofolate reductase activity accounting for the remaining 12%. In SF/MQ and SF/AM, folate reductase activity was associated with 97% of the total dihydrofolate reductase activity. Studies of the inhibition by methasquin and amethopterin of partially purified folate reductase and specific dihydrofolate reductase of the mutant strains suggested that resistance was not accompanied by changes in the affinities of these enzymes for either antifolate.  相似文献   

5.
Dihydrofolate reductase and aminopterin resistance in Pneumococcus   总被引:1,自引:0,他引:1  
Summary Wild-type pneumococci derived from Avery's strain R36A are sensitive to extracellular concentrations of the folate antimetabolite aminopterin exceeding 1.0x10-6 M. Three classes of resistant strains are phenotypically distinguishable: amiB-r, amiA-r and amiD-r strains are resistant to low (1.5x10-6 M), intermediate (0.5–4.0×10-5 M) and high (4.5x10-4 M) aminopterin levels respectively. The amiA and amiB regions are weakly linked, but linkage has not been established between either of these loci and the amiD region.Consistent with the maximum resistance conferred by mutations in the amiA locus, dihydrofolate (FH2) reductase in cell-free extracts (CFE) of amiA-r strains has a two- to six-fold greater affinity for the substrate than dose the enzyme in wild-type CFE (Table 1); FH2 reductase from amiA-r strains may also have reduced affinity for aminopterin. Specific activity of the enzyme is not affected by mutation in the amiA locus (Table 1) and its affinity for the cofactor (NADPH) is probably unaffected by mutation in this locus (Table 4). Dihydrofolate reductase activity in amiA5 CFE is considerably more thermolabile than that in wild-type CFE (Table 2).The enzyme in CFE of the high resistance strain amiD1 has the same affinity for the substrate, cofactor and antimetabolite as FH2 reductase in wild-type CFE (Figs. 1–4, 8 and 9; Table 4). However, specific activity of the enzyme in amiD1 CFE is 11-fold higher than that in wild-type CFE (Table 1) and it is much more heat stable (Table 2).Some properties of FH2 reductase in CFE of the high resistance recombinant strain amiA5amiD1 are intermediate between those in CFE of wild-type and amiD1.Preliminary results suggest that CFE of wild-type and amiA5 contain a factor, which is neither dialyzable nor heat sensitive, that has an inhibitory effect upon activity and stability of FH2 reductase in amiD1 CFE (Tables 2 and 3).  相似文献   

6.
Mutant strains sensitive and resistant to the drug 5-fluorouracil (FU) have been isolated from the wild-type Pac strain of Drosophila melanogaster. The resistant strain, termed flur, is resistant to at least 0.0035%FU (2.7 × 10–4 m) in the food media and exhibits cross-resistance to 5-fluorodeoxyuridine (FUdR) but not to 5-fluorouridine (FUR). The sensitive strain termed flu S , exhibits over 90% mortality on 0.0008% FU (6 × 10–5 m). Genetic analysis indicates that the flu gene is located on the third chromosome, which agrees with results of previous workers. An analysis of the enzyme thymidylate synthetase from the selected sensitive and resistant strains indicates that the resistant strain enzyme possesses an elevated specific activity. Levels 4 times that of the sensitive strain were observed when the enzymes were assayed at 20 C. This increase is apparently not due to induction by FU in the food media. It is suggested that the enzyme thymidylate synthetase may be involved in the resistance process.  相似文献   

7.
PG19T3 mouse melanoma cells were selected for resistance to methotrexate. Nine sub-lines that are resistant to concentrations of methotrexate ranging from 1.27×10–7 M, to 1×10–4M methotrexate were selected and characterised in terms of their content of dihydrofolate reductase activity and their chromosomes. The intracellular level of dihydrofolate reductase activity increases with increasing resistance such that at the highest level of resistance PG19T3:MTXR 10–4 M cells contain approximately 1,000 fold more enzyme activity than the parental PG19T3 cells. It is shown that the enhanced activity is due to an increase in the amount of the enzyme rather than any structural change to the enzyme in resistant cellls. Comparisons of pH activity profiles, profiles under different activating conditions and titrations with methotrexate suggest that the sensitive and resistant cells contain identical dihydrofolate reductases. Analysis of the chromosomes of resistant cells shows the presence of up to 5 large marker chromosomes which contain homogeneously staining regions after G-banding. These same regions stain intensely after C-banding and fluoresce brightly after staining with Hoechst 33258. The size of homogeneously staining regions increases throughout the process of selection. For one marker chromosome this increase may have been mediated via a ring chromosome.  相似文献   

8.
Summary DNA fragments of the R factor R388 which renders E. coli resistant to trimethoprim by inducing a trimethoprim resistant dihydrofolate reductase (Amyes and Smith, 1974) were inserted into plasmids and screened for the expression of the trimethoprim resistance gene. By means of a two step deletion procedure a 1770 bp EcoRI/BamH1 fragment was isolated which conferred drug resistance and which was found to induce the synthesis of the same dihydrofolate reductase as the parental R factor. Gene dosage experiments indicated that the induction was due to the presence of a dihydrofolate reductase structural gene on the 1770 bp fragment. The gene could be assigned to a segment which was less than 1200 bp long. The 1770 bp fragment and a recombinant plasmid consisting of pSF2124 and part of R388 were mapped with several restriction nucleases. The R factor induced enzyme was partially purified from a strain carrying a multicopy recombinant plasmid into which the 1770 bp fragment was inserted and which induced high levels of dihydrofolate reductase. The enzyme was found to be stable at 100°. Some aspects of the synthesis of dihydrofolate reductase are discussed.Dedicated to Professor Peter Karlson on the occasion of his 60th birthday  相似文献   

9.
A unique group of mutations (amer) in the dihydrofolate reductase (5,6,7,8-tetrahydrofolate:NADP+ oxidoreductase, EC 1.5.1.3.) structural gene of Diplococcus pneumoniae determine a marked overproduction of the corresponding enzyme protein. Since findings with these mutations relate to a key metabolic function and may be important to the regulation of folate coenzyme synthesis in general, the same group of multations were also examined for their effects on a number of related enzymic activities. Mutant and wild-type cell-free extracts, in addition to dihydrofolate reductase activity, exhibited both dihydropteroate and dihydrofolate synthetic activities under the conditions employed. Four folate coenzyme-related enzyme activities could also be demonstrated with the same preparations. These are mediated by the following enzymes, serine hydroxymethyl transferase (l-serine: tetrahydrofolate 10-hydroxymethyl tranferase, EC 2.1.2.1), 5, 10-methylenetetrahydrofolate dehydrogenase (5,10-methylenetetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.5), 10-formyltetrahydrofolate synthetase (formate: tetrahydrofolate ligase (ADP-forming), EC 6.3.4.3) and glutamate formiminotransferase (N-formimino-l-glutamate: tetrahydrofolate 5-formiminotransferase, EC 2.1.2.5). The amer mutations examined in the current study determined 3–80-fold increases in dihydrofolate reductase in comparison to the wild type. However, none of the other folate-related enzyme activities were altered. The possible significance of these findings in light of previous results is discussed.  相似文献   

10.
The dihydrofolate reductase gene from Candida albicans has been cloned and partially characterized. A genomic bank from C. albicans strain 10127/5 was constructed in Escherichia coli and screened for trimethoprim resistance. A plasmid pMF1, carrying the resistance marker was isolated and characterized by restriction mapping and Southern blotting. Cells harbouring pMF1 were as sensitive as the parental cells to a wide spectrum of antibacterial agents, except for trimethoprim; the dihydrofolate reductase activity from these cells was trimethoprim resistant.  相似文献   

11.
Synergy was found between sulphonamide and trimethoprim in ratios 1:1 and 20:1 against both trimethoprim-sensitive enterococci (17 strains) and trimethoprim-resistant enterococci (23 strains). Many of these strains were resistant to kanamycin, tetracycline, streptomycin and/or erythromycin. Resistance to kanamycin, but not to trimethoprim, was clearly associated with the presence of a plasmid of molecular weight 35-45 Md. Elimination of this plasmid in three out of four highly trimethoprim resistant strains brought about loss of resistance to both kanamycin and trimethoprim. Furthermore, it was possible to transfer trimethoprim resistance from three of five highly resistant strains, but not from three strains with low-grade resistance. It is concluded that resistance to trimethoprim in enterococci can be encoded on a plasmid, and that the gene responsible may be on a transposon. No significant differences were found between the specific activities of dihydrofolate reductase from trimethoprim-sensitive and -resistant strains. The enzyme from resistant strains was several orders of magnitude less susceptible to inhibition by trimethoprim than was the enzyme from sensitive strains.  相似文献   

12.
Interpretation of the 1H-NMR spectra of Escherichia coli dihydrofolate reductase is complicated by the large number of overlapping resonances due to protonated aromatic amino acids. Deuteration of the aromatic protons of aromatic amino acid residues is one technique useful for simplifying the 1H-NMR spectra. Previous attempts to label the dihydrofolate reductase from over-producing strains of Escherichia coli were not completely successful. This labeling problem was solved by transducing via P1 phage a genetic block into the de novo biosynthetic pathway of aromatic amino acids in a trimethoprim resistant strain of E. coli, MB 3746. A new strain, MB 4065, is a very high level producer of dihydrofolate reductase and requires exogenous aromatic amino acids for growth, therefore allowing efficient labeling of its dihydrofolate reductase with exogenous deuterated aromatic amino acid.  相似文献   

13.
High resistance to trimethoprim mediated by the several hundredfold overproduction of the drug target enzyme, dihyrofolate reductase, in a clinically isolated Escherichia coli strain, 1810, was cloned onto several vector plasmids and seemed to be comprised of a single dihydrofolate reductase gene, which by DNA-DNA hybridization and restriction enzyme digestion mapping was very similar to the corresponding gene of E. coli K-12. Determination of mRNA formation in the originally isolated resistant strain and strains with cloned trimethoprim resistance determinant demonstrated an about 15-fold increase in production of dihydrofolate reductase mRNA compared with that in E. coli K-12. This was explained by the occurrence of a promoter up mutation in the resistant isolate accompanied by changes in the restriction enzyme digestion pattern found by comparison with the corresponding pattern from E. coli K-12.  相似文献   

14.
The dihydrofolate reductase structural gene, folA, has been cloned into the multicopy vector pBR322 following the gene's enrichment by bacteriophage Mu-mediated transposition. Strains carrying the resultant plasmid, pJFMS, produce 25 to 30 times more dihydrofolate reductase than control strains. Consequently they are resistant to trimethoprim, an inhibitor of this enzyme. This elevation in enzyme production is due to an increase in the number of folA gene copies per cell. The higher yield of dihydrofolate reductase obtained will be extremely useful for purifying and characterising this trimethoprim-sensitive chromosomally derived enzyme. The plasmid will also be invaluable for studying the structure, function and regulation of dihydrofolate reductase.  相似文献   

15.
The cause of parathion and propoxur resistance inTyphlodromus pyri was studied in a Dutch strain in which resistance was dependent on a semi-dominant gene. Activity of glutathione S-transferase and acetylcholinesterase and reaction rate of acetylcholinesterase with paraoxon and propoxur were measured in this resistant (R) and in a susceptible (S) strain. The R strain was 100-fold resistant to parathion and 2300-fold resistant to propoxur. A 36-fold reduction was found in rate of inhibition of acetylcholinesterase in the R strain for paraoxon, and a 14-fold reduction for propoxur. In combination with the monogenic nature of the resistance, this proves that the insensitivity of acetylcholinesterase is the cause of resistance. The rate constant of acetylcholinesterase inhibition at 25°C in the S and R strains was 1.5×105 and 4.2×103 M –1 min–1 respectively for paraoxon, and 5.1×104 and 3.6×103 M –1 min–1 for propoxur. There was no significant difference between the R and S strains in glutathione S-transferase activity. The R strain had a somewhat lower acetylcholinesterase activity than the S strain.  相似文献   

16.
Soybean (Glycine max L. cv Williams) seeds were sown in pots containing a 1:1 perlite-vermiculite mixture and grown under greenhouse conditions. Nodules were initiated with a nitrate reductase expressing strain of Rhizobium japonicum, USDA 110, or with nitrate reductase nonexpressing mutants (NR 108, NR 303) derived from USDA 110. Nodules initiated with either type of strain were normal in appearance and demonstrated nitrogenase activity (acetylene reduction). The in vivo nitrate reductase activity of N2-grown nodules initiated with nitrate reductase-negative mutant strains was less than 10% of the activity shown by nodules initiated with the wild-type strain. Regardless of the bacterial strain used for inoculation, the nodule cytosol and the cell-free extracts of the leaves contained both nitrate reductase and nitrite reductase activities. The wild-type bacteroids contained nitrate reductase but not nitrite reductase activity while the bacteroids of strains NR 108 and NR 303 contained neither nitrate reductase nor nitrite reductase activities.

Addition of 20 millimolar KNO3 to bacteroids of the wild-type strain caused a decrease in nitrogenase activity by more than 50%, but the nitrate reductase-negative strains were insensitive to nitrate. The nitrogenase activity of detached nodules initiated with the nitrate reductase-negative mutant strains was less affected by the KNO3 treatment as compared to the wild-type strain; however, the results were less conclusive than those obtained with the isolated bacteroids.

The addition of either KNO3 or KNO2 to detached nodules (wild type) suspended in a semisolid agar nutrient medium caused an inhibition of nitrogenase activity of 50% and 65% as compared to the minus N controls, and provided direct evidence for a localized effect of nitrate and nitrite at the nodule level. Addition of 0.1 millimolar sucrose stimulated nitrogenase activity in the presence or absence of nitrate or nitrite. The sucrose treatment also helped to decrease the level of nitrite accumulated within the nodules.

  相似文献   

17.
Chlorate resistant spontaneous mutants ofAzospirillum spp. (syn.Spirillum lipoferum) were selected in oxygen limited, deep agar tubes with chlorate. Among 20 mutants fromA. brasilense and 13 fromA. lipoferum all retained their functional nitrogenase and 11 from each species were nitrate reductase negative (nr). Most of the mutants were also nitrite reductase negative (nir), only 3 remaining nir+. Two mutants from nr+ nir+ parent strains lost only nir and became like the nr+ nir parent strain ofA. brasilense. No parent strain or nr+ mutant showed any nitrogenase activity with 10 mM NO 3 . In all nr mutants, nitrogenase was unaffected by 10 mM NO 3 . Nitrite inhibited nitrogenase activity of all parent strains and mutants including those which were nir. It seems therefore, that inhibition of nitrogenase by nitrate is dependent on nitrate reduction. Under aerobic conditions, where nitrogenase activity is inhibited by oxygen, nitrate could be used as sole nitrogen source for growth of the parent strains and one mutant (nr nir) and nitritite of the parent strains and 10 mutants (all types). This indicates the loss of both assimilatory and dissimilatory nitrate reduction but only dissimilatory nitrite reduction in the mutants selected with chlorate.  相似文献   

18.
A plasmid-encoded dihydrofolate reductase that originated in a clinical isolate of Salmonella typhimurium (phage type 179) moderately resistant to trimethoprim has been isolated and characterized. The dihydrofolate reductase (called type III) was purified to homogeneity using a combination of gel filtration, hydrophobic chromatography, and methotrexate affinity chromatography. Polyacrylamide gel electrophoresis under denaturing and nondenaturing conditions indicated that the enzyme is a 16,900 molecular weight monomeric protein. Kinetic analyses showed that trimethoprim is a relatively tight binding inhibitor (Ki = 19 nM) competitive with dihydrofolate. The enzyme is also extremely sensitive to methotrexate inhibition (Ki = 9 pM) and has a high affinity for dihydrofolate (Km = 0.4 microM). The sequence of the first 20 NH2-terminal residues of the protein shows 50% homology with the trimethoprim-sensitive chromosomal Escherichia coli dihydrofolate reductase and suggests that the two enzymes may be closely related. This is the first example of a plasmid encoding for a monomeric dihydrofolate reductase only moderately resistant to trimethoprim, and a resistance mechanism, dependent in part on the high dihydrofolate affinity of the type III enzyme, is proposed.  相似文献   

19.
The R-factor R388 mediates the production of a trimethoprim-resistant dihydrofolate reductase. This enzyme has a different molecular weight and pH profile to the trimethoprim-sensitive enzyme of the Escherichia coli host. The R-factor mediated enzyme was separated completely from the host E. coli enzyme by DEAE-cellulose ion-exchange chromatography. The purified R-factor enzyme was about 20 000 times less susceptible to trimethoprim than the E. coli enzyme and although it was inhibited competitively by trimethoprim, its inhibitor constant (Ki) was 20 000 times greater than that of the host enzyme. The R388 and E. coli enzymes also differed in their substrate specificity requirements. In addition, the R388 enzyme suprisingly conferred high level resistance to the broad spectrum dihydrofolate reductase inhibitor, amethopterin. The possible origins of the R388 enzyme are discussed.  相似文献   

20.
Natural competence ofStreptococcus pneumoniae was used to locate and enrich DNA restriction fragments, biologically active for transformation of thymidine-deficient to thymidine-proficient cells. Mutations in the dihydrofolate reductase gene are accompanied by resistance to the drug trimethoprim (Tp). A 6.5-kb region of the pneumococcal chromosome encompassing the dihydrofolate reductase gene has been cloned in plasmid pLS1.Escherichia coli mutants, resistant to Tp, became fully sensitive to the drug when they harbored the recombinant plasmid. The pneumococcaldfrA mutation has been mapped within a 500-bp DNA region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号