首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
According to theory, the action of acetylcholine (ACh) and ACh-esterase is essential for the permeability changes of excitable membranes during activity. It is, therefore, pertinent to know the activity of ACh-esterase per unit axonal surface area instead of per gram nerve, as it has been measured in the past. Such information has now been obtained with the newly developed microgasometric technique using a magnetic diver. (1) The cholinesterase (Ch-esterase) activity per mm2 surface of sensory axons of the walking leg of lobster is 1.2 x 10-3 µM/hr. (σ = ± 0.3 x 10-3; SE = 0.17 x 10-3); the corresponding value for the motor axons isslightly higher: 1.93 x 10-3 µM/hr. (σ = ± 0.41 x 10-3; SE = ± 0.14 x 10-3). Referred to gram nerve, the Ch-esterase activity of the sensory axons is much higher than that of the motor axons: 741 µM/hr. (σ = ± 73.5; SE = ± 32.6) versus 111.6 µM/hr. (σ = ± 28.3; SE = ± 10). (2) The enzyme activity in the small fibers of the stellar nerve of squid is 3.2 x 10-4 µM/mm2/hr. (σ = ± 0.96 x 10-4; SE = ± 0.4 x 10-4). (3) The Ch-esterase activity per mm2 surface of squid giant axon is 9.5 x 10-5 µM/hr. (σ = ± 1.55 x 10-5; SE = ± 0.38 x 10-5). The value was obtained with small pieces of carefully cleaned axons after removal of the axoplasm and exposure to sonic disintegration. Without the latter treatment the figurewas 3.85 x 10-5 µM/mm2/hr. (σ = ± 3.24 x 10-5; SE = ± 0.93 x 10-5). The experiments indicate the existence of permeability barriers in the cell wall surrounding part of the enzyme, since the substrate cannot reach all the enzyme even when small fragments of the cell wall are used without disintegration. (4) On the basis of the data obtained, some tentative approximations are made of the ratio of ACh released to Na ions entering the squid giant axon per cm2 per impulse.  相似文献   

2.
Concentrative accumulation of choline by human erythrocytes   总被引:13,自引:2,他引:11  
Influx and efflux of choline in human erythrocytes were studied using 14C-choline. When incubated at 37°C with physiological concentrations of choline erythrocytes concentrate choline; the steady-state ratio is 2.08 ± 0.23 when the external choline is 2.5 µM and falls to 0.94 ± 0.13 as the external concentration is raised to 50 µM. During the steady state the influx of choline is consistent with a carrier system with an apparent Michaelis constant of 30 x 10-6 and a maximum flux of 1.1 µmoles per liter cells per min. For the influx into cells preequilibrated with a choline-free buffer the apparent Michaelis constant is about 6.5 x 10-6 M and the maximum flux is 0.22 µmole per liter cells per min. At intracellular concentrations below 50 µmole per liter cells the efflux in the steady state approximates first order kinetics; however, it is not flux through a leak because it is inhibited by hemicholinium. Influx and efflux show a pronounced exchange flux phenomenon. The ability to concentrate choline is lost when external sodium is replaced by lithium or potassium. However, the uphill movement of choline is probably not coupled directly to the Na+ electrochemical gradient.  相似文献   

3.
Choline permeability in cardiac muscle cells of the cat   总被引:2,自引:1,他引:1  
Permeability of the cardiac cell membrane to choline ions was estimated by measuring radioactive choline influx and efflux in cat ventricular muscle. Maximum values for choline influx in 3.5 and 137 mM choline were respectively 0.56 and 9 pmoles/cm2·sec. In 3.5 mM choline the intracellular choline concentration was raised more than five times above the extracellular concentration after 2 hr of incubation. In 137 mM choline, choline influx corresponded to the combined loss of intracellular Na and K ions. Paper chromatography of muscle extracts indicated that choline was not metabolized to any important degree. The accumulation of intracellular choline rules out the existence of an efficient active pumping mechanism. By measuring simultaneously choline and sucrose exchange, choline efflux was analyzed in an extracellular phase, followed by two intracellular phases: a rapid and a slow one. Efflux corresponding to the rapid phase was estimated at 16–45 pmoles/cm2·sec in 137 mM choline and at 1.3–3.5 pmoles/cm2·sec in 3.5 mM choline; efflux in 3.5 mM choline was proportional to the intracellular choline concentration. The absolute figures for unidirectional efflux were much larger than the net influx values. The data are compared to Na and Li exchange in heart cells. Possible mechanisms for explaining the choline behavior in heart muscle are discussed.  相似文献   

4.
Cation composition of frog smooth muscle cells was investigated. Fresh stomach muscle rings resembled skeletal muscle, but marked Na gain and K loss followed immersion. Mean Na (49.8–79.7 mM/kg tissue) and K (61.8–80.1 mM/kg tissue) varied between batches, but were stable for long periods in vitro. Exchange of 6–30 mM Na/kg tissue with 22Na was extremely slow and distinct. Extracellular water was estimated from sucrose-14C uptake. Calculated exchangeable intracellular Na was 9 mM/kg cell water, and varied little. Thus steady-state transmembrane cation gradients appeared to be steep. K-free solution had only slight effects. Ouabain (10-4 M) caused marked Na gain and reciprocal K loss; at 30°C, Na and K varied linearly with time over a wide range of contents, indicating constant net fluxes. Net fluxes decreased with temperature decrease. 22Na exchange in ouabain-treated tissue at 20–30°C was rapid and difficult to analyze. The best minimum estimates of unidirectional Na fluxes at 30°C were 10–12 times the constant net flux; constant pump efflux may explain these findings. The rapidity of Na exchange may not reflect very high permeability, but it does require a high rate of transport work.  相似文献   

5.
Calcium compartments and fluxes were measured by kinetic analyses in kidney cell suspensions in a three-compartment closed system. The fast phase influx and compartment size increase linearly with the medium calcium and the half-time of exchange is only 1.3 min which suggests that the fast component is extracellular. The slow phase compartment rises linearly from 0.1 to 0.5 mmole calcium/kg cell water when the medium calcium is raised from 0.02 to 2.5 mM. The slow phase calcium influx exhibits the pattern of saturation kinetics with a V max of 0.065 µµmole cm-2 sec-1 and a Km of 0.3 mM indicating that it is a carrier-mediated transport process. PTH has no effect on the fast phase of calcium influx, but increases both calcium influx and the calcium pool size of the slow component. The maximum effect is obtained at medium calcium concentration of 1.3 mM. Below 0.3 mM extracellular calcium, the effects of the hormone cannot be demonstrated. PTH increases the V max of calcium influx from 0.065 to 0.128 µµmole cm-2 sec-1 while the Km rises from 0.3 to 1.15 mM. These findings suggest that PTH increases the translocation of the calcium-carrier complex across the membrane and not the carrier concentration or its binding affinity for calcium.  相似文献   

6.
Ca 2+ -specific removal of Z lines from rabbit skeletal muscle   总被引:15,自引:6,他引:9  
Removal of rabbit psoas strips immediately after death and incubation in a saline solution containing 1 mM Ca2+ and 5 nM Mg2+ for 9 hr at 37°C and pH 7.1 causes complete Z-line removal but has no ultrastructurally detectable effect on other parts of the myofibril. Z lines remain ultrastructurally intact if 1 mM 1,2-bis-(2-dicarboxymethylaminoethoxy)-ethane (EGTA) is substituted for 1 mM Ca2+ and the other conditions remain unchanged. Z lines are broadened and amorphous but are still present after incubation for 9 hr at 37°C if 1 mM ethylenediaminetetraacetate (EDTA) is substituted for 1 mM Ca2+ and 5 mM Mg2+ in the saline solution. A protein fraction that causes Z-line removal from myofibrils in the presence of Ca2+ at pH 7.0 can be isolated by extraction of ground muscle with 4 mM EDTA at pH 7.0–7.6 followed by isoelectric precipitation and fractionation between 0 and 40% ammonium sulfate saturation. Z-line removal by this protein fraction requires Ca2+ levels higher than 0.1 mM, but Z lines are removed without causing any other ultrastructurally detectable degradation of the myofibril. This is the first report of a protein endogenous to muscle that is able to catalyze degradation of the myofibril. The very low level of unbound Ca2+ in muscle cells in vivo may regulate activity of this protein fraction, or alternatively, this protein fraction may be localized in lysosomes.  相似文献   

7.
Sodium fluxes in internally dialyzed squid axons   总被引:17,自引:10,他引:7       下载免费PDF全文
The effects which alterations in the concentrations of internal sodium and high energy phosphate compounds had on the sodium influx and efflux of internally dialyzed squid axons were examined. Nine naturally occurring high energy phosphate compounds were ineffective in supporting significant sodium extrusion. These compounds were: AcP, PEP, G-3-P, ADP, AMP, GTP, CTP, PA, and UTP.1 the compound d-ATP supported 25–50% of the normal sodium extrusion, while ATP supported 80–100%. The relation between internal ATP and sodium efflux was nonlinear, rising most steeply in the range 1 to 10 µM and more gradually in the range 10 to 10,000 µM. There was no evidence of saturation of efflux even at internal ATP concentrations of 10,000 µM. The relation between internal sodium and sodium efflux was linear in the range 2 to 240 mM. The presence of external strophanthidin (10 µM) changed the sodium efflux to about 8–12 pmoles/cm2 sec regardless of the initial level of efflux; this changed level was not altered by subsequent dialysis with large concentrations of ATP. Sodium influx was reduced about 50 % by removal of either ATP or Na and about 70 % by removing both ATP and Na from inside the axon.  相似文献   

8.
The initial rate of thymidine-3H incorporation into the acid-soluble pool by cultured Novikoff rat hepatoma cells was investigated as a function of the thymidine concentration in the medium. Below, but not above 2 µM, thymidine incorporation followed normal Michaelis-Menten kinetics at 22°, 27°, 32°, and 37°C with an apparent Km of 0.5 µM, and the Vmax values increased with an average Q10 of 1.8 with an increase in temperature. The intracellular acid-soluble 3H was associated solely with thymine nucleotides (mainly deoxythymidine triphosphate [dTTP]). Between 2 and 200 µM, on the other hand, the initial rate of thymidine incorporation increased linearly with an increase in thymidine concentration in the medium and was about the same at all four temperatures. Pretreatment of the cells with 40 or 100 µM p-chloromercuribenzoate for 15 min or heat-shock (49.5°C, 5 min) markedly reduced the saturable component of uptake without affecting the unsaturable component or the phosphorylation of thymidine. The effect of p-chloromercuribenzoate was readily reversed by incubating the cells in the presence of dithiothreitol. Persantin and uridine competitively inhibited thymidine incorporation into the acid-soluble pool without inhibiting thymidine phosphorylation. At concentrations below 2 µM, thymidine incorporation into DNA also followed normal Michaelis-Menten kinetics and was inhibited in an apparently competitive manner by Persantin and uridine. The apparent Km and Ki values were about the same as those for thymidine incorporation into the nucleotide pool. The over-all results indicate that uptake is the rate-limiting step in the incorporation of thymidine into the nucleotide pool as well as into DNA. The cells possess an excess of thymidine kinase, and thymidine is phosphorylated as rapidly as it enters the cells and is thereby trapped. At low concentrations, thymidine is taken up mainly by a transport reaction, whereas at concentrations above 2 µM simple diffusion becomes the principal mode of uptake. Evidence is presented that indicates that uridine and thymidine are transported by different systems. Upon inhibition of DNA synthesis, net thymidine incorporation into the acid-soluble pool ceased rapidly. Results from pulse-chase experiments indicate that a rapid turnover of dTTP to thymidine may be involved in limiting the level of thymine nucleotides in the cell.  相似文献   

9.
Potassium fluxes in dialyzed squid axons   总被引:11,自引:6,他引:5       下载免费PDF全文
Measurements have been made of K influx in squid giant axons under internal solute control by dialysis. With [ATP]i = 1 µM, [Na]i = 0, K influx was 6 ± 0.6 pmole/cm2 sec; an increase to [ATP]i = 4 mM gave an influx of 8 ± 0.5 pmole/cm2 sec, while [ATP]i 4, [Na]i 80 gave a K influx of 19 ± 0.7 pmole/cm2 sec (all measurements at ∼16°C). Strophanthidin (10 µM) in seawater quantitatively abolished the ATP-dependent increase in K influx. The concentration dependence of ATP-dependent K influx on [ATP]i, [Na]i, and [K]o was measured; an [ATP]i of 30 µM gave a K influx about half that at physiological concentrations (2–3 mM). About 7 mM [Na]i yielded half the K influx found at 80 mM [Na]i. The ATP-dependent K influx responded linearly to [K]o from 1–20 mM and was independent of whether Na, Li, or choline was the principal cation of seawater. Substances tested as possible energy sources for the K pump were acetyl phosphate, phosphoarginine, PEP, and d-ATP. None was effective except d-ATP and this substance gave 70% of the maximal flux only when phosphoarginine or PEP was also present.  相似文献   

10.
The effects of acriflavine on the fine structure and function of the mitochondria and the kinetoplast in Crithidia fasciculata have been investigated. A mitochondrial fraction was prepared by differential centrifugation of cells broken by grinding with neutral alumina. Isolated mitochondria or intact cells revealed by spectrophotometric measurements the presence of cytochromes a + a 3, b, c 555 and o. After cells were grown in acriflavine for 3–4 days, the fine structure of the mitochondria and their cytochrome content were affected. Cells grown in 5.0 µM acriflavine had a threefold decrease in cytochrome a + a 3 and decreased respiratory activity. The mitochondrial preparation from these cells had a fivefold decrease in cytochrome a + a 3 and a less but significant decrease of other cytochromes present. There was also a decrease in the mitochondrial enzyme activities of NADH, succinic and L-α-glycerophosphate oxidases, and succinic and L-α-glycerophosphate dehydrogenases. Dyskinetoplastic cells could be demonstrated after growth in 1.0 µM acriflavine. At 5 µM, 80–90% of the cells were dyskinetoplastic. The kinetoplastic DNA was condensed, nonfibrillar, and did not incorporate thymidine-3H. The mitochondria in these cells had few cristae and were shorter and more swollen than the controls. Acriflavine may induce the fine structure effects we have observed and may affect the formation of the mitochondria in C. fasciculata.  相似文献   

11.
Sartorius muscle cells from the frog were stored in a K-free Ringer solution at 3°C until their average sodium contents rose to around 23 mM/kg fiber (about 40 mM/liter fiber water). Such muscles, when placed in Ringer''s solution containing 60 mM LiCl and 50 mM NaCl at 20°C, extruded 9.8 mM/kg of sodium and gained an equivalent quantity of lithium in a 2 hr period. The presence of 10-5 M strophanthidin in the 60 mM LiCl/50 mM NaCl Ringer solution prevented the net extrusion of sodium from the muscles. Lithium ions were found to enter muscles with a lowered internal sodium concentration at a rate about half that for entry into sodium-enriched muscles. When sodium-enriched muscles labeled with radioactive sodium ions were transferred from Ringer''s solution to a sodium-free lithium-substituted Ringer solution, an increase in the rate of tracer sodium output was observed. When the lithium-substituted Ringer solution contained 10-5 M strophanthidin, a large decrease in the rate of tracer sodium output was observed upon transferring labeled sodium-enriched muscles from Ringer''s solution to the sodium-free medium. It is concluded that lithium ions have a direct stimulating action on the sodium pump in skeletal muscle cells and that a significantly large external sodium-dependent component of sodium efflux is present in muscles with an elevated sodium content. In the sodium-rich muscles, about 23% of the total sodium efflux was due to strophanthidin-insensitive Na-for-Na interchange, about 67% being due to strophanthidin-sensitive sodium pumping.  相似文献   

12.
Autoradiographs were prepared from frozen sections of everted sacs of hamster jejunum which had been incubated in vitro with C14- or H3-labeled sugars and amino acids. When such tissue was incubated in 1 mM solutions of L-valine or L-methionine, columnar absorptive cells at tips of villi accumulated these amino acids to concentrations ranging from 5 to 50 millimoles per liter of cells. Quantitative data were obtained by microdensitometry of C14 autoradiographs. Similar, though less striking, results were obtained with the sugars: galactose, 3-0-methylglucose, α-methylglucoside, and 6-deoxyglucose. In all cases the marked "step-up" in concentration occurred near the brush border of the cell, and a "step-down" in concentration occurred at the basal pole of the cell. Known inhibitors of intestinal absorption, e.g., phlorizin in the case of sugars, blocked the concentrative step at the luminal border of the absorptive cell. It is inferred from these data that active transport systems for sugars and amino acids reside in the brush border region of the cell. Additional evidence suggests that the basal membrane of the cell may be the site of both a diffusion barrier and a weak transport system directed into the cell.  相似文献   

13.
An apparatus is described which collects the effluent from the center 0.7 cm of a single muscle fiber or bundle of muscle fibers. It was used to study the efflux of 45Ca from twitch muscle fibers. The efflux can be described by three time constants 18 ± 2 min, 300 ± 40 min, and 882 ± 172 min. These kinetics have been interpreted as those of a three-compartment system. The fastest is thought to be on the surface membrane of the muscle and of the T system. It contains 0.07 ± 0.03 mM Ca/liter of fiber and the Ca efflux is 0.11 ± 0.04 pM Ca/cm2. sec. The intermediate rate compartment is thought to represent the Ca in the longitudinal reticulum. It contains approximately 0.77 mM Ca/liter. Only the efflux from this compartment increases during stimulation. The most slowly exchanging compartment is poorly defined. Neither Ca-free nor Ni-Ringer solutions alter the rate of loss from the fastest exchanging compartment. Ni apparently alters the rate of loss from the slowest compartment.  相似文献   

14.
Addition of hydrocortisone to the medium of a clonal strain of rat pituitary cells (GH3) stimulated the rate of production of growth hormone. The stimulation had a lag period of about 24 hr, reached a maximum at 70–100 hr, and was observed at a hydrocortisone concentration as low as 5 x 10-8 M. Cells maximally stimulated with 3 x 10-6 M hydrocortisone produced 50–160 µg growth hormone/mg cell protein/24 hr. These rates were four to eight times those observed in control cells. At maximum stimulation, intracellular levels of growth hormone in both stimulated and control cells were equal to the amount secreted into the medium in about 15 min. Removal of hydrocortisone from the medium of GH3 cells caused a return of the rate of growth hormone production to that in control cells. Addition of hydrocortisone to the medium of cells growing exponentially with a population-doubling time of 60 hr caused both an increase in the doubling time to 90 hr and a stimulation of growth hormone production. Cycloheximide (3.6 x 10-5 M) and puromycin (3.7 x 10-4 M) suppressed incorporation of labeled amino acids into protein by 93 and 98%, respectively, and suppressed growth hormone production by stimulated and control cells by at least 94%.  相似文献   

15.
A procedure is described for the isolation of enzymatically active nuclei from chick embryo liver. It consists of the homogenization of the pooled tissue in 0.32 M sucrose-3 mM MgCl2 followed by a slow centrifugation. The resulting nuclear pellet is then purified further in a discontinuous density gradient composed of sucrose solutions containing Mg2+ ions, the lower portion of the gradient being 2.2 M sucrose-1 mM MgCl2. Based on DNA recovery, the nuclear fraction isolated by the procedure described contained an average of 62% of the nuclei in the original filtered homogenate. Light and electron microscope examinations showed that 90% of the isolated nuclei were derived from hepatocytes. They appeared intact with well preserved nucleoplasmic and nucleolar components, nuclear envelope, and pores. The isolated nuclei were quite pure, having a very low level of cytoplasmic contamination as indicated by cytoplasmic enzyme marker activities and electron microscope studies. The nuclear fraction consisted of 19.9% DNA, 6.2% RNA, 74% protein, the average RNA/DNA ratio being 0.32. Biosynthetic activities of the two nuclear enzymes NAD-pyrophosphorylase and DNA-dependent RNA polymerase were preserved. The specific activities of these enzymes were: NAD-pyrophosphorylase, 0.049 µmoles nicotinamide adenine dinucleotide (NAD) synthesized/min per mg protein; Mg2+ activated RNA polymerase, 4.3 µµmoles UMP-2-C14 incorporated into RNA/µg DNA per 10 min; and Mn2+-(NH4)2SO4 activated RNA-polymerase, 136 µµmoles UMP-2-C14 incorporated into RNA/µg DNA per 45 min.  相似文献   

16.
1. The aerobic transport of d-glucose and d-galactose in rabbit kidney tissue at 25° was studied. 2. In slices forming glucose from added substrates an accumulation of glucose against its concentration gradient was found. The apparent ratio of intracellular ([S]i) and extracellular ([S]o) glucose concentrations was increased by 0·4mm-phlorrhizin and 0·3mm-ouabain. 3. Slices and isolated renal tubules actively accumulated glucose from the saline; the apparent [S]i/[S]o fell below 1·0 only at [S]o higher than 0·5mm. 4. The rate of glucose oxidation by slices was characterized by the following parameters: Km 1·16mm; Vmax. 4·5μmoles/g. wet wt./hr. 5. The active accumulation of glucose from the saline was decreased by 0·1mm-2,4-dinitrophenol, 0·4mm-phlorrhizin and by the absence of external Na+. 6. The kinetic parameters of galactose entry into the cells were: Km 1·5mm; Vmax 10μmoles/g. wet wt./hr. 7. The efflux kinetics from slices indicated two intracellular compartments for d-galactose. The galactose efflux was greatly diminished at 0°, was inhibited by 0·4mm-phlorrhizin, but was insensitive to ouabain. 8. The following mechanism of glucose and galactose transport in renal tubular cells is suggested: (a) at the tubular membrane, these sugars are actively transported into the cells by a metabolically- and Na+-dependent phlorrhizin-sensitive mechanism; (b) at the basal cell membrane, these sugars are transported in accordance with their concentration gradient by a phlorrhizin-sensitive Na+-independent facilitated diffusion. The steady-state intracellular sugar concentration is determined by the kinetic parameters of active entry, passive outflow and intracellular utilization.  相似文献   

17.
The sites of lead phosphate precipitation in mouse bladder smooth muscle incubated with adenosine triphosphate and lead nitrate were studied by electron microscopy. The media constituents and incubating conditions were independently varied so that we could determine optimal conditions for histochemical demonstration of ATPase activity in agranular endoplasmic reticulum. Specimens of glutaraldehyde-fixed bladder muscle, frozen, cut into 10–40-µ sections, and incubated for 1 hr at 25°C in medium containing 0.025 M ATP, 0.0025 M lead nitrate, 0.05 M magnesium chloride, and 0.09 M sodium acetate buffer at pH 6.2, exhibited microcrystalline deposits in agranular endoplasmic reticulum and pinocytotic vesicles. Lead salt deposition was also noted in terminal cisternae of sarcoplasmic reticulum in skeletal muscle similarly treated, suggesting that the organelle systems in the two types of muscle cells subserve a common function.  相似文献   

18.
A rapid detergent method for the isolation of nuclei from cat brain cortex is described. It involves the homogenization of the tissue in buffered 0.34 M sucrose with the addition of the non-ionic detergent Cemulsol NPT 12 and the subsequent low speed centrifugal sieving of the nuclei through two layers of sucrose (0.68 M and 1.0 M). The final purification is achieved by high speed centrifugation (40,000 g) of the nuclear suspension layered over 1.8 M sucrose. Observations by light microscopy indicate that highly purified and well preserved nuclei are obtained from neurons and glial cells. Electron microscopy reveals some microsomal contaminants adhering to the nuclear membrane. According to an analysis of the nuclear size distribution, a considerable loss of smaller nuclei (10 to 20µ2), mainly from glial cells, occurs during the purification procedure. The action of different detergents is compared, the best results being obtained with Cemulsol NPT 12 or Triton X-100. Chemical analyses of the purified nuclear fraction give the following content expressed in picograms per nucleus: DNA, 6.54; RNA, 2.94; cholesterol, 1.50; and protein, 97.5. The sucrose density gradient centrifugation of nuclei isolated from cat brain cortex shows that their density is equal to or higher than that of 2.2 M sucrose and is thus similar to the density of nuclei from other tissues. The observation of a varying influence of different suspending media on the density of brain cell nuclei resolves the conflicting data in the literature on the density of these nuclei.  相似文献   

19.
A fall in extracellular pH increased membrane conductance of the giant cell in the abdominal ganglion of Aplysia californica. Chloride conductance was trebled whereas potassium conductance was increased by 50%. Half the giant cells were hyperpolarized (2–8 mv) and half were depolarized (3–10 mv) by lowering the pH. The hyperpolarizing response always became a depolarizing response in half-chloride solutions. When internal chloride was increased electrophoretically, the hyperpolarization was either decreased or changed to depolarization. The depolarizing response was reduced or became a hyperpolarizing response after soaking the cell in 10.0 mM chloride, artificial seawater solution for 1 hr. Depolarization was unaffected when either external sodium, calcium, or magnesium was omitted. A glass micropipette having an organic liquid chloride ion exchanger in its tip was used to measure intracellular chloride activity in 14 giant cells; 7 had values of 27.7 ± 1.8 mM (SEM) and 7 others 40.7 ± 1.5 mM. Three of the first group were hyperpolarized when pH was lowered and three of the second group were depolarized. In all six cells, these changes of membrane potential were in the direction of the chloride equilibrium potential. Intracellular potassium activity was measured by means of a potassium ion exchanger microelectrode.  相似文献   

20.
Caffeine and excitation-contraction coupling in the guinea pig taenia coli   总被引:7,自引:2,他引:5  
The effects of caffeine (0.2–10 mM) on the electrical and mechanical activities of guinea pig taenia coli were investigated with the double sucrose-gap method. Caffeine evoked a small tension with a latency of 20–30 sec, then phasic contraction developed and finally relaxation. The initial tension development also appeared in the Na-free solution without any marked changes in the membrane potential and membrane resistance. The phasic contraction disappeared in the Na-free solution. The relaxation in the presence of caffeine was accompanied by depolarization block of the spike generation. The minimum concentration of Ca ion needed to evoke the tension development by the caffeine was 10-7 M. Caffeine also potentiated the twitch tension below a concentration of 5 mM either in the Na-free solution or at low temperature (5°C). NO3 - and Br- showed a similar response to caffeine on the potentiation of the twitch tension at low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号