首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel simultaneous measurement method for alpha-fetoprotein (AFP) and carcinoembryonic antigen (CEA) in human sera by time-resolved fluoroimmunoassay (TR-FIA) is described. The proposed approach combines the use of europium-labeled anti-AFP antibody for AFP TR-FIA and biotinylated anti-CEA antibody complexed to samarium-labeled streptavidin for CEA TR-FIA. A 96-well microtiter plate coated with a mixture of anti-AFP and anti-CEA monoclonal antibodies was used for the assay. After it was reacted with a solution containing AFP and CEA, a mixture of anti-AFP antibody labeled with BHHCT-Eu(3+) and biotinylated anti-CEA antibody was added. The AFP concentration was determined by measuring the solid-phase fluorescence of the europium-labeled anti-AFP antibody at 615 nm. Then a BHHCT-Sm(3+)-labeled streptavidin-bovine serum albumin conjugate (SA-BSA) was added to react with the biotinylated anti-CEA antibody. After the reaction, the unreacted SA-BSA was washed out, and a 0.1 M NaOH solution containing 1.0 x 10(-5) M TOPO and 0.05% SDS was added to dissociate the samarium-labeled SA-BSA in the immune complex on the surface of the well into the solution. The CEA concentration was determined by measuring the solution fluorescence of 643 nm from the samarium-labeled SA-BSA. The present method gives detection limits of 0.07 ng/ml for AFP and 0.3 ng/ml for CEA. The coefficient variations of the method are less than 7%, and the recoveries are in the range of 90-110% for serum samples. The AFP and CEA concentrations in 27 human serum samples were determined by the present method as well as by single assay for comparison. A good correlation was obtained with the correlation coefficients of 0.990 for AFP and 0.973 for CEA.  相似文献   

2.
The proportion of carrier-isolated Neisseria meningitidis strains sensitive to human serum (37.2%) was found to be significantly higher than that of case-isolated ones (4.1%), although the difference is too low to consider serum-resistance responsible for invasion in this microorganism. Serum-susceptibility was not related to the existence of specific outer membrane proteins, as is the case of N. gonorrhoeae. Iron restriction induced iron-regulated outer membrane proteins in each strain (but not the same proteins in all strains) but without any detectable effect on serum-susceptibility. Iron excess was also unable to induce changes in the susceptibility of N. meningitidis to human serum.  相似文献   

3.
4.
Whereas capsulate strains of Neisseria meningitidis are dependent on pili for adhesion to human endothelial and epithelial cells, strains which lacked assembled pili and were partially capsule-deficient adhered to and invaded human endothelial and epithelial cells if they expressed the Opc protein. Bacteria expressing low or undetectable levels of Opc protein failed to adhere to or invade eukaryotic cells. In addition, the presence of OpaAC751 protein on the surface of bacteria did not increase bacterial interactions with host cells. Association of Opc-expressing bacteria was inhibited by antibodies against Opc. Invasion was dependent on the host-cell cytoskeletal activity and was inhibited by cytochalasin D. In some cells, infected at the apical surface, bacteria emerging from basal surface were detected by electron microscopy. Opc is found in diverse meningococci and may represent a common virulence factor which facilitates adherence and invasion by these bacteria.  相似文献   

5.
Acute bacterial meningitis is a life-threatening disease in humans. Discussed as entry sites for pathogens into the brain are the blood-brain and the blood-cerebrospinal fluid barrier (BCSFB). Although human brain microvascular endothelial cells (HBMEC) constitute a well established human in vitro model for the blood-brain barrier, until now no reliable human system presenting the BCSFB has been developed. Here, we describe for the first time a functional human BCSFB model based on human choroid plexus papilloma cells (HIBCPP), which display typical hallmarks of a BCSFB as the expression of junctional proteins and formation of tight junctions, a high electrical resistance and minimal levels of macromolecular flux when grown on transwell filters. Importantly, when challenged with the zoonotic pathogen Streptococcus suis or the human pathogenic bacterium Neisseria meningitidis the HIBCPP show polar bacterial invasion only from the physiologically relevant basolateral side. Meningococcal invasion is attenuated by the presence of a capsule and translocated N. meningitidis form microcolonies on the apical side of HIBCPP opposite of sites of entry. As a functionally relevant human model of the BCSFB the HIBCPP offer a wide range of options for analysis of disease-related mechanisms at the choroid plexus epithelium, especially involving human pathogens.  相似文献   

6.
7.
Carcinoembryonic antigen (CEA) was localized in various embryonic and fetal human tissues between 8 and 16 weeks of gestation as well as in the colorectal mucosa of older fetuses, newborns and adults. Among the embryonic tissues, CEA was always present in the esophagus, the gastric antrum, the duodenum and the rectum. CEA positive staining of bile canaliculi of the liver was inconstant. All other embryonic tissues were CEA negative. During early fetal development, CEA positive staining of the esophagus, antrum and duodenum was inconstant. However, the whole colon became intensively stained. An inconstant CEA specific staining was found in parts of the midgut and in the bile canaliculi of the liver. The other organs remained CEA negative. Between the 17th week of gestation and birth, CEA staining pattern of the colorectal mucosa did not change. The staining intensity of late fetal colonic mucosa was similar to that of adult colonic mucosa.  相似文献   

8.
Summary Carcinoembryonic antigen (CEA) was localized in various embryonic and fetal human tissues between 8 and 16 weeks of gestation as well as in the colorectal mucosa of older fetuses, newborns and adults. Among the embryonic tissues, CEA was always present in the esophagus, the gastric antrum, the duodenum and the rectum. CEA positive staining of bile cannaliculi of the liver was inconstant. All other embryonic tissues were CEA negative. During early fetal development CEA positive staining of the esophagus, antrum and duodenum was inconstant. However, the whole colon became intensively stained. An inconstant CEA specific staining was found in parts of the midgut and in the bile cannaliculi of the liver. The other organs remained CEA negative. Between the 17th week of gestation and birth, CEA staining pattern of the colorectal mucosa did not change. The staining intensity of late fetal colonic mucosa was similar to that of adult colonic mucosa.Deceased 20th August 1982  相似文献   

9.

Background

Neisseria meningitidis is a naturally transformable, facultative pathogen colonizing the human nasopharynx. Here, we analyze on a genome-wide level the impact of recombination on gene-complement diversity and virulence evolution in N. meningitidis. We combined comparative genome hybridization using microarrays (mCGH) and multilocus sequence typing (MLST) of 29 meningococcal isolates with computational comparison of a subset of seven meningococcal genome sequences.

Principal Findings

We found that lateral gene transfer of minimal mobile elements as well as prophages are major forces shaping meningococcal population structure. Extensive gene content comparison revealed novel associations of virulence with genetic elements besides the recently discovered meningococcal disease associated (MDA) island. In particular, we identified an association of virulence with a recently described canonical genomic island termed IHT-E and a differential distribution of genes encoding RTX toxin- and two-partner secretion systems among hyperinvasive and non-hyperinvasive lineages. By computationally screening also the core genome for signs of recombination, we provided evidence that about 40% of the meningococcal core genes are affected by recombination primarily within metabolic genes as well as genes involved in DNA replication and repair. By comparison with the results of previous mCGH studies, our data indicated that genetic structuring as revealed by mCGH is stable over time and highly similar for isolates from different geographic origins.

Conclusions

Recombination comprising lateral transfer of entire genes as well as homologous intragenic recombination has a profound impact on meningococcal population structure and genome composition. Our data support the hypothesis that meningococcal virulence is polygenic in nature and that differences in metabolism might contribute to virulence.  相似文献   

10.
A mechanism of capsular polysaccharide phase variation in Neisseria meningitidis is described. Meningococcal cells of an encapsulated serogroup B strain were used in invasion assays. Only unencapsulated variants were found to enter epithelial cells. Analysis of one group of capsule-deficient variants indicated that the capsular polysaccharide was re-expressed at a frequency of 10?3. Measurement of enzymatic activities involved in the biosynthesis of the α-2,8 polysialic acid capsule showed that polysialyltransferase (PST) activity was absent in these capsule-negative variants. Nucleotide sequence analysis of siaD revealed an insertion or a deletion of one cytidine residue within a run of (dC)7 residues at position 89, resulting in a frameshift and premature termination of translation. We analysed unencapsulated isolates from carriers and encapsulated case isolates collected during an outbreak of meningococcal disease. Further paired blood-culture isolates and unencapsulated nasopharyngeal isolates from patients with meningococcal meningitis were examined. In all unencapsulated strains analysed we found an insertion or deletion within the oligo-(dC) stretch within siaD, resulting in a frameshift and loss of capsule formation. All encapsulated isolates, however, had seven dC residues at this position, indicating a correlation between capsule phase variation and bacterial invasion and the out-break of meningococcal disease.  相似文献   

11.
Neisseria meningitidis traversal across the blood-cerebrospinal fluid barrier is an essential step in the pathogenesis of bacterial meningitis. We have previously shown that invasion of human brain microvascular endothelial cells (HBMEC) by meningococci is mediated by bacterial outer membrane protein Opc that binds fibronectin, thereby anchoring the bacterium to the integrin alpha 5 beta 1-receptor on the endothelial cell surface. However, subsequent signal transduction mechanisms essential for or regulated by N. meningitidis adhesion and invasion, or HBMEC responses to N. meningitidis are unknown. In this report we investigated the role of c-Jun N-terminal kinases 1 and 2 (JNK1 and JNK2), p38 mitogen-activated (MAP) kinase and protein tyrosine kinases in endothelial-N. meningitidis interaction. Binding of meningococci to HBMEC phosphorylated and activated JNK1 and JNK2 and p38 MAPK as well as their direct substrates c-Jun and MAP kinase activated kinase-2 (MAPKAPK-2), respectively. Non-invasive meningococcal strains lacking opc gene (opc mutants and sequence type 11 complex meningococci) still activated p38 MAPK, however, failed to activate JNK. Inhibition of JNK1 and JNK2 significantly reduced internalization of N. meningitidis by HBMEC without affecting its adherence. Blocking the endothelial integrin alpha 5 beta 1 also decreased N. meningitidis-induced JNK activation in HBMEC. These findings indicate the crucial role of JNK signalling pathway in N. meningitidis invasion in HBMEC. In contrast, p38 MAPK pathway was important for the control of interleukin-6 (IL-6) and IL-8 release by HBMEC. Genistein, a protein tyrosine kinase inhibitor, decreased both invasion of N. meningitidis into HBMEC and IL-6 and IL-8 release, indicating that protein tyrosine kinases, which link signals from integrins to intracellular signalling pathways are essential for both bacterial internalization and cytokine secretion by HBMEC.  相似文献   

12.
Macrophages produce nitric oxide (NO) via the inducible nitric oxide synthase as part of a successful response to infection. The gene norB of Neisseria meningitidis encodes a NO reductase which enables utilization and consumption of NO during microaerobic respiration and confers resistance to nitrosative stress-related killing by human monocyte-derived macrophages (MDM). In this study we confirmed that NO regulates cytokine and chemokine release by resting MDM: accumulation of TNF-alpha, IL-12, IL-10, CCL5 (RANTES) and CXCL8 (IL-8) in MDM supernatants was significantly modified by the NO-donor S-nitroso-N-penicillamine (SNAP). Using a protein array, infection of MDM with N. meningitidis was shown to be associated with secretion of a wide range of cytokines and chemokines. To test whether NO metabolism by N. meningitidis modifies release of NO-regulated cytokines, we infected MDM with wild-type organisms and an isogenic norB strain. Resulting expression of the cytokines TNF-alpha and IL-12, and the chemokine CXCL8 was increased and production of the cytokine IL-10 and the chemokine CCL5 was decreased in norB-infected MDM, in comparison to wild-type. Addition of SNAP to cultures infected with wild-type mimicked the effect observed in cultures infected with the norB mutant. In conclusion, NorB-catalysed removal of NO modifies cellular release of NO-regulated cytokines and chemokines.  相似文献   

13.
Many invasive bacterial diseases are caused by organisms that are ordinarily harmless components of the human microbiome. Effective interventions against these microbes require an understanding of the processes whereby symbiotic or commensal relationships transition into pathology. Here, we describe bacterial genome-wide association studies (GWAS) of Neisseria meningitidis, a common commensal of the human respiratory tract that is nevertheless a leading cause of meningitis and sepsis. An initial GWAS discovered bacterial genetic variants, including single nucleotide polymorphisms (SNPs), associated with invasive meningococcal disease (IMD) versus carriage in several loci across the meningococcal genome, encoding antigens and other extracellular components, confirming the polygenic nature of the invasive phenotype. In particular, there was a significant peak of association around the fHbp locus, encoding factor H binding protein (fHbp), which promotes bacterial immune evasion of human complement by recruiting complement factor H (CFH) to the meningococcal surface. The association around fHbp with IMD was confirmed by a validation GWAS, and we found that the SNPs identified in the validation affected the 5’ region of fHbp mRNA, altering secondary RNA structures, thereby increasing fHbp expression and enhancing bacterial escape from complement-mediated killing. This finding is consistent with the known link between complement deficiencies and CFH variation with human susceptibility to IMD. These observations demonstrate the importance of human and bacterial genetic variation across the fHbp:CFH interface in determining IMD susceptibility, the transition from carriage to disease.  相似文献   

14.
A soluble recombinant form of Neisseria meningitidis adhesin A (NadADelta351-405), proposed as a constituent of anti-meningococcal B vaccines, is here shown to specifically interact with and immune-modulate human monocyte-derived dendritic cells (mo-DCs). After priming with IFN-gamma and stimulation with NadADelta351-405, mo-DCs strongly up-regulated maturation markers CD83, CD86, CD80, and HLA-DR, secreted moderate quantities of TNF-alpha, IL-6, and IL-8, and produced a slight, although significant, amount of IL-12p70. Costimulation of mo-DCs with NadADelta351-405 and the imidoazoquinoline drug R-848, believed to mimic bacterial RNA, increased CD86 in an additive way, but strongly synergized the secretion of IL-12p70, IL-1, IL-6, TNF-alpha, and MIP-1alpha, especially after IFN-gamma priming. CD86/CD80 overexpression correlated with the occupation of high-(kd approximately 80 nM) and low-(kd approximately 4 muM) affinity binding sites for NadADelta351-405. Alternatively, secretion of IL-12p70 and TNF-alpha, IL-6, and IL-8 corresponded to the occupation of high- or low-affinity receptors, respectively. Mo-DCs matured by IFN-gamma and NadADelta351-405 supported the proliferation of naive CD4+ T lymphocytes, inducing the differentiation of both IFN-gamma and IL-4 producing phenotypes. Our data show that NadA not only is a good immunogen but is as well endowed with a proimmune, self-adjuvating, activity.  相似文献   

15.
16.
Both IgG and IgA Abs have been implicated in host defense against bacterial infections, although their relative contributions remain unclear. We generated a unique panel of human chimeric Abs of all human IgG and IgA subclasses with identical V genes against porin A, a major subcapsular protein Ag of Neisseria meningitidis and a vaccine candidate. Chimeric Abs were produced in baby hamster kidney cells, and IgA-producing clones were cotransfected with human J chain and/or human secretory component. Although IgG (isotypes IgG1-3) mediated efficient complement-dependent lysis, IgA was unable to. However, IgA proved equally active to IgG in stimulating polymorphonuclear leukocyte respiratory burst. Remarkably, although porin-specific monomeric, dimeric, and polymeric IgA triggered efficient phagocytosis, secretory IgA did not. These studies reveal unique and nonoverlapping roles for IgG and IgA Abs in defense against meningococcal infections.  相似文献   

17.
A meningococcal genomic expression library was screened for potent CD4+ T-cell antigens, using patients' peripheral blood lymphocytes (PBLs). One of the most promising positive clones was fully characterized. The recombinant meningococcal DNA contained a single, incomplete, open reading frame (ORF), which was fully reconstructed with reference to available genomic sequence data. The gene was designated autA (auto-transporter A) as its peptide sequence shares molecular characteristics of the auto-transporter family of proteins. Only a single copy of this gene was detected in the meningococcal, and none in the gonococcal, genomic sequence databases. The complete autA gene, when cloned into an expression vector, expressed a protein of approximately 68 kDa. Purified rAutA recalled strong secondary T-cell responses in PBLs of patients and some healthy donors, and induced strong primary T-cell responses in healthy donors. The human B-cell immunogenicity and cross-reactivity of AutA, purified under native conditions, was confirmed in dot immunoblot experiments. Immunoblots with rabbit polyclonal antibodies to rAutA demonstrated the conserved nature, antigenicity and cross-reactivity of AutA amongst meningococci of different serogroups and strains representing different hypervirulent lineages. AutA showed homology with another meningococcal and gonococcal ORF (designated AutB). AutB was cloned and expressed and used to raise an autB-specific antiserum. Immunoblot experiments indicated that AutB is not expressed in meningococci and does not cross-react with AutA. Thus, AutA, being a potent CD4+ T-cell and B-cell-stimulating antigen, which is highly conserved, deserves further investigation as a potential vaccine candidate.  相似文献   

18.
19.
The addition of normal human serum to a chemically defined medium stimulated the growth ofNeisseria meningitidis strain M1011 greatly. Both lag times and mean generation times were reduced. Growth in human serum alone was rapid but quickly became nutrientlimited. Iron was not a limiting factor for growth in human serum. One major limiting factor of serum was cysteine.N. meningitidis grown in serum also bound serum proteins, including transferrin and immunoglobulin, as demonstrated by direct and indirect fluorescent-antibody techniques.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号