首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S-State-dependent split EPR signals that are induced by illumination at cryogenic temperatures (5 K) have been measured in spinach photosystem II without interference from the Y(D)* radical in the g approximately 2 region. This allows us to present the first decay-associated spectra for the split signals, which originate from the CaMn4 cluster in magnetic interaction with a nearby radical, presumably Y(Z)*. The three split EPR signals that were investigated, "Split S1", "Split S3", and Split S0", all exhibit spectral features at g approximately 2.0 together with surrounding characteristic peaks and troughs. From microwave relaxation studies we can reach conclusions about which parts of the complex spectra belong together. Our analysis strongly indicates that the wings and the middle part of the split spectrum are parts of the same signal, since their decay kinetics in the dark at 5 K and microwave relaxation behavior are indistinguishable. In addition, our decay-associated spectra indicate that the g approximately 2.0 part of the "Split S1" EPR spectrum contains a contribution from magnetically uncoupled Y(Z)* as judged from the g value and 22 G line width of the EPR signal. The g value, 2.0033-2.0040, suggests that the oxidation of Y(Z) at 5 K results in a partially protonated radical. Irrespective of the S state, a small amount of a carotenoid or chlorophyll radical was formed by the illumination. However, this had relaxation and decay characteristics that clearly distinguish this radical from the split signal spectra. In this paper, we present the "clean" spectra from the low-temperature illumination-induced split EPR signals from higher plants, which will provide the basis for further simulation studies.  相似文献   

2.
Zhang C  Styring S 《Biochemistry》2003,42(26):8066-8076
The effect of illumination at 5 K of photosystem II in different S-states was investigated with EPR spectroscopy. Two split radical EPR signals around g approximately 2.0 were observed from samples given 0 and 3 flashes, respectively. The signal from the 0-flash sample was narrow, with a width of approximately 80 G, in which the low-field peak can be distinguished. This signal oscillated with the S(1) state in the sample. The signal from the 3-flash sample was broad, with a symmetric shape of approximately 160 G width from peak to trough. This signal varied with the concentration of the S(0) state in the sample. Both signals are assigned to arise from the donor side of PSII. Both signals relaxed fast, were formed within 10 ms after a flash, and decayed with half-times at 5 K of 3-4 min. The signal in the S(0) state closely resembles split radical signals, originating from magnetic interaction between Y(Z)(*) and the S(2) state, that were first observed in Ca(2+)-depleted photosystem II samples. Therefore, we assign this signal to Y(Z)(*) in magnetic interaction with the S(0) state, Y(Z)(*)S(0). The other signal is assigned to the magnetic interaction between Y(Z)(*) and the S(1) state, Y(Z)(*)S(1). An important implication is that Y(Z) can be oxidized at 5 K in the S(0) and S(1) states. Oxidation of Y(Z) involves deprotonation of the tyrosine. This is restricted at 5 K, and we therefore suggest that the phenolic proton of Y(Z) is involved in a low-barrier hydrogen bond. This is an unusually short hydrogen bond in which proton movement at very low temperatures can occur.  相似文献   

3.
Peterson S  Ahrling KA  Styring S 《Biochemistry》1999,38(46):15223-15230
The oxygen evolving complex (OEC) of photosystem II (PSII) gives rise to manganese-derived electron paramagnetic resonance (EPR) signals in the S0 and S2 oxidation states. These signals exhibit different microwave power saturation behavior between 4 and 10 K. Below 8 K, the S0 state EPR signal is a faster relaxer than the S2 multiline signal, but above 8 K, the S0 signal is the slower relaxer of the two. The different temperature dependencies of the relaxation of the S0 and S2 ground-state Mn signals are due to differences in the spin-lattice relaxation process. The dominating spin-lattice relaxation mechanism is concluded to be a Raman mechanism in the S0 state, with a T(4.1) temperature dependence of the relaxation rate. It is proposed that the relaxation of the S2 state arises from a Raman mechanism as well, with a T(6.8) temperature dependence of the relaxation rate, although the data also fit an Orbach process. If both signals relax through a Raman mechanism, the different exponents are proposed to reflect structural differences in the proteins surrounding the Mn cluster between the S0 and S2 states. The saturation of SII(slow) from the Y(D)(ox) radical on the D2 protein was also studied, and found to vary between the S0 and the S2 states of the enzyme in a manner similar to the EPR signals from the OEC. Furthermore, we found that the S2 multiline signal in the second turnover of the enzyme is significantly more difficult to saturate than in the first turnover. This suggests differences in the OEC between the first and second cycles of the enzyme. The increased relaxation rate may be caused by the appearance of a relaxation enhancer, or it may be due to subtle structural changes as the OEC is brought into an active state.  相似文献   

4.
Matsukawa T  Mino H  Yoneda D  Kawamori A 《Biochemistry》1999,38(13):4072-4077
The light-induced new EPR signals at g = 12 and 8 were observed in photosystem II (PS II) membranes by parallel polarization EPR. The signals were generated after two flashes of illumination at room temperature, and the signal intensity had four flashes period oscillation, indicating that the signal origin could be ascribed to the S3-state. Successful simulations were obtained assuming S = 1 spin for the values of the zero-field parameters, D = +/-0.435 +/- 0. 005 cm-1 and E/D = -0.317 +/- 0.002. Orientation dependence of the g =12 and 8 signal intensities shows that the axial direction of the zero-field interaction of the manganese cluster is nearly parallel to the membrane normal.  相似文献   

5.
Hydroxylamine at low concentrations causes a two-flash delay in the first maximum flash yield of oxygen evolved from spinach photosystem II (PSII) subchloroplast membranes that have been excited by a series of saturating flashes of light. Untreated PSII membrane preparations exhibit a multiline EPR signal assigned to a manganese cluster and associated with the S2 state when illuminated at 195 K, or at 273 K in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). We used the extent of suppression of the multiline EPR signal observed in samples illuminated at 195 K to determine the fraction of PSII reaction centers set back to a hydroxylamine-induced S0-like state, which we designate S0*. The manganese K-edge X-ray absorption edges for dark-adapted PSII preparations with or without hydroxylamine are virtually identical. This indicates that, despite its high binding affinity to the oxygen-evolving complex (OEC) in the dark, hydroxylamine does not reduce chemically the manganese cluster within the OEC in the dark. After a single turnover of PSII, a shift to lower energy is observed in the inflection of the Mn K-edge of the manganese cluster. We conclude that, in the presence of hydroxylamine, illumination causes a reduction of the OEC, resulting in a state resembling S0. This lower Mn K-edge energy of S0*, relative to the edge of S1, implies the storage and stabilization of an oxidative equivalent within the manganese cluster during the S0----S1 state transition. An analysis of the extended X-ray absorption fine structure (EXAFS) of the S0* state indicates that a significant structural rearrangement occurs between the S0* and S1 states. The X-ray absorption edge position and the structure of the manganese cluster in the S0* state are indicative of a heterogeneous mixture of formal valences of manganese including one Mn(II) which is not present in the S1 state.  相似文献   

6.
7.
Photosystem II enriched membranes were depleted of Ca2+ and the 17- and 23-kDa polypeptides by treatment with NaCl and EGTA. The 17- and 23-kDa polypeptides were then reconstituted. This preparation was incapable of O2 evolution until Ca2+ was added. An EPR study revealed the presence of two new EPR signals. One of these is a modified S2 multiline signal with an isotropic g value of 1.96 with at least 26 hyperfine peaks (average spacing 55 G) distributed over approximately 1600 G. The other is a near-Gaussian signal with an isotropic g value of 2.004, which is attributed to a formal S3 state. Experiments involving the interconversion of these signals and the effect of Ca2+ and Sr2+ rebinding provide evidence for these assignments. From these results the following conclusions are drawn: (1) These results are consistent with our earlier demonstration that charge accumulation is blocked after formation of S3 when Ca2+ is deficient. (2) Binding of the 17- and 23-kDa polypeptides to photosystem II in the absence of Ca2+ results in the perturbation of the Mn cluster. This is taken as a further indication that the Ca2+-binding site is close to or even an integral part of the Mn cluster. (3) The S3 signal may arise from an organic free radical interacting magnetically with the Mn cluster. However, other possible origins for this signal, including the Mn cluster itself, must also be considered.  相似文献   

8.
The Mn4Ca complex that is involved in water oxidation in PSII is affected by near-infrared (NIR) light in certain redox states and these phenomena can be monitored by electron paramagnetic resonance (EPR) at low temperature. Here we report the action spectra of the NIR effects in the S2 and S3 states in PSII from plants and the thermophilic cyanobacterium Thermosynechococcus elongatus. The action spectra obtained are very similar in both S states, indicating the presence of the same photoactive form of the Mn4Ca complex in both states. Since the chemical nature of the photoactive species is not known, an unequivocal interpretation of this result cannot be made; however, it appears to be more easily reconciled with the view that the redox state of the Mn4Ca cluster does not change from the S2 to the S3 transition, at least in those centers sensitive to NIR light. The temperature dependence of the NIR effect and the action spectra for S2 indicate the presence of structural heterogeneity in the Mn4Ca cluster.  相似文献   

9.
The electrons extracted from the CaMn(4) cluster during water oxidation in photosystem II are transferred to P(680)(+) via the redox-active tyrosine D1-Tyr161 (Y(Z)). Upon Y(Z) oxidation a proton moves in a hydrogen bond toward D1-His190 (His(Z)). The deprotonation and reprotonation mechanism of Y(Z)-OH/Y(Z)-O is of key importance for the catalytic turnover of photosystem II. By light illumination at liquid helium temperatures (~5 K) Y(Z) can be oxidized to its neutral radical, Y(Z)(?). This can be followed by the induction of a split EPR signal from Y(Z)(?) in a magnetic interaction with the CaMn(4) cluster, offering a way to probe for Y(Z) oxidation in active photosystem II. In the S(3) state, light in the near-infrared region induces the split S(3) EPR signal, S(2)'Y(Z)(?). Here we report on the pH dependence for the induction of S(2)'Y(Z)(?) between pH 4.0 and pH 8.7. At acidic pH the split S(3) EPR signal decreases with the apparent pK(a) (pK(app)) ~ 4.1. This can be correlated to a titration event that disrupts the essential H-bond in the Y(Z)-His(Z) motif. At alkaline pH, the split S(3) EPR signal decreases with the pK(app) ~ 7.5. The analysis of this pH dependence is complicated by the presence of an alkaline-induced split EPR signal (pK(app) ~ 8.3) promoted by a change in the redox potential of Y(Z). Our results allow dissection of the proton-coupled electron transfer reactions in the S(3) state and provide further evidence that the radical involved in the split EPR signals is indeed Y(Z)(?).  相似文献   

10.
Su JH  Havelius KG  Mamedov F  Ho FM  Styring S 《Biochemistry》2006,45(24):7617-7627
Methanol binds to the CaMn4 cluster in photosystem II (PSII). Here we report the methanol dependence of the split EPR signals originating from the magnetic interaction between the CaMn4 cluster and the Y(Z)* radical in PSII which are induced by illumination at 5 K. We found that the magnitudes of the "split S1" and "split S3" signals induced in the S1 and S3 states of PSII centers, respectively, are diminished with an increase in the methanol concentration. The methanol concentrations at which half of the respective spectral changes had occurred ([MeOH](1/2)) were 0.12 and 0.57%, respectively. By contrast, the "split S0" signal induced in the S0 state is broadened, and its amplitude is enhanced. [MeOH](1/2) for this change was found to be 0.54%. We discuss these observations with respect to the location and nature of the methanol binding site. Furthermore, by comparing this behavior with methanol effects reported for other EPR signals in the different S states, we propose that the observed methanol-dependent changes in the split S1 and split S0 EPR signals are caused by an increase in the extent of magnetic coupling within the cluster.  相似文献   

11.
A Boussac  A W Rutherford 《Biochemistry》1992,31(33):7441-7445
The radical formed as the formal S3 charge storage state in Ca(2+)-depleted photosystem II and detected as a split EPR signal was previously assigned to an oxidized histidine radical on the basis of its UV spectrum. In a recent paper [Hallahan, B. J., Nugent, J. H. A., Warden, J. T., & Evans, M. C. W. (1992) Biochemistry 31, 4562-4573], this assignment was challenged, and it was suggested that the signal arises instead from the well-known tyrosine radical Tyrz., the electron carrier between the photooxidized chlorophyll and the Mn cluster. Here, we provide evidence that the measurements of the Tyr., on which the new interpretation was based, are artifactual due to the use of saturating microwave powers. Other than a relaxation-enhancement effect, the formation of the split S3 signal is accompanied by no change in the Tyr. signal. Although essentially unrelated to the origin of the S3 radical, several other experimental and interpretational problems in the work of Hallahan et al. (1992) are pointed out and rationalized. For example, the inability of Hallahan et al. (1992) to observe the split S3 signal in samples containing DCMU or without a chelator, in contrast to our observations, is attributed to a number of technical problems including the incomplete inhibition of the enzyme. We thus conclude that the assignment of the split S3 signal as His., although not proven, remains the most reasonable on the basis of current data.  相似文献   

12.
The Mn(4) complex which is involved in water oxidation in photosystem II is known to exhibit three types of EPR signals in the S(2) state, one of the five redox states of the enzyme cycle: a multiline signal (spin 1/2), signals at g5 (spin 5/2) and a signal at g=4.1 (or g=4.25). The g=4.1 signal could be generated under two distinct sets of conditions: either by illumination at room temperature or at 200 K in certain experimental conditions (g4(S) signal) or by near-infrared illumination between approximately 77 and approximately 160 K of the S(2)-multiline state (g4(IR) signal). The two g=4.1 signals arise from states which have quite different stability in terms of temperature. In the present work we have compared these two signals in order to test if they originate from the same or from different chemical origins. The microwave power saturation properties of the two signals measured at 4.2 K were found to be virtually identical. Their temperature dependencies measured at non-saturating powers were also identical. The presence of Curie law behavior for the g4(S) and g4(IR) signals indicates that the states responsible for both signals are ground states. The orientation dependence, anisotropy and resolved hyperfine structure of the two g4 signals were also found to be virtually indistinguishable. We have been unable to confirm the behavior reported earlier indicating that the g4(S) signal is an excited state, nor were we able to confirm the presence of signal from a higher excited state in samples containing the g4(S), nor a radical signal in samples containing the g4(IR). These findings are best interpreted assuming that the two signals have a common origin i.e. a spin 5/2 ground state arising from a magnetically coupled Mn-cluster of 4 Mn ions.  相似文献   

13.
The active site for water oxidation in photosystem II (PSII) consists of a Mn4Ca cluster close to a redox-active tyrosine residue (TyrZ). The enzyme cycles through five sequential oxidation states (S0 to S4) in the water oxidation process. Earlier electron paramagnetic resonance (EPR) work showed that metalloradical states, probably arising from the Mn4 cluster interacting with TyrZ., can be trapped by illumination of the S0, S1 and S2 states at cryogenic temperatures. The EPR signals reported were attributed to S0TyrZ., S1TyrZ. and S2TyrZ., respectively. The equivalent states were examined here by EPR in PSII isolated from Thermosynechococcus elongatus with either Sr or Ca associated with the Mn4 cluster. In order to avoid spectral contributions from the second tyrosyl radical, TyrD., PSII was used in which Tyr160 of D2 was replaced by phenylalanine. We report that the metalloradical signals attributed to TyrZ. interacting with the Mn cluster in S0, S1, S2 and also probably the S3 states are all affected by the presence of Sr. Ca/Sr exchange also affects the non-haem iron which is situated approximately 44 A units away from the Ca site. This could relate to the earlier reported modulation of the potential of QA by the occupancy of the Ca site. It is also shown that in the S3 state both visible and near-infrared light are able to induce a similar Mn photochemistry.  相似文献   

14.
NaCl/EGTA-washing of photosystem II (PS-II) results in the removal of Ca2+ and the inhibition of oxygen evolution. Two new EPR signals were observed in such samples: a stable and modified S2 multiline signal and an S3 signal [(1989) Biochemistry 28, 8984-8989]. Here, we report what factors are responsible for the modifications of the S2 signal and the observation of the S3 signal. The following results were obtained. (i) The stable, modified, S2 multiline signal can be induced by the addition of high concentrations of EGTA or citrate to PS-II membranes which are already inhibited by Ca(2+)-depletion. (ii) The carboxylic acids act in the S3-state, are much less effective in S2 and have no effect in the S1-state. (iii) The extrinsic polypeptides (17- and 23-kDa) are not required to observe either the modified S2 signal or the S3 signal. However, they do influence the splitting and the lifetime of the S3 signal, and they seem to have a slight influence on the hyperfine pattern of the S2 signal. (iv) The S3 signal can be observed in Ca(2+)-depleted PS-II which does not exhibit the modified multiline signal. Then, it is proposed that formation of histidine radical during the S2 to S3 transition in Ca(2+)-depleted PS-II [(1990) Nature 347, 303-306] also occurs in functional PS-II.  相似文献   

15.
A light-driven reaction model for the Ca2+-depleted Photosystem (PS) II is proposed to explain the split signal observed in electron paramagnetic resonance (EPR) spectra based on a comparison of EPR assignments with recent x-ray structural data. The split signal has a splitting linewidth of 160 G at around g = 2 and is seen upon illumination of the Ca2+-depleted PS II in the S2 state associated with complete or partial disappearance of the S2 state multiline signal. Another g=2 broad ESR signal with a 110 G linewidth was produced by 245 K illumination for a short period in the Ca2+-depleted PS II in S1 state. At the same time a normal YZ· radical signal was also efficiently trapped. The g=2 broad signal is attributed to an intermediate S1X· state in equilibrium with the trapped YZ· radical. Comparison with x-ray structural data suggests that one of the split signals (doublet signal) is attributable to interaction between His 190 and the YZ· radical, and other signals is attributable to interaction between His 337 and the manganese cluster, providing further clues as to the mechanism of water oxidation in photosynthetic oxygen evolution.  相似文献   

16.
The anion azide, N3 -, has been previously found to be an inhibitor of oxygen evolution by Photosystem II (PS II) of higher plants. With respect to chloride activation, azide acts primarily as a competitive inhibitor but uncompetitive inhibition also occurs [Haddy A, Hatchell JA, Kimel RA and Thomas R (1999) Biochemistry 38: 6104–6110]. In this study, the effects of azide on PS II-enriched thylakoid membranes were characterized by electron paramagnetic resonance (EPR) spectroscopy. Azide showed two distinguishable effects on the S2 state EPR signals. In the presence of chloride, which prevented competitive binding, azide suppressed the formation of the multiline and g = 4.1 signals concurrently, indicating that the normal S2 state was not reached. Signal suppression showed an azide concentration dependence that correlated with the fraction of PS II centers calculated to bind azide at the uncompetitive site, based on the previously determined inhibition constant. No evidence was found for an effect of azide on the Fe(II)QA - signals at the concentrations used. This result is consistent with placement of the uncompetitive site on the donor side of PS II as suggested in the previous study. In chloride-depleted PS II-enriched membranes azide and fluoride showed similar effects on the S2 state EPR signals, including a notable increase and narrowing of the g = 4.1 signal. Comparable effects of other anions have been described previously and apparently take place through the chloride-competitive site. The two azide binding sites described here correlate with the results of other studies of Lewis base inhibitors.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

17.
The Mn4CaO5 cluster of photosystem II (PSII) catalyzes the oxidation of water to molecular oxygen through the light-driven redox S-cycle. The water oxidizing complex (WOC) forms a triad with TyrosineZ and P680, which mediates electrons from water towards the acceptor side of PSII. Under certain conditions two other redox-active components, TyrosineD (YD) and Cytochrome b 559 (Cyt b 559) can also interact with the S-states. In the present work we investigate the electron transfer from Cyt b 559 and YD to the S2 and S3 states at 195 K. First, YD ? and Cyt b 559 were chemically reduced. The S2 and S3 states were then achieved by application of one or two laser flashes, respectively, on samples stabilized in the S1 state. EPR signals of the WOC (the S2-state multiline signal, ML-S2), YD ? and oxidized Cyt b 559 were simultaneously detected during a prolonged dark incubation at 195 K. During 163 days of incubation a large fraction of the S2 population decayed to S1 in the S2 samples by following a single exponential decay. Differently, S3 samples showed an initial increase in the ML-S2 intensity (due to S3 to S2 conversion) and a subsequent slow decay due to S2 to S1 conversion. In both cases, only a minor oxidation of YD was observed. In contrast, the signal intensity of the oxidized Cyt b 559 showed a two-fold increase in both the S2 and S3 samples. The electron donation from Cyt b 559 was much more efficient to the S2 state than to the S3 state.  相似文献   

18.
Structural and electronic changes (oxidation states) of the Mn(4)Ca complex of photosystem II (PSII) in the water oxidation cycle are of prime interest. For all four transitions between semistable S-states (S(0) --> S(1), S(1) --> S(2), S(2) --> S(3), and S(3),(4) --> S(0)), oxidation state and structural changes of the Mn complex were investigated by X-ray absorption spectroscopy (XAS) not only at 20 K but also at room temperature (RT) where water oxidation is functional. Three distinct experimental approaches were used: (1) illumination-freeze approach (XAS at 20 K), (2) flash-and-rapid-scan approach (RT), and (3) a novel time scan/sampling-XAS method (RT) facilitating particularly direct monitoring of the spectral changes in the S-state cycle. The rate of X-ray photoreduction was quantitatively assessed, and it was thus verified that the Mn ions remained in their initial oxidation state throughout the data collection period (>90%, at 20 K and at RT, for all S-states). Analysis of the complete XANES and EXAFS data sets (20 K and RT data, S(0)-S(3), XANES and EXAFS) obtained by the three approaches leads to the following conclusions. (i) In all S-states, the gross structural and electronic features of the Mn complex are similar at 20 K and room temperature. There are no indications for significant temperature-dependent variations in structure, protonation state, or charge localization. (ii) Mn-centered oxidation likely occurs on each of the three S-state transitions, leading to the S(3) state. (iii) Significant structural changes are coupled to the S(0) --> S(1) and the S(2) --> S(3) transitions which are identified as changes in the Mn-Mn bridging mode. We propose that in the S(2) --> S(3) transition a third Mn-(mu-O)(2)-Mn unit is formed, whereas the S(0) --> S(1) transition involves deprotonation of a mu-hydroxo bridge. In light of these results, the mechanism of accumulation of four oxidation equivalents by the Mn complex and possible implications for formation of the O-O bond are considered.  相似文献   

19.
The manganese complex (Mn4) which is responsible for water oxidation in photosystem II is EPR detectable in the S2-state, one of the five redox states of the enzyme cycle. The S2-state is observable at 10?K either as an EPR multiline signal (spin S?=?1/2) or as a signal at g?=?4.1 (spin S?=?3/2 or 5/2). It has recently been shown that the state responsible for the multiline signal is converted to that responsible for the g?=?4.1 signal upon the absorption of near-infrared light [Boussac A, Girerd J-J, Rutherford AW (1996) Biochemistry 35?:?6984–6989]. It is shown here that the yield of the spin interconversion may be variable and depends on the photosystem II (PSII) preparations. The EPR multiline signal detected after near-infrared illumination, and which originates from PSII centers not susceptible to the near-infrared light, is shown to be different from that which originates from infrared-susceptible PSII centers. The total S2-multiline signal results from the superposition of the two multiline signals which originate from these two PSII populations. One S2 population gives rise to a "narrow" multiline signal characterized by strong central lines and weak outer lines. The second population gives rise to a "broad" multiline signal in which the intensity of the outer lines, at low and high field, are proportionally larger than those in the narrow multiline signal. The larger the relative amplitude of the outer lines at low and high field, the higher is the proportion of the near-infrared-susceptible PSII centers and the yield of the multiline to g?=?4.1 signal conversion. This inhomogeneity of the EPR multiline signal is briefly discussed in terms of the structural properties of the Mn4 complex.  相似文献   

20.
By exposing photosystem II (PSII) samples to an incrementing number of excitation flashes at room temperature, followed by freezing, we could compare the Mn-derived multiline EPR signal from the S2 oxidation state as prepared by 1, 5, 10, and 25 flashes of light. While the S2 multiline signals exhibited by these samples differed very little in spectral shape, a significant increase of the relaxation rate of the signal was detected in the multiflash samples as compared to the S2-state produced by a single oxidation. A similar relaxation rate increase was observed for the EPR signal from Y(D*). The temperature dependence of the multiline spin-lattice relaxation rate is similar after 1 and 5 flashes. These data are discussed together with previously reported phenomena in terms of a light-adaptation process of PSII, which commences on the third flash after dark-adaptation and is completed after 10 flashes. At room temperature, the fast-relaxing, light-adapted state falls back to the slow-relaxing, dark-adapted state with t(1/2) = 80 s. We speculate that light-adaptation involves changes necessary for efficient continuous water splitting. This would parallel activation processes found in many other large redox enzymes, such as Cytochrome c oxidase and Ni-Fe hydrogenase. Several mechanisms of light-adaptation are discussed, and we find that the data may be accounted for by a change of the PSII protein matrix or by the light-induced appearance of a paramagnetic center on the PSII donor side. At this time, no EPR signal has been detected that correlates with the increase of the relaxation rates, and the nature of such a new paramagnet remains unclear. However, the relaxation enhancement data could be used, in conjunction with the known Mn-Y(D) distance, to estimate the position of such an unknown relaxer. If positioned between Y(D) and the Mn cluster, it would be located 7-8 A from the spin center of the S2 multiline signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号