首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the transition from the four- to the eight-cell stage in ctenophore embryos, each blastomere produces one daughter cell with the potential to form comb plate cilia and one daughter cell that does not have this potential. If the second cleavage in a two-cell embryo is blocked, at the next cleavage these embryos frequently form four blastomeres which have the configuration of the blastomeres in a normal eight-cell embryo. At this division there is also a segregation of comb plate-forming potential. By compressing a two-cell embryo in a plane perpendicular to the first plane of cleavage it is possible to produce a four-cell blastomere configuration that is identical to that produced following the inhibition of the second cleavage. However, under these circumstances the segregation of comb plate potential does not occur. These results suggest that the appropriate plane of cleavage must take place for a given cleavage cycle, in order for localizations of developmental potential to be properly positioned within blastomeres.  相似文献   

2.
The developmental fates of animal, vegetal, dorsal, and ventral egg regions of Xenopus laevis embryos were examined. For this purpose, a tracer enzyme (horseradish peroxidase) was injected bilaterally into pairs of eight-cell-stage blastomeres and the clonal organization of marked cells in the early tail-bud embryos was examined. The epidermis over most of the body originated from animal-ventral micromeres, but that in the head originated from animal-dorsal blastomeres and that in the area surrounding the anus originated from vegetal-ventral blastomeres. The neural tube originated from animal-dorsal, vegetal-dorsal, and animal-ventral blastomeres. These results were consistent with those of previous studies. But in contrast to previous findings, results showed that the entire notochord is derived from animal-dorsal micromeres and that the somites originate from all four bilateral pairs of blastomeres in the eight-cell stage. These results are discussed in relation to the current maps of prospective fates based on results of vital-dye staining. Morphogenetic movements are also discussed on the basis of the clonal organization demonstrated in the present study.  相似文献   

3.
The present study shows that there is communication between reaggregated asynchronous cleavage stage blastomeres that regulates blastocoele formation. Individual blastomeres from eight-cell murine embryos were transferred to empty zonae pellucidae, intact two-cell embryos, or enucleated two-cell embryos, and were examined over a period of 75 hours for development of cavitation. It was found that the isolated blastomeres cavitated concurrently with intact control eight-cell embryos, while intact control two-cell embryos cavitated 24 hours later. However, the embryos resulting from combining a two-cell embryo and a blastomere from an eight-cell embryo cavitated at a time in between the eight- and two-cell controls.  相似文献   

4.
Four-cell stage mouse blastomeres have different developmental properties   总被引:3,自引:0,他引:3  
Blastomeres of the early mouse embryo are thought to be equivalent in their developmental properties at least until the eight-cell stage. However, the experiments that have led to this conclusion could not have taken into account either the spatial origin of individual blastomeres or the spatial allocation and fate of their progeny. We have therefore readdressed this issue having defined cell lineages in mouse embryos undergoing different patterns of cleavage in their second division cycle. This has enabled us to identify a major group of embryos in which we can predict not only the spatial origin of each given four-cell blastomeres, but also which region of the blastocyst is most likely to be occupied by its progeny. We show that a pattern of second cleavage divisions in which a meridional division is followed by one that is equatorial or oblique allows us to identify blastomeres that differ in their fate and in their developmental properties both from each other and from their cousins. We find that one of these four-cell stage blastomeres that inherits some vegetal membrane marked in the previous cleavage cycle tends to contribute to mural trophectoderm. The progeny of its sister tend to donate cells to part of the ICM lining the blastocyst cavity and its associated trophectoderm. Chimaeras made entirely of these equatorially or obliquely derived blastomeres show developmental abnormalities in both late preimplantation and early postimplantation development. By contrast, chimaeras made from four-cell stage blastomeres from early meridional divisions develop normally. The developmental defects of chimaeras made from the most vegetal blastomeres that result from later second cleavages are the most severe and following transplantation into foster mothers they fail to develop to term. However, when such individual four-cell blastomeres are surrounded by blastomeres from random positions, they are able to contribute to all embryonic lineages. In conclusion, this study shows that while all four-cell blastomeres can have full developmental potential, they differ in their individual developmental properties according to their origin in the embryo from as early as the four-cell stage.  相似文献   

5.
To elucidate a relationship between early cleavage planes and dorso-ventral (DV)-axis of sea urchin embryos, a fluorescent dye, Lucifer Yellow CH, was iontophoretically introduced into one blastomere at the 2-cell stage, and the location of the progeny cells was determined in the half-labeled prism larvae by examining the embryos from the animal pole. The boundary plane which divides the embryonic tissue into the labeled and nonlabeled parts was (1) coincident with, (2) perpendicular to, or (3) obliquely crossing the larval plane of bilateral symmetry. The oblique boundaries took only two angles mutually symmetrical with regard to the DV-axis of embryos. Combining these labeling patterns, the tissue of prism larvae could be divided into 8 sectors around the animal-vegetal axis. When the 2-cell stage embryos with different diameters of sister blastomeres were labeled with the dye, one end of the boundary plane was again found at one of the 8 boundary points noticed in equally cleaved embryos, while the other was observed to fall in the middle of a sector. These results indicate that the DV-axis of the embryo is established according to the spatial arrangement of blastomeres during the 5-6th cleavage stages when blastomeres align in 8 rows in meridional direction. It was also suggested that intercellular communication takes part in the determination of the fate of individual founder blastomeres during the two subsequent cleavages, i.e., 7-8th cleavage stages.  相似文献   

6.
Embryos of the indirect developing sea urchin, Heliocidaris tuberculata, and of Heliocidaris erythrogramma which develops directly without the formation of a pluteus larva, were bisected at the two- and four-cell stages. Paired half-embryos resulting from the bisection of H. tuberculata embryos along either the first or the second cleavage plane develop identically into miniature prism stage larvae. As in other indirect developing sea urchins, no differential segregation of developmental potential takes place as a result of the first and second cleavage divisions. Although half-embryos resulting from bisection along the second cleavage plane differentiate all cell types and develop equivalently in H. erythrogramma, the isolated first cleavage blastomeres do not. One of these two cells always forms significantly more mesodermal and endodermal cells. These patterns of differentiation are consistent with fate-mapping studies indicating that most mesodermal and endodermal cells are derived from the prospective ventral blastomere. Therefore, a differential segregation of developmental potential takes place at the first cleavage division in H. erythrogramma. When embryos of H. erythrogramma were bisected during the eight-cell stage, isolated tiers of animal blastomeres typically formed only ectodermal structures including the vestibule, whereas vegetal embryo halves formed all differentiated cell types. We propose that animal-vegetal cell determination and differentiation takes place along an axis which has been shifted relative to the pattern of cell cleavages in the embryos of H. erythrogramma. Vegetal morphogenetic potential for the formation of mesodermal and endodermal structures has become more closely associated with the prospective ventral side of the embryo during the evolution of direct development in Heliocidaris.  相似文献   

7.
We studied the effects of modified magnetic fields, such as reduced geomagnetic field or only its horizontal component, strengthened vertical component, or periodic alteration of horizontal component polarity, on two-, four-, and eight-cell embryos of Bufo viridis and Rana macrocnemis. Modified magnetic conditions did not affect the first or second cleavage furrow geometry. The strengthened vertical component of geomagnetic field alone decreased the frequency of two-cell embryos with the second furrow, which was not closed on the animal pole. Modified magnetic conditions more distinctly affected the vertical sizes of animal and vegetal blastomeres of eight-cell toad embryos due, apparently, to displacement of the third cleavage plane towards the animal or vegetal pole. The response of frog embryos to modified magnetic conditions was much less pronounced.  相似文献   

8.
The oral-aboral axis of a sea urchin embryo is specified by first cleavage   总被引:3,自引:0,他引:3  
Several lines of evidence suggest that the oral-aboral axis in Strongylocentrotus purpuratus embryos is specified at or before the 8-cell stage. Were the oral-aboral axis specified independently of the first cleavage plane, then a random association of this plane with the blastomeres of the four embryo quadrants in the oral-aboral plane (viz. oral, aboral, right and left) would be expected. Lineage tracer dye injection into one blastomere at the 2-cell stage and observation of the resultant labeling patterns demonstrates instead a strongly nonrandom association. In at least ninety percent of cases, the progeny of the aboral blastomeres are associated with those of the left lateral blastomeres and the progeny of the oral blastomeres with the right lateral ones, respectively. Thus, ninety percent of the time the oral pole of the future oral-aboral axis lies 45 degrees clockwise from the first cleavage plane as viewed from the animal pole. The nonrandom association of blastomeres after labeling of the 2-cell stage implies that there is a mechanistic relation between axis specification and the positioning of the first cleavage plane.  相似文献   

9.
The amphipod Parhyale hawaiensis is a small crustacean found in intertidal marine habitats worldwide. Over the past decade, Parhyale has emerged as a promising model organism for laboratory studies of development, providing a useful outgroup comparison to the well studied arthropod model organism Drosophila melanogaster. In contrast to the syncytial cleavages of Drosophila, the early cleavages of Parhyale are holoblastic. Fate mapping using tracer dyes injected into early blastomeres have shown that all three germ layers and the germ line are established by the eight-cell stage. At this stage, three blastomeres are fated to give rise to the ectoderm, three are fated to give rise to the mesoderm, and the remaining two blastomeres are the precursors of the endoderm and germ line respectively. However, blastomere ablation experiments have shown that Parhyale embryos also possess significant regulatory capabilities, such that the fates of blastomeres ablated at the eight-cell stage can be taken over by the descendants of some of the remaining blastomeres. Blastomere ablation has previously been described by one of two methods: injection and subsequent activation of phototoxic dyes or manual ablation. However, photoablation kills blastomeres but does not remove the dead cell body from the embryo. Complete physical removal of specific blastomeres may therefore be a preferred method of ablation for some applications. Here we present a protocol for manual removal of single blastomeres from the eight-cell stage of Parhyale embryos, illustrating the instruments and manual procedures necessary for complete removal of the cell body while keeping the remaining blastomeres alive and intact. This protocol can be applied to any Parhyale cell at the eight-cell stage, or to blastomeres of other early cleavage stages. In addition, in principle this protocol could be applicable to early cleavage stage embryos of other holoblastically cleaving marine invertebrates.  相似文献   

10.
Summary Blastomeres of two-cell, four-cell, and eight-cell embryos of Hydractinia echinata were injected with horseradish-peroxidase (HRP) or fluorescein isothiocyanate (FITC)-dextran. The fate of the descendants of the injected blastomeres was followed until the planula larva had developed. The results obtained after HRP or FITC-dextran injection were essentially the same. Blastomeres are equivalent up to the four-cell stage, i.e. half-blastomeres produce half of the ectoderm of the planula larva and quarter-blastomeres give rise to one quarter of the larval ectoderm. During normal embryogenesis, the larval anterior-posterior axis corresponds to the animal-vegetal axis of the zygote. Thus, the labelled areas of larvae consisting of the progeny of injected half or quarter blastomeres normally stretch along the larval anterior-posterior axis. Normally, material giving rise to anterior or posterior larval parts, respectively, is separated at the third cleavage. Irrespective of the type of experiment, the progeny of injected blastomeres always contributed to endoderm formation, i.e. in larvae resulting from injected embryos the endoderm was more or less uniformly labelled. Application of vital stains locally to the exterior of zygotes and following these markers through first and second cleavage, produced evidence that in the vast majority of cases, the second cleavage is meridional. Offprint requests to: A. Schlawny  相似文献   

11.
Cell lineages during development of ascidian embryos were analyzed by injection of horseradish peroxidase as a tracer enzyme into identified cells at the one-, two-, four-, and eight-cell stages of the ascidians, Halocynthia roretzi, Ciona intestinalis, and Ascidia ahodori. Identical results were obtained with eggs of the three different species examined. The first cleavage furrow coincided with the bilateral symmetry plane of the embryo. The second furrow did not always divide the embryo into anterior and posterior halves as each of the anterior and posterior cell pairs gave rise to different tissues according to their destinies, which became more definitive in the cell pairs at the eight-cell stage. Of the blastomeres constituting the eight-cell stage embryo, the a4.2 pair (the anterior animal blastomeres) differentiated into epidermis, brain, and presumably sense organ and palps. Every descendant cell of the b4.2 pair (the posterior animal blastomeres) has been thought to become epidermis; however, the horseradish peroxidase injection probe revealed that the b4.2 pair gave rise to not only epidermis but also muscle cells at the caudal tip region of the developing tailbud-stage embryos. The A4.1 pair (the anterior vegetal blastomeres) developed into endoderm, notochord, brain stem, spinal cord, and also muscle cells next the caudal tip muscle cells. From the B4.1 pair (the posterior vegetal blastomeres) originated muscle cells of the anterior and middle parts of the tail, mesenchyme, endoderm, endodermal strand, and also notochord at the caudal tip region. These results clearly demonstrate that muscle cells are derived not only from the B4.1 pair, as has hitherto been believed, but also from both the b4.2 and A4.1 pairs.  相似文献   

12.
Fates of the blastomeres of the 16-cell stage Xenopus embryo   总被引:6,自引:0,他引:6  
The fate of each of the blastomeres in the 16-cell stage Xenopus embryo which had been carefully selected for stereotypic cleavages was determined by intracellularly marking a single blastomere with horseradish peroxidase and identifying the labeled progeny in the tailbud embryo by histochemistry. Each blastomere populated all three primary germ layers. The progeny of each blastomere were distributed characteristically both in phenotype and in location. For example, most organs were populated by the descendants of particular sets of blastomeres. Furthermore, within an organ the progeny of a single blastomere were restricted to defined spatial addresses. This study describes the fates of identified 16-cell stage blastomeres and demonstrates that they are distinct and predictable if embryos are preselected for stereotypic cleavages.  相似文献   

13.
This study defines the time period during which the cellular components that specify comb plates and photocytes become localized in different parts of blastomeres prior to their segregation to separate daughter cells. At the two-cell stage the factors which specify comb plates are localized at the aboral pole of the blastomeres. There is not a significant localization of the factors which specify comb plates and photocytes along the tentacular axis of the embryo. At the four-cell stage, the factors which specify comb plates become localized at one end of the tentacular axis of the blastomeres; however, the factors which specify photocytes have not yet become localized. At the eight-cell stage, the factors which specify these two cell types are segregated to different blastomeres.The role of cleavage in setting up these localized regions of developmental potential has been studied by reversibly inhibiting selected cleavages. After the first division, the pattern of cleavage that follows a period of cleavage inhibition corresponds to the pattern occurring in untreated embryos that began development at the same time. This situation is similar to the “clock” system, which controls many aspects of the pattern of cleavage in sea urchin embryos. The extent to which the factors that specify comb plates and photocytes become localized in a given region of a blastomere is correlated with the kind of cleavage which occurs after a block. Most of the activity involved in localizing developmental potential takes place during cleavage.  相似文献   

14.
To study the mechanisms of dorsal axis specification, the alteration in dorsal cell fate of cleavage stage blastomeres in axis-respecified Xenopus laevis embryos was investigated. Fertilized eggs were rotated 90° with the sperm entry point up or down with respect to the gravitational field. At the 8-cell stage, blastomeres were injected with the lineage tracers, Texas Red- or FITC-Dextran Amines. The distribution of the labeled progeny was mapped at the tail-bud stages (stages 35–38) and compared with the fate map of an 8-cell embryo raised in a normal orientation. As in the normal embryos, each blastomere in the rotated embryos has a characteristic and predictable cell fate. After 90° rotation the blastomeres in the 8-cell stage embryo roughly switched their position by 90°, but the fate of the blastomeres did not simply show a 90° switch appropriate for their new location. Four types of fate change were observed: (i) the normal fate of the blastomere is conserved with little change; (ii) the normal fate is completely changed and a new fate is adopted according to the blastomere's new position; (iii) the normal fate is completely changed, but the new fate is not appropriate for its new position; and (4) the blastomere partially changed its fate and the new fate is a combination of its original fate and a fate appropriate to its new location. According to the changed fates, the blastomeres that adopt dorsal fates were identified in rotated embryos. This identification of dorsal blastomeres provides basic important information for further study of dorsal signaling in Xenopus embryos.  相似文献   

15.
Avis J  Anderson GB 《Theriogenology》1988,29(2):505-512
Although methods for production of chimeras from early cleavage stages have been well established, little research has been directed toward production of genetically identical chimeric offspring. This study was designed to examine survival of blastocysts produced by aggregation of two halved eight-cell stage embryos from two different mouse strains. Four blastomeres of an eight-cell embryo from a pigmented strain were aggregated with four blastomeres of an eight-cell embryo from a nonpigmented strain. Aggregates were cultured for 48 h and transferred as blastocysts to synchronized recipients of three treatment groups. Viability was determined by examining the number of offspring produced relative to the number of blastocysts transferred. Thirty-nine pups were born from 375 transferred blastocysts (10%), with 16 pups displaying coat-color chimerism. Both nonmanipulated eight-cell embryos cultured for 48 h (P < 0.05) and chimeric blastocysts (P < 0.001) displayed lower embryo survival after transfer to recipients than noncultured, nonmanipulated blastocysts used as controls. Viability of chimeric blastocysts was also lower than that of nonmanipulated embryos cultured for the same period and transferred to the same recipients (P < 0.001). Although posttransfer survival of chimeric blastocysts was low, the birth of morphologically normal offspring demonstrated that production of chimeras from half embryos was compatible with survival. Improvements in this procedure may be useful for production of tenetically identical chimeras from outbred populations, such as those commonly found in domestic livestock species.  相似文献   

16.
The present study was conducted to establish a simple and efficient method of producing monozygotic twin calves using the blastomere separation technique. To produce monozygotic twin embryos from zona-free two- and eight-cell embryos, blastomeres were separated mechanically by pipetting to form two demi-embryos; each single blastomere from the two-cell embryo and tetra-blastomeres from the eight-cell embryo were cultured in vitro using the Well of the Well culture system (WOW). This culture system supported the successful arrangement of blastomeres, resulting in their subsequent aggregation to form a demi-embryo developing to the blastocyst stage without a zona pellucida. There was no significant difference in the development to the blastocyst stage between blastomeres separated from eight-cell (72.0%) and two-cell (62.0%) embryos. The production rates of the monozygotic pair blastocysts and transferable paired blastocysts for demi-embryos obtained from eight-cell embryos (64.0 and 45.0%, respectively) were higher than those for demi-embryos obtained from two-cell embryos (49.0 and 31.0%, P<0.05). The separated demi-embryos obtained from eight-cell embryos produced by IVM/IVF of oocytes collected by ovum pick-up (OPU) from elite cows and cultured in wells tended to have a higher pregnancy rate (78.9% vs. 57.1%) and similar monozygotic twinning rate (40.0% vs. 33.3%) compared with monozygotic twin blastocysts obtained by the conventional bisection of in vivo derived blastocysts. In conclusion, producing twins by separation of blastomeres in OPU-IVF embryos, followed by the WOW culture system, yielded viable monozygotic demi-embryos, resulting in high rates of pregnancy and twinning rates after embryo transfer.  相似文献   

17.
Nuclear reprogramming in nuclear transplant rabbit embryos   总被引:26,自引:0,他引:26  
The first six genetically verified nuclear transplant rabbits have been produced in this study. Individual eight-cell stage embryo blastomeres were transferred and fused with enucleated mature oocytes of which six full-term offspring were produced out of 164 manipulated eggs. The following efficiency rates were determined for the nuclear transplantation procedure: chromosomal removal from oocytes, 92%; fusion rate, 84%; activation rate, 46%; embryo transfer rate, 27%. Additional reasons for the low efficiency rate of nuclear transplant embryos may include limited development due to aging in recipient oocytes and asynchronous transfers of manipulated embryos to recipient females. The successful development to term may have been due to the ability of the mature oocyte to reprogram the eight-cell stage nuclei. The number of cells in blastocysts derived from isolated eight-cell blastomeres (18 +/- .08) was lower than that of nonmanipulated pronuclear (106 +/- 5.1) and nuclear transplant embryos derived from eight-cell stage nuclei (91 +/- 10.2) (p less than 0.001). This evidence along with the significant amount of nuclear swelling in nuclear transplant embryos and a delay in the time of blastocyst formation indicate that nuclear reprogramming had taken place in these embryos. Successful nuclear reprogramming indicates that serial transfers could result in the expanded multiplication of mammalian embryos.  相似文献   

18.
Single blastomeres from four- and eight-cell mouse embryos were fused into the enucleated halves of two-cell embryos, and the ability of these reconstituted embryos to develop in vitro and in vivo was examined. The proportion of these reconstituted embryos developing to blastocysts was 74% (60/81) when four-cell embryo blastomeres were used as nuclei donors and 31% (57/182) when eight-cell embryo blastomeres were used. Eight complete sets of the quadruplet-reconstituted embryos developed to blastocysts, and five live young (9%, 5/57) were obtained after transfer; however, none of the live young were clones. Although when using blastomeres from eight-cell embryos no complete set of eight developed to blastocysts, sextuplets were obtained. The blastocysts, however, failed to produce live young after transfer. In assessing the outgrowths, it was found that 43% of those derived from reconstituted embryos using blastomeres from four-cell embryos had an inner cell mass (ICM); however, outgrowths derived from reconstituted embryos using blastomeres from eight-cell embryos lacked an ICM. These results suggest that the genomes of four- and eight-cell nuclei introduced into the enucleated halves of two-cell embryos are reversed to support the development of the reconstituted embryo.  相似文献   

19.
The two muscle lineage blastomeres were removed surgically from Ciona intestinalis embryos at the eight-cell stage and allowed to develop in isolation. Acetylcholinesterase, an enzyme that occurs only in muscle cells of the developing larva, was detected histochemically in progeny cells of these isolated blastomers. Acetylcholinesterase differentiation in muscle lineage cells is not, therefore, dependent on inductive interactions with embryonic tissues derived from other eight-cell stage blastomeres.  相似文献   

20.
To elucidate factors involved in the oral-aboral axis specification, several observations and experiments were undertaken using the sand dollar Scaphechinus mirabilis. Unlike in Strongylcentrotus purpuratus, localization of mitochondria was not detected in unfertilized eggs. After fertilization, however, the bulk of mitochondria became localized to the opposite side of sperm entry. The first cleavage divided this mitochondrial cluster into daughter blastomeres. On the other hand, a second cleavage produced daughter blastomeres containing quite different amounts of mitochondria. To know whether such mitochondrial localization affects the oral-aboral axis specification, 4-cell-stage embryos were separated along the second cleavage plane. Although both half embryos developed into morphologically normal plutei, some differences, such as the number of pigment cells, were noticed between the siblings. In contrast, cell tracing revealed that the first cleavage separated the oral from the aboral part in most cases, indicating that the unequal distribution of mitochondria is not critical for the oral-aboral axis specification. Further, stained and non-stained half embryo fragments were combined. Such combined embryos developed into normal plutei with a single oral-aboral axis. The plane dividing labeled and non-labeled parts were incident, oblique or perpendicular to the median plane of the combined embryo, and the appearance frequencies of those labeling patterns were similar to those obtained by cell tracing in intact embryos. Interestingly, the half fragments derived from embryos inseminated earlier showed a tendency to form the oral part. These suggest that several factors as well as the localized cytoplasmic components would be involved in the specification process of oral-aboral axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号