首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In colonies of European Apis mellifera, Varroa jacobsoni reproduces both in drone and in worker cells. In colonies of its original Asian host, Apis cerana, the mites invade both drone and worker brood cells, but reproduce only in drone cells. Absence of reproduction in worker cells is probably crucial for the tolerance of A. cerana towards V. jacobsoni because it implies that the mite population can only grow during periods in which drones are reared. To test if non-reproduction of V. jacobsoni in worker brood cells of A. cerana is due to a trait of the mites or of the honey-bee species, mites from bees in A. mellifera colonies were artificially introduced into A. cerana worker brood cells and vice versa. Approximately 80% of the mites from A. mellifera colonies reproduced in naturally infested worker cells as well as when introduced into worker cells of A. mellifera and A. cerana. Conversely, only 10% of the mites from A. cerana colonies reproduced, both in naturally infested worker cells of A. cerana and when introduced into worker cells of A. mellifera. Hence, absence of reproduction in worker cells is due to a trait of the mites. Additional experiments showed that A. cerana bees removed 84% of the worker brood that was artificially infested with mites from A. mellifera colonies. Brood removal started 2 days after artificial infestation, which suggests that the bees responded to behaviour of the mites. Since removal behaviour of the bees will have a large impact on fitness of the mites, it probably plays an important role in selection for differential reproductive strategies. Our findings have large implications for selection programmes to breed less-susceptible bee strains. If differences in non-reproduction are mite specific, we should not only look for non-reproduction as such, but for colonies in which non-reproduction in worker cells is selected. Hence, in selection programmes fitness of mites that reproduce in both drone and worker cells should be compared to fitness of mites that reproduce only in drone cells. © Rapid Science Ltd. 1998  相似文献   

2.
王星  王强  代平礼  刘锋  周婷 《昆虫知识》2007,44(6):859-862
重新界定的外寄生螨类---狄斯瓦螨Varroa destructor(Anderson and Trueman),严重危害全世界的西方蜜蜂Apis mellifera。但是对其原始寄主东方蜜蜂Apis cerana不构成可见的危害。在西方蜜蜂群中,狄斯瓦螨在雄蜂房和工蜂房都能进行繁殖。在其亚洲的原始寄主东方蜜蜂群中,它们可以寄生于雄蜂和工蜂,但在工蜂房中不育。蜜蜂的血淋巴是狄斯瓦螨生存和繁殖需要摄取的惟一食物来源,推测血淋巴中的某种物质含量会影响狄斯瓦螨的繁殖。对中华蜜蜂Apis ceranaFabricius和意大利蜜蜂ApismelliferaL.工蜂和雄蜂封盖幼虫血淋巴中游离氨基酸和与营养有关的微量元素含量进行了比较,发现其存在明显差异,并推测这些差异与东方蜜蜂抗螨能力强有关。  相似文献   

3.
Two lines of honey bees ( Apis mellifera ligustica ) were selectively propagated by instrumental insemination using the population growth of the Varroa mite as a criteria. Different infestation rates are at least partially genetic since selection produced significant bi-directional differences between lines over a period of three subsequent generations. There was no correlation between several behavioural and physiological characteristics which are potentially associated with Varroa resistance (hygienic behaviour, physical damage to mites, infertility of the intruding mites) and the development of the Varroa population after artificial infestation. There was a positive significant correlation between the total mites in the colonies and the amount of reared brood. Colony infestation was also positively correlated with the amount of honey harvested.  相似文献   

4.
We tested six commercial sources of honey bees, Apis mellifera L. (Hymenoptera: Apidae), whose breeding incorporated the trait of Varroa sensitive hygiene (VSH). VSH confers resistance to the parasitic mite Varroa destructor Anderson & Trueman by enhancing the ability of the bees to hygienically remove mite-infested brood. VSH production queens (i.e., queens commercially available for use in beekeepers' production colonies) from the six sources were established in colonies which later were measured for VSH. Their responses were compared with those of colonies with three other types of queens, as follows: VSH queens from the selected closed population maintained by USDA-ARS for research and as a source of breeding germplasm, queens from the cooperating commercial distributor of this germplasm, and queens of a commercial, mite-susceptible source. The reduction of mite infestation in brood combs exposed to test colonies for 1 wk differed significantly between groups. On average, colonies with VSH production queens reduced infestation by 44%. This group average was intermediate between the greater removal by pure ARS VSH (76%) and the cooperators' breeding colonies (64%), and the lesser removal by susceptible colonies (7%). VSH production colonies from the different sources had variable expression of hygiene against mites, with average reduced infestations ranging from 22 to 74%. In addition, infertility was high among mites that remained in infested cells in VSH breeder colonies from ARS and the commercial distributor but was lower and more variable in VSH production colonies and susceptible colonies. Commercial VSH production colonies supply mite resistance that generally seems to be useful for beekeeping. Resistance probably could be improved if more VSH drones sources were supplied when VSH production queens are being mated.  相似文献   

5.
The aim of this investigation was to establish whether Varroa destructor can play a role in the transmission of Paenibacillus larvae larvae spores from infected to healthy bee colonies. Mites, collected from an Apis mellifera carnica colony heavily infected with American foulbrood and treated with Apistan, were suspended in distilled water and treated in three different ways:homogenizing, shaking and stirring, or sonication. The resulting fluid samples were transferred onto selective agar medium. All culture plates showed colonies that could be identified as P.l. larvae. In view of the numbers of spores they can carry, it is concluded that mites may transmit American foulbrood from infected to healthy bee colonies.  相似文献   

6.
The utility of USDA-developed Russian and varroa sensitive hygiene (VSH) honey bees, Apis mellifera L. (Hymenoptera: Apidae), was compared with that of locally produced, commercial Italian bees during 2004-2006 in beekeeping operations in Alabama, USA. Infestations of varroa mites, Varroa destructor Anderson & Truman (Acari: Varroidae), were measured twice each year, and colonies that reached established economic treatment thresholds (one mite per 100 adult bees in late winter; 5-10 mites per 100 adult bees in late summer) were treated with acaricides. Infestations of tracheal mites, Acarapis woodi (Rennie) (Acari: Tarsonemidae), were measured autumn and compared with a treatment threshold of 20% mite prevalence. Honey production was measured in 2005 and 2006 for colonies that retained original test queens. Throughout the three seasons of measurement, resistant stocks required less treatment against parasitic mites than the Italian stock. The total percentages of colonies needing treatment against varroa mites were 12% of VSH, 24% of Russian, and 40% of Italian. The total percentages requiring treatment against tracheal mites were 1% of Russian, 8% of VSH and 12% of Italian. The average honey yield of Russian and VSH colonies was comparable with that of Italian colonies each year. Beekeepers did not report any significant behavioral problems with the resistant stocks. These stocks thus have good potential for use in nonmigratory beekeeping operations in the southeastern United States.  相似文献   

7.
Varroa destructor is a major pest in world beekeeping. It was first detected in Madagascar in 2010 on the endemic honeybee Apis mellifera unicolor. To evaluate V. destructor spread dynamics in Madagascar a global survey was conducted in 2011–2012. A total of 695 colonies from 30 districts were inspected for the presence of mites. 2 years after its introduction, nine districts were found infested. Varroa destructor spread was relatively slow compared to other countries with a maximum progression of 40 km per year, the five newly infested districts being located next to the first infested ones. The incidence of mite infestation was also investigated by monitoring 73 colonies from five apiaries during 1 year (2011–2012). Sixty percent of local colony mortality was recorded after 1 year of survey. Varroa destructor strain determination was done by partial sequencing of the cytochrome oxidase I gene of 13 phoretic mites sampled in five districts. A single V. destructor mitochondrial haplotype was detected, the Korean type, also present in the closest African countries. A global pathogen survey was also conducted on the colonies inspected for mite presence. The greater wax moth, Galleria mellonella has been found in all colonies all over the country. Two other pathogens and morphological abnormalities in workers, such as deformed wings, were found associated with only V. destructor presence. A prevention management plan must be implemented to delimit mite spread across the island.  相似文献   

8.
The most economically important parasites of honey bee, Apis mellifera L. (Hymenoptera: Apidae), colonies are the parasitic mites Varroa destructor Anderson & Trueman and Acarapis woodi (Rennie). Research has shown that mite-tolerant stocks are effective means to reduce mite infestations within colonies, but it is unclear whether the stocks available commercially are viable means of mite control because they are likely to be genetic hybrids. We compared colonies of a standard commercial stock ("Italian") with those of a commercially purchased mite-tolerant stock ("Russian") for their levels of varroa and "tracheal" mites (A. woodi) over the course of 2 yr in three different geographic locations. We were unable to detect significant infestations of tracheal mites; thus, we were unable to adequately compare the stocks for their tolerance. In contrast, we found significant differences in the levels of varroa mites within and among colonies located across the three different study sites for both years. By the end of the first year, we found statistically significant differences between the stocks in varroa mite intensity (mites per adult bee), such that Russian-hybrid colonies tended to have a significantly lower proportion ofparasitized adult bees than Italian colonies. In the second year, we found statistically significant differences between the stocks in varroa mite load (daily mite drop), such that Russian-hybrid colonies tended to have lower total numbers of mites than Italian colonies. These findings suggest that beekeepers may benefit by incorporating commercially purchased mite-tolerant stocks into their existing integrated pest management programs.  相似文献   

9.
The two haplotypes of Varroa destructor that have been identified as parasites of the Western honeybee (Apis mellifera L.) show disparate levels of virulence towards honeybee colonies. The Korea haplotype has been associated with severe colony mortality, whereas untreated colonies of European A. mellifera have survived long-term infestation by the Japan haplotype. The possible existence of a benign haplotype of V. destructor raises the prospect that it be used to “inoculate” colonies to provide biocontrol of the virulent haplotype. The feasibility of such a strategy was investigated using a mathematical model. Competition for resources during reproduction is known to reduce varroa mites’ reproduction rates as their infestation levels increase. Results from modelling suggested this density-dependent effect is sufficient for an established benign population to prevent the virulent population reaching destructive levels if a colony is subject to sporadic influxes of virulent mites. A colony faced with a continuous influx of mites could be protected if the proportion of virulent mites in the influx were below a threshold level (dependent on length of breeding season and intensity of influx). This condition might be achieved by “inoculating” neighbouring apiaries and controlling feral colonies in the vicinity. Decreased brood cell invasion rate by the benign haplotype decreased the threshold level. Any reproductive isolation between the benign and virulent haplotypes would cause further reproductive suppression, driving sporadic influxes of the virulent haplotype to extinction and conferring greater tolerance to a colony faced with a virulent influx. Increased colony resistance to varroa in the model was synergistic with the inoculation of colonies in the absence of reproductive isolation, but potentially antagonistic in its presence—although not to an extent that would preclude their joint use.  相似文献   

10.
Honey bee (Apis mellifera) colonies are declining, and a number of stressors have been identified that affect, alone or in combination, the health of honey bees. The ectoparasitic mite Varroa destructor, honey bee viruses that are often closely associated with the mite, and pesticides used to control the mite population form a complex system of stressors that may affect honey bee health in different ways. During an acaricide treatment using Apistan (plastic strips coated with tau-fluvalinate), we analyzed the infection dynamics of deformed wing virus (DWV), sacbrood virus (SBV), and black queen cell virus (BQCV) in adult bees, mite-infested pupae, their associated Varroa mites, and uninfested pupae, comparing these to similar samples from untreated control colonies. Titers of DWV increased initially with the onset of the acaricide application and then slightly decreased progressively coinciding with the removal of the Varroa mite infestation. This initial increase in DWV titers suggests a physiological effect of tau-fluvalinate on the host's susceptibility to viral infection. DWV titers in adult bees and uninfested pupae remained higher in treated colonies than in untreated colonies. The titers of SBV and BQCV did not show any direct relationship with mite infestation and showed a variety of possible effects of the acaricide treatment. The results indicate that other factors besides Varroa mite infestation may be important to the development and maintenance of damaging DWV titers in colonies. Possible biochemical explanations for the observed synergistic effects between tau-fluvalinate and virus infections are discussed.  相似文献   

11.
The present study was conducted to determine whether Varroa jacobsoni can transmit American foulbrood (AFB), caused by the bacterium Paenibacillus larvae to healthy colonies by the surface transport of spores. Five two-storey Langstroth colonies of Apis mellifera ligustica were infested by placing a sealed brood comb, with 10% Varroa prevalence, between the central brood combs of each colony. Two months later the colonies were inoculated with P. larvae by adding brood comb pieces with clinical signs of AFB (45±5 scales per colony). After 60 days the brood area was completely uncapped by means of dissecting needles and tweezers, separating the Varroa mites from the larvae and the collected mites were introduced at a rate of 51 per colony into four recipient hives placed in an isolated apiary. Twenty female Varroa specimens were separated at random and observed by SEM. Paenibacillus larvae spores were found on the dorsal shield surface and on idiosomal setae. All colonies died after 4–5 months due to a high incidence of varroosis. No clinical AFB symptoms or P. larvae spores were observed in microscopic preparations. It is concluded that Varroa jacobsoni does not transmit AFB from infected to healthy colonies; it does, however transport P. larvae spores on its surface.  相似文献   

12.
Honey bee (Apis mellifera L.) colonies bred for hygienic behavior were tested in a large field trial to determine if they were able to resist the parasitic mite Varroa destructor better than unselected colonies of"Starline" stock. Colonies bred for hygienic behavior are able to detect, uncap, and remove experimentally infested brood from the nest, although the extent to which the behavior actually reduces the overall mite-load in untreated, naturally infested colonies needed further verification. The results indicate that hygienic colonies with queens mated naturally to unselected drones had significantly fewer mites on adult bees and within worker brood cells than Starline colonies for up to 1 yr without treatment in a commercial, migratory beekeeping operation. Hygienic colonies actively defended themselves against the mites when mite levels were relatively low. At high mite infestations (>15% of worker brood and of adult bees), the majority of hygienic colonies required treatment to prevent collapse. Overall, the hygienic colonies had similar adult populations and brood areas, produced as much honey, and had less brood disease than the Starline colonies. Thus, honey bees bred for hygienic behavior performed as well if not better than other commercial lines of bees and maintained lower mite loads for up to one year without treatment.  相似文献   

13.
狄斯瓦螨Varroa destructor Anderson & Trueman是意大利蜜蜂Apis mellifera Spinola的主要外寄生螨。雌成螨在幼虫巢房封盖前不久侵入幼虫巢房,并开始繁殖为害。从雌成螨在一个很短的时间内进入蜜蜂幼虫巢房,以及雄蜂幼虫巢房蜂螨的寄生率明显高于工蜂幼虫巢房的现象,表明蜜蜂幼虫体表一些信息素(semiochemicals)可能起着重要的引诱作用。作者对与大蜂螨相关的19种气味物质进行筛选,并对封盖前工蜂幼虫和雄蜂幼虫表皮挥发物进行气谱及气-质联谱测定。结果表明:雄蜂6龄幼虫对大蜂螨的引诱作用显著高于丁香水等10种气味物质。工蜂和雄蜂末龄幼虫体表挥发物的共有组份是9-二十三烯(C23H46),但它在雄蜂幼虫中所占的比例要明显高于工蜂幼虫。工蜂幼虫的特有主要组分是十八烷(C18H38)和9-甲基十九烷(C19H40);而雄蜂幼虫的特有主要组分是二十五烷(C25H52)和二十三烷(C23H48)。  相似文献   

14.
The objective of this study was to demonstrate genotypic variability and analyze the relationships between the infestation levels of the parasitic mite Varroa destructor in honey bee (Apis mellifera) colonies, the rate of damage of fallen mites, and the intensity with which bees of different genotypes groom themselves to remove mites from their bodies. Sets of paired genotypes that are presumably susceptible and resistant to the varroa mite were compared at the colony level for number of mites falling on sticky papers and for proportion of damaged mites. They were also compared at the individual level for intensity of grooming and mite removal success. Bees from the "resistant" colonies had lower mite population rates (up to 15 fold) and higher percentages of damaged mites (up to 9 fold) than bees from the "susceptible" genotypes. At the individual level, bees from the "resistant" genotypes performed significantly more instances of intense grooming (up to 4 fold), and a significantly higher number of mites were dislodged from the bees' bodies by intense grooming than by light grooming (up to 7 fold) in all genotypes. The odds of mite removal were high and significant for all "resistant" genotypes when compared with the "susceptible" genotypes. The results of this study strongly suggest that grooming behavior and the intensity with which bees perform it, is an important component in the resistance of some honey bee genotypes to the growth of varroa mite populations. The implications of these results are discussed.  相似文献   

15.
Honey bee, Apis mellifera L. (Hymenoptera: Apidae), colonies infested by parasitic mites are more prone to suffer from a variety of stresses, including cold temperature. We evaluated the overwintering ability of candidate breeder lines of Russian honey bees, most of which are resistant to both Varroa destructor Anderson & Trueman and Acarapis woodi (Rennie), during 1999-2001. Our results indicate that Russian honey bee colonies (headed by original and supersedure queens) can successfully overwinter in the north, even during adverse weather conditions, owing to their frugal use of food stores and their resistance to tracheal mite infestations. In contrast, colonies of Italian honey bees consumed more food, had more mites, and lost more adult bees than Russian honey bees, even during unusually mild winter conditions.  相似文献   

16.
We previously identified a novel insect picorna-like virus, termed Kakugo virus (KV), from the brains of aggressive worker honeybees that had counterattacked a giant hornet. To survey the prevalence of KV in worker populations engaged in various labors, we quantified KV genomic RNA. KV was detected specifically from aggressive workers in some colonies, while it was also detected from other worker populations in other colonies where the amount of KV detected in the workers was relatively high, suggesting that KV can infect various worker populations in the honeybee colonies. To investigate whether the KV strains detected were identical, phylogenetic analysis was performed. There was less than a 2% difference in the RNA-dependent RNA polymerase (RdRp) sequences between KV strains from aggressive workers and those from other worker populations, suggesting that all of the viruses detected were virtually the same KV. We also found that some of the KV-infected colonies were parasitized by Varroa mites, and the sequences of the KV strains detected from the mites were the same as those detected from the workers of the same colonies, suggesting that the mites mediate KV prevalence in the honeybee colonies. KV strains had approximately 6% and 15% sequence differences in the RdRp region from deformed wing virus and Varroa destructor virus 1, respectively, suggesting that KV represents a viral strain closely related to, but distinct from, these two viruses.  相似文献   

17.
Strips coated with conidia of Metarhizium anisopliae (Metschinkoff; Deuteromycetes: Hyphomycetes) to control the parasitic mite, Varroa destructor (Anderson and Trueman) in colonies of honey bees, Apis mellifera (Hymenoptera: Apidae) were compared against the miticide, tau-fluvalinate (Apistan) in field trials in Texas and Florida (USA). Apistan and the fungal treatments resulted in successful control of mite populations in both locations. At the end of the 42-day period of the experiment in Texas, the number of mites per bee was reduced by 69-fold in bee hives treated with Apistan and 25-fold in hives treated with the fungus; however mite infestations increased by 1.3-fold in the control bee hives. Similarly, the number of mites in sealed brood was 13-fold and 3.6-fold higher in the control bee hives than in those treated with Apistan and with the fungus, respectively. Like the miticide Apistan, the fungal treatments provided a significant reduction of mite populations at the end of the experimental period. The data from the broodless colonies treated with the fungus indicated that optimum mite control could be achieved when no brood is being produced, or when brood production is low, such as in the early spring or late fall. In established colonies in Florida, honey bee colony development did not increase under either Apistan or fungal treatments at the end of the experimental period, suggesting that other factors (queen health, food source, food availability) play some major role in the growth of bee colonies. Overall, microbial control of Varroa mites with fungal pathogens could be a useful component of an integrated pest management program for the honey bee industry.  相似文献   

18.
The repellent and acaricidal effects of some essential oils from the most typical wild plant species of northern Patagonia, Argentina, on Varroa destructor Anderson & Trueman were evaluated using a complete exposure test. Honey bees, Apis mellifera L., and mites (five specimens of each per dish) were introduced in petri dishes having different oil concentrations (from 0.1 to 25 micro per cage). Survival of bees and mites was registered after 24, 48, and 72 h. An attraction/repellence test was performed using a wax tube impregnated with essential oil and another tube containing wax only. The lowest LD50 values for mites were registered for Acantholippia seriphioides (A. Gray) Mold. (1.27 microl per cage) and Schinus molle L. (2.65 microl per cage) after 24 h, and for Wedelia glauca (Ortega) O. Hoffm. ex Hicken (0.59 microl per cage) and A. seriphioides (1.09 microl per cage) after 72 h of treatment. The oil with the highest selectivity ratio (A. mellifera LD50/V. destructor LD50) was the one extracted from S. molle (>16). Oils of Lippia junelliana (Mold.) Troncoso, Minthostachys mollis (HBK) Grieseb., and Lippia turbinata Grieseb. mixed with wax had repellent properties. None of the oils tested had attractive effects on Varroa mites.  相似文献   

19.
The combination of the concentration of formic acid and the duration of fumigation (CT product) during indoor treatments of honey bee, Apis mellifera L., colonies to control the varroa mite, Varroa destructor Anderson & Trueman, determines the efficacy of the treatment. Because high concentrations can cause queen mortality, we hypothesized that a high CT product given as a low concentration over a long exposure time rather than as a high concentration over a short exposure time would allow effective control of varroa mites without the detrimental effects on queens. The objective of this study was to assess different combinations of formic acid concentration and exposure time with similar CT products in controlling varroa mites while minimizing the effect on worker and queen honey bees. Treated colonies were exposed to a low, medium, or high concentration of formic acid until a mean CT product of 471 ppm*d in room air was realized. The treatments consisted of a long-term low concentration of 19 ppm for 27 d, a medium-term medium concentration of 42 ppm for 10 d, a short-term high concentration of 53 ppm for 9 d, and an untreated control. Both short-term high-concentration and medium-term medium-concentration fumigation with formic acid killed varroa mites, with averages of 93 and 83% mortality, respectively, but both treatments also were associated with an increase in mortality of worker bees, queen bees, or both. Long-term low-concentration fumigation had lower efficacy (60% varroa mite mortality), but it did not increase worker or queen bee mortality. This trend differed slightly in colonies from two different beekeepers. Varroa mite mean abundance was significantly decreased in all three acid treatments relative to the control. Daily worker mortality was significantly increased by the short-term high concentration treatment, which was reflected by a decrease in the size of the worker population, but not an increase in colony mortality. Queen mortality was significantly greater under the medium-term medium concentration and the short-term high concentration treatments than in controls.  相似文献   

20.
八角茴香精油防治蜂螨的蜂群效果研究   总被引:1,自引:0,他引:1  
本研究在蜂群中测定了八角茴香精油对西方蜜蜂大蜂螨和小蜂螨的杀螨效果。结果表明:应用八角茴香精油一个疗程后,大蜂螨的巢房寄生率由用药前的7.17%下降到1.93%,蜂体寄生率由用药前的4.13%下降到了1%,与氟氯苯氰菊酯组差异不显著;小蜂螨巢房寄生率由用药前的7.65%下降到3.4%,与升华硫组差异不显著;且八角茴香精油不会引起蜂群群势下降。可见,八角茴香精油在防治蜜蜂大、小蜂螨的应用上具有很大潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号