首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A highly conserved amino acid sequence, GVRAGGGIGD(4831), which may form part of the Ca(2+) release channel pore in RyR2, was subjected to Ala scanning or Ala to Val mutagenesis; function was then measured by expression in HEK-293 cells, followed by Ca(2+) photometry, high affinity [(3)H]ryanodine binding, and single-channel recording. All mutants except I4829A and I4829T (corresponding to the I4897T central core disease mutant in RyR1) displayed caffeine-induced Ca(2+) release in HEK-293 cells; only mutants G4826A, I4829V, and G4830A retained high affinity [(3)H]ryanodine binding; and single-channel function was found for all mutants tested, except for G4822A and A4825V. EC(50) values for caffeine-induced Ca(2+) release were increased for G4822A, R4824A, G4826A, G4828A, and D4831A; decreased for V4823A; and unchanged for A4825V, G4827A, I4829V, and G4830A. Ryanodine (10 microm), which did not stimulate Ca(2+) release in wild type (wt), did so in Ala mutants in amino acids 4823-4827. It inhibited the caffeine response in wt and most mutants, but enhanced the amplitude of caffeine-induced Ca(2+) release in mutant G4828A. It also restored caffeine-induced Ca(2+) release in mutants I4829A and I4829T. In single-channel recordings, mutants I4829V and G4830A retained normal conductance, whereas all others had decreased unitary channel conductances ranging from 27 to 540 picosiemens. Single-channel modulation was retained in G4826A, I4829V, and G4830A, but was lost in other mutants. In contrast to wt and G4826A, I4829V, and G4830A, in which divalent metals were preferentially conducted, mutants with loss of modulation had no selectivity of divalent cations over a monovalent cation. Analysis of Gly(4822) to Asp(4831) mutants in RyR2 supports the view that this highly conserved sequence constitutes part of the ion-conducting pore of the Ca(2+) release channel and plays a key role in ryanodine and caffeine binding and activation.  相似文献   

2.
The type 1 ryanodine receptor (RyR1) is a Ca(2+) release channel found in the sarcoplasmic reticulum of skeletal muscle and plays a pivotal role in excitation-contraction coupling. The RyR1 channel is activated by a conformational change of the dihydropyridine receptor upon depolarization of the transverse tubule, or by Ca(2+) itself, i.e. Ca(2+)-induced Ca(2+) release (CICR). The molecular events transmitting such signals to the ion gate of the channel are unknown. The S4-S5 linker, a cytosolic loop connecting the S4 and S5 transmembrane segments in six-transmembrane type channels, forms an α-helical structure and mediates signal transmission in a wide variety of channels. To address the role of the S4-S5 linker in RyR1 channel gating, we performed alanine substitution scan of N-terminal half of the putative S4-S5 linker (Thr(4825)-Ser(4829)) that exhibits high helix probability. The mutant RyR1 was expressed in HEK cells, and CICR activity was investigated by caffeine-induced Ca(2+) release, single-channel current recordings, and [(3)H]ryanodine binding. Four mutants (T4825A, I4826A, S4828A, and S4829A) had reduced CICR activity without changing Ca(2+) sensitivity, whereas the L4827A mutant formed a constitutive active channel. T4825I, a disease-associated mutation for malignant hyperthermia, exhibited enhanced CICR activity. An α-helical wheel representation of the N-terminal S4-S5 linker provides a rational explanation to the observed activities of the mutants. These results suggest that N-terminal half of the S4-S5 linker may form an α-helical structure and play an important role in RyR1 channel gating.  相似文献   

3.
Activation of the cardiac ryanodine receptor (RyR2) by Ca(2)+ is an essential step in excitation-contraction coupling in heart muscle. However, little is known about the molecular basis of activation of RyR2 by Ca(2)+. In this study, we investigated the role in Ca(2)+ sensing of the conserved glutamate 3987 located in the predicted transmembrane segment M2 of the mouse RyR2. Single point mutation of this conserved glutamate to alanine (E3987A) reduced markedly the sensitivity of the channel to activation by Ca(2)+, as measured by using single-channel recordings in planar lipid bilayers and by [(3)H]ryanodine binding assay. However, this mutation did not alter the affinity of [(3)H]ryanodine binding and the single-channel conductance. In addition, the E3987A mutant channel was activated by caffeine and ATP, was inhibited by Mg(2)+, and was modified by ryanodine in a fashion similar to that of the wild-type channel. Coexpression of the wild-type and mutant E3987A RyR2 proteins in HEK293 cells produced individual single channels with intermediate sensitivities to activating Ca(2)+. These results are consistent with the view that glutamate 3987 is a major determinant of Ca(2)+ sensitivity to activation of the mouse RyR2 channel, and that Ca(2)+ sensing by RyR2 involves the cooperative action between ryanodine receptor monomers. The results of this study also provide initial insights into the structural and functional properties of the mouse RyR2, which should be useful for studying RyR2 function and regulation in genetically modified mouse models.  相似文献   

4.
Despite the pivotal role of ryanodine in ryanodine receptor (RyR) research, the molecular basis of ryanodine-RyR interaction remains largely undefined. We investigated the role of the proposed transmembrane helix TM10 in ryanodine interaction and channel function. Each amino acid residue within the TM10 sequence, 4844IIFDITFFFFVIVILLAIIQGLII4867, of the mouse RyR2 was mutated to either alanine or glycine. Mutants were expressed in human embryonic kidney 293 cells, and their properties were assessed. Mutations D4847A, F4850A, F4851A, L4858A, L4859A, and I4866A severely curtailed the release of intracellular Ca2+ in human embryonic kidney 293 cells in response to extracellular caffeine and diminished [3H]ryanodine binding to cell lysates. Mutations F4846A, T4849A, I4855A, V4856A, and Q4863A eliminated or markedly reduced [3H]ryanodine binding, but cells expressing these mutants responded to extracellular caffeine by releasing stored Ca2+. Interestingly these two groups of mutants, each with similar properties, are largely located on opposite sides of the predicted TM10 helix. Single channel analyses revealed that mutation Q4863A dramatically altered the kinetics and apparent affinity of ryanodine interaction with single RyR2 channels and abolished the effect of ryanodol, an analogue of ryanodine, whereas the single channel conductance of the Q4863A mutant and its responses to caffeine, ATP, and Mg2+ were comparable to those of the wild type channels. Furthermore the effect of ryanodine on single Q4863A mutant channels was influenced by the transmembrane holding potential. Together these results suggest that the TM10 sequence and in particular the Q4863 residue constitute an important determinant of ryanodine interaction.  相似文献   

5.
We tested the hypothesis that part of the lumenal amino acid segment between the two most C-terminal membrane segments of the skeletal muscle ryanodine receptor (RyR1) is important for channel activity and conductance. Eleven mutants were generated and expressed in HEK293 cells focusing on amino acid residue I4897 homologous to the selectivity filter of K(+) channels and six other residues in the M3-M4 lumenal loop. Mutations of amino acids not absolutely conserved in RyRs and IP(3)Rs (D4903A and D4907A) showed cellular Ca(2+) release in response to caffeine, Ca(2+)-dependent [(3)H]ryanodine binding, and single-channel K(+) and Ca(2+) conductances not significantly different from wild-type RyR1. Mutants with an I4897 to A, L, or V or D4917 to A substitution showed a decreased single-channel conductance, loss of high-affinity [(3)H]ryanodine binding and regulation by Ca(2+), and an altered caffeine-induced Ca(2+) release in intact cells. Mutant channels with amino acid residue substitutions that are identical in the RyR and IP(3)R families (D4899A, D4899R, and R4913E) exhibited a decreased K(+) conductance and showed a loss of high-affinity [(3)H]ryanodine binding and loss of single-channel pharmacology but maintained their response to caffeine in a cellular assay. Two mutations (G4894A and D4899N) were able to maintain pharmacological regulation both in intact cells and in vitro but had lower single-channel K(+) and Ca(2+) conductances than the wild-type channel. The results support the hypothesis that amino acid residues in the lumenal loop region between the two most C-terminal membrane segments constitute a part of the ion-conducting pore of RyR1.  相似文献   

6.
Human central core disease (CCD) is caused by mutations/deletions in the gene that encodes the skeletal muscle ryanodine receptor (RyR1). Previous studies have shown that CCD mutations in the NH2-terminal region of RyR1 lead to the formation of leaky SR Ca2+ release channels when expressed in myotubes derived from RyR1-knockout (dyspedic) mice, whereas a COOH-terminal mutant (I4897T) results in channels that are not leaky to Ca2+ but lack depolarization-induced Ca2+ release (termed excitation-contraction [EC] uncoupling). We show here that store depletion resulting from NH2-terminal (Y523S) and COOH-terminal (Y4795C) leaky CCD mutant release channels is eliminated after incorporation of the I4897T mutation into the channel (Y523S/I4897T and Y4795C/I4897T). In spite of normal SR Ca2+ content, myotubes expressing the double mutants lacked voltage-gated Ca2+ release and thus exhibited an EC uncoupling phenotype similar to that of I4897T-expressing myotubes. We also show that dyspedic myotubes expressing each of seven recently identified CCD mutations located in exon 102 of the RyR1 gene (G4890R, R4892W, I4897T, G4898E, G4898R, A4905V, R4913G) behave as EC-uncoupled release channels. Interestingly, voltage-gated Ca2+ release was nearly abolished (reduced approximately 90%) while caffeine-induced Ca2+ release was only marginally reduced in R4892W-expressing myotubes, indicating that this mutation preferentially disrupts voltage-sensor activation of release. These data demonstrate that CCD mutations in exon 102 disrupt release channel permeation to Ca2+ during EC coupling and that this region represents a primary molecular locus for EC uncoupling in CCD.  相似文献   

7.
Three ryanodine receptor (RyR) isoforms, RyR1, RyR2, and RyR3, are expressed in mammalian tissues. It is unclear whether RyR isoforms are capable of forming heteromeric channels. To investigate their ability to form heteromeric channels, we co-expressed different RyR isoforms in HEK293 cells and examined their interactions biochemically and functionally. Immunoprecipitation studies revealed that RyR2 is able to interact physically with RyR3 and RyR1 in HEK293 cells and that RyR1 does not interact with RyR3. Co-expression of a ryanodine binding deficient mutant of RyR2, RyR2 (I4827T), with RyR3 (wt) restored [(3)H]ryanodine binding to the mutant. Interactions between RyR isoforms were further assessed by complementation analysis using mutants RyR2 (I4827T), RyR2 (E3987A), RyR3 (I4732T), RyR3 (E3885A), and RyR1 (E4032A), all of which are deficient in caffeine response. Caffeine-induced Ca(2+) release was restored in HEK293 cells co-transfected with mutants RyR2 (I4827T) and RyR3 (E3885A), RyR2 (E3987A) and RyR3 (I4732T), or RyR2 (I4827T) and RyR1 (E4032A), but not with RyR1 (E4032A) and RyR3 (I4732T), indicating that mutants of RyR2 and RyR3, or RyR2 and RyR1, but not RyR1 and RyR3, are able to complement each other. Co-expression of RyR3 (wt) and a pore mutant of RyR2, RyR2 (G4824A), produced regulatable single channels with intermediate unitary conductances. These observations demonstrate that RyR2 is capable of forming functional heteromeric channels with RyR3 and RyR1, whereas RyR1 is incapable of forming heteromeric channels with RyR3.  相似文献   

8.
The predicted TM10 transmembrane sequence, (4844)IIFDITFFFFVIVILLAIIQGLII(4867), has been proposed to be the pore inner helix of the ryanodine receptor (RyR) and to play a crucial role in channel activation and gating, as with the inner helix of bacterial potassium channels. However, experimental evidence for the involvement of the TM10 sequence in RyR channel activation and gating is lacking. In the present study, we have systematically investigated the effects of mutations of each residue within the 24-amino acid TM10 sequence of the mouse cardiac ryanodine receptor (RyR2) on channel activation by caffeine and Ca(2+). Intracellular Ca(2+) release measurements in human embryonic kidney 293 cells expressing the RyR2 wild type and TM10 mutants revealed that several mutations in the TM10 sequence either abolished caffeine response or markedly reduced the sensitivity of the RyR2 channel to activation by caffeine. By assessing the Ca(2+) dependence of [(3)H]ryanodine binding to RyR2 wild type and TM10 mutants we also found that mutations in the TM10 sequence altered the sensitivity of the channel to activation by Ca(2+) and enhanced the basal activity of [(3)H]ryanodine binding. Furthermore, single I4862A mutant channels exhibited considerable channel openings and altered gating at very low concentrations of Ca(2+). Our data indicate that the TM10 sequence constitutes an essential determinant for channel activation and gating, in keeping with the proposed role of TM10 as an inner helix of RyR. Our results also shed insight into the orientation of the TM10 helix within the RyR channel pore.  相似文献   

9.
We report transient expression of a full-length cDNA encoding the Ca2+ release channel of rabbit skeletal muscle sarcoplasmic reticulum (ryanodine receptor) in HEK-293 cells. The single-channel properties of the 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate-solubilized and sucrose gradient-purified recombinant Ca2+ release channels were investigated by using single-channel recordings in planar lipid bilayers. The recombinant Ca2+ release channel exhibited a K+ conductance of 780 pS when symmetrical 250 mM KCl was used as the conducting ion and a Ca2+ conductance of 116 pS in 50 mM luminal Ca2+. Opening events of the recombinant channels were brief, with an open time constant of approximately 0.22 ms. The recombinant Ca2+ release channel was more permeable to Ca2+ than to K+, with a pCa2+/pK+ ratio of 6.8. The response of the recombinant Ca2+ release channel to various concentrations of Ca2+ was biphasic, with the channel being activated by micromolar Ca2+ and inhibited by millimolar Ca2+. The recombinant channels were activated by ATP and caffeine, inhibited by Mg2+ and ruthenium red, and modified by ryanodine. Most recombinant channels were asymmetrically blocked, conducting current unidirectionally from the luminal to the cytoplasmic side of the channel. These data demonstrate that the properties of recombinant Ca2+ release channel expressed in HEK-293 cells are very similar, if not identical, to those of the native channel.  相似文献   

10.
The solubilized [3H]ryanodine receptor from cardiac sarcoplasmic reticulum was centrifuged through linear sucrose gradients. A single peak of radioactivity with apparent sedimentation coefficient of approximately 30S specifically comigrated with a high molecular weight protein of apparent relative molecular mass approximately 400,000. Incorporation of the ryanodine receptor into lipid bilayers induced single Ca2+ channel currents with conductance and kinetic behavior almost identical to that of native cardiac Ca2+ release channels. These results suggest that the cardiac ryanodine receptor comprises the Ca2+ release channel involved in excitation-contraction coupling in cardiac muscle.  相似文献   

11.
J Nakai  L Gao  L Xu  C Xin  D A Pasek  G Meissner 《FEBS letters》1999,459(2):154-158
Six chimeras of the skeletal muscle (RyR1) and cardiac muscle (RyR2) Ca(2+) release channels (ryanodine receptors) previously used to identify RyR1 dihydropyridine receptor interactions [Nakai et al. (1998) J. Biol. Chem. 273, 13403] were expressed in HEK293 cells to assess their Ca(2+) dependence in [(3)H]ryanodine binding and single channel measurements. The results indicate that the C-terminal one-fourth has a major role in Ca(2+) activation and inactivation of RyR1. Further, our results show that replacement of RyR1 regions with corresponding RyR2 regions can result in loss and/or reduction of [(3)H]ryanodine binding affinity while maintaining channel activity.  相似文献   

12.
The ryanodine receptor of rabbit skeletal muscle sarcoplasmic reticulum was purified by immunoaffinity chromatography as a single approximately 450,000-Da polypeptide and it was shown to mediate single channel activity identical to that of the ryanodine-treated Ca2+ release channel of the sarcoplasmic reticulum. The purified receptor had a [3H]ryanodine binding capacity (Bmax) of 280 pmol/mg and a binding affinity (Kd) of 9.0 nM. [3H]Ryanodine binding to the purified receptor was stimulated by ATP and Ca2+ with a half-maximal stimulation at 1 mM and 8-9 microM, respectively. [3H]Ryanodine binding to the purified receptor was inhibited by ruthenium red and high concentrations of Ca2+ with an IC50 of 2.5 microM and greater than 1 mM, respectively. Reconstitution of the purified receptor in planar lipid bilayers revealed the Ca2+ channel activity of the purified receptor. Like the native sarcoplasmic reticulum Ca2+ channels treated with ryanodine, the purified receptor channels were characterized by (i) the predominance of long open states insensitive to Mg2+ and ruthenium red, (ii) a main slope conductance of approximately 35 pS and a less frequent 22 pS substate in 54 mM trans-Ca2+ or Ba2+, and (iii) a permeability ratio PBa or PCa/PTris = 8.7. The approximately 450,000-Da ryanodine receptor channel thus represents the long-term open "ryanodine-altered" state of the Ca2+ release channel from sarcoplasmic reticulum. We propose that the ryanodine receptor constitutes the physical pore that mediates Ca2+ release from the sarcoplasmic reticulum of skeletal muscle.  相似文献   

13.
Type 1 ryanodine receptors (RyR1s) release Ca2+ from the sarcoplasmic reticulum to initiate skeletal muscle contraction. The role of RyR1-G4934 and -G4941 in the pore-lining helix in channel gating and ion permeation was probed by replacing them with amino acid residues of increasing side chain volume. RyR1-G4934A, -G4941A, and -G4941V mutant channels exhibited a caffeine-induced Ca2+ release response in HEK293 cells and bound the RyR-specific ligand [3H]ryanodine. In single channel recordings, significant differences in the number of channel events and mean open and close times were observed between WT and RyR1-G4934A and -G4941A. RyR1-G4934A had reduced K+ conductance and ion selectivity compared with WT. Mutations further increasing the side chain volume at these positions (G4934V and G4941I) resulted in reduced caffeine-induced Ca2+ release in HEK293 cells, low [3H]ryanodine binding levels, and channels that were not regulated by Ca2+ and did not conduct Ca2+ in single channel measurements. Computational predictions of the thermodynamic impact of mutations on protein stability indicated that although the G4934A mutation was tolerated, the G4934V mutation decreased protein stability by introducing clashes with neighboring amino acid residues. In similar fashion, the G4941A mutation did not introduce clashes, whereas the G4941I mutation resulted in intersubunit clashes among the mutated isoleucines. Co-expression of RyR1-WT with RyR1-G4934V or -G4941I partially restored the WT phenotype, which suggested lessening of amino acid clashes in heterotetrameric channel complexes. The results indicate that both glycines are important for RyR1 channel function by providing flexibility and minimizing amino acid clashes.  相似文献   

14.
The purified ryanodine receptor of heart sarcoplasmic reticulum (SR) has been reconstituted into planar phospholipid bilayers and found to form Ca2+-specific channels. The channels are strongly activated by Ca2+ (10 nM) in the presence of ATP (1 mM) and ryanodine, and inactivated by Mg2+ (3 mM) or ruthenium red (30 microM). These characteristics are diagnostic of calcium release from heart SR. The cardiac ryanodine receptor, which has previously been identified as the foot structure, is now identified as the calcium release channel. A similar identity of the calcium release channel has recently been reported for skeletal muscle. The characteristics of the calcium release channel from skeletal muscle and heart are similar in that they: 1) consist of an oligomer of a single high molecular weight polypeptide (Mr 360,000 for skeletal muscle and 340,000 for heart); 2) exist morphologically as the foot structure; 3) are activated (ATP, Ca2+, ryanodine) and inhibited (ruthenium red and Mg2+) by a number of the same ligands. Important differences include: 1) Ca2+ activation at lower concentration of Ca2+ for the heart; 2) more dramatic stabilization by ryanodine of the open state for the skeletal muscle channel; and 3) different relative permeabilities (PCa/PK).  相似文献   

15.
Ca2+ efflux from the sarcoplasmic reticulum decreases when store Ca2+ concentration falls, particularly in skinned fibers and isolated vesicles where luminal Ca2+ can be reduced to very low levels. However ryanodine receptor activity in many single channel studies is higher when the luminal free Ca2+ concentration is reduced. We investigated the hypothesis that prolonged exposure to low luminal Ca2+ causes conformational changes in calsequestrin and deregulation of ryanodine receptors, allowing channel activity to increase. Lowering of luminal Ca2+ from 1 mM to 100 microM for several minutes resulted in conformational changes with dissociation of 65-75% of calsequestrin from the junctional face membrane. The calsequestrin remaining associated no longer regulated channels. In the absence of this regulation, ryanodine receptors were more active when luminal Ca2+ was lowered from 1 mM to 100 microM. In contrast, when ryanodine receptors were calsequestrin regulated, lowering luminal Ca2+ either did not alter or decreased activity. Ryanodine receptors are regulated by calsequestrin under physiological conditions where calsequestrin is polymerized. Since depolymerization occurs slowly, calsequestrin can regulate the ryanodine receptor and prevent excess Ca2+ release when the store is transiently depleted, for example, during high frequency activity or early stages of muscle fatigue.  相似文献   

16.
Phosphorylation of the skeletal muscle (RyR1) and cardiac muscle (RyR2) ryanodine receptors has been reported to modulate channel activity. Abnormally high phosphorylation levels (hyperphosphorylation) at Ser-2843 in RyR1 and Ser-2809 in RyR2 and dissociation of FK506-binding proteins from the receptors have been implicated as one of the causes of altered calcium homeostasis observed during human heart failure. Using site-directed mutagenesis, we prepared recombinant RyR1 and RyR2 mutant receptors mimicking constitutively phosphorylated and dephosphorylated channels carrying a Ser/Asp (RyR1-S2843D and RyR2-S2809D) and Ser/Ala (RyR1-S2843A and RyR2-S2809A) substitution, respectively. Following transient expression in human embryonic kidney 293 cells, the effects of Ca2+, Mg2+, and ATP on channel function were determined using single channel and [3H]ryanodine binding measurements. In both assays, neither the skeletal nor cardiac mutants showed significant differences compared with wild type. Similarly essentially identical caffeine responses were observed in Ca2+ imaging measurements. Co-immunoprecipitation and Western blot analysis showed comparable binding of FK506-binding proteins to wild type and mutant receptors. Finally metabolic labeling experiments showed that the cardiac ryanodine receptor was phosphorylated at additional sites. Taken together, the results did not support the view that phosphorylation of a single site (RyR1-Ser-2843 and RyR2-Ser-2809) substantially changes RyR1 and RyR2 channel function.  相似文献   

17.
The pore-forming alpha 1 subunit of L-type calcium (Ca2+) channels is the molecular target of Ca2+ channel blockers such as phenylalkylamines (PAAs). Association and dissociation rates of (-)devapamil were compared for a highly PAA-sensitive L-type Ca2+ channel chimera (Lh) and various class A Ca2+ channel mutants. These mutants carry the high-affinity determinants of the PAA receptor site in a class A sequence environment. Apparent drug association and dissociation rate constants were significantly affected by the sequence environment (class A or L-type) of the PAA receptor site. Single point mutations affecting the high-affinity determinants in segments IVS6 of the PAA receptor site, introduced into a class A environment, reduced the apparent drug association rates. Mutation I1811M in transmembrane segment IVS6 (mutant AL25/-I) had the highest impact and decreased the apparent association rate for (-)devapamil by approximately 30-fold, suggesting that this pore-lining isoleucine in transmembrane segment IVS6 plays a key role in the formation of the PAA receptor site. In contrast, apparent drug dissociation rates of Ca2+ channels in the resting state were almost unaffected by point mutations of the PAA receptor site.  相似文献   

18.
A number of RyR2 (cardiac ryanodine receptor) mutations linked to ventricular arrhythmia and sudden death are located within the last C-terminal approximately 500 amino acid residues, which is believed to constitute the ion-conducting pore and gating domain of the channel. We have previously shown that mutations located near the C-terminal end of the predicted TM (transmembrane) segment 10, the inner pore helix, can either increase or decrease the propensity for SOICR (store-overload-induced Ca2+ release), also known as spontaneous Ca2+ release. In the present study, we have characterized an RyR2 mutation, V4653F, located in the loop between the predicted TM 6 and TM 7a, using an ER (endoplasmic reticulum)-targeted Ca2+-indicator protein (D1ER). We directly demonstrated that SOICR occurs at a reduced luminal Ca2+ threshold in HEK-293 cells (human embryonic kidney cells) expressing the V4653F mutant as compared with cells expressing the RyR2 wild-type. Single-channel analyses revealed that the V4653F mutation increased the sensitivity of RyR2 to activation by luminal Ca2+. In contrast with previous reports, the V4653 mutation did not alter FKBP12.6 (FK506-binding protein 12.6 kDa; F506 is an immunosuppressant macrolide)-RyR2 interaction. Luminal Ca2+ measurements also showed that the mutations R176Q/T2504M, S2246L and Q4201R, located in different regions of the channel, reduced the threshold for SOICR, whereas the A4860G mutation, located within the inner pore helix, increased the SOICR threshold. We conclude that the cytosolic loop between TM 6 and TM 7a plays an important role in determining the SOICR threshold and that the alteration of the threshold for SOICR is a common mechanism for RyR2-associated ventricular arrhythmia.  相似文献   

19.
Radioligand binding experiments and single channel recordings demonstrate that verapamil interacts with the ryanodine receptor Ca2+ release channel of the sarcoplasmic reticulum of rabbit skeletal muscle. In isolated triads, verapamil decreased binding of [3H]Ryanodine with an IC50 of approximately 8 microM at an optimal pH 8.5 and pCa 4.3. Nitrendipine and d-cis-diltiazem did not interfere with binding of [3H]Ryanodine to triads, suggesting that the action of verapamil does not involve the dihydropyridine receptor. Single channel recordings showed that verapamil blocked Ca2+ release channels by decreasing open probability, duration of open events, and number of events per unit time. A direct interaction of verapamil with the ryanodine receptor peptide was demonstrated after purification of the approximately 400 kDa receptor protein from Chaps-solubilized triads. The purified receptor displayed high affinity for [3H]Ryanodine with a Kd of approximately 5 nM and a Bmax of approximately 400 pmol/mg. Verapamil and D600 decreased [3H]Ryanodine binding noncompetitively by reducing the Bmax. Thus the presence of binding sites for phenylalkylamines in the Ca2+ release channel was confirmed. Verapamil blockade of Ca2+ release channels may explain some of the paralyzing effects of phenylalkylamines observed during excitation-contraction coupling of skeletal muscle.  相似文献   

20.
Ryanodine receptors have recently been shown to be the Ca2+ release channels of sarcoplasmic reticulum in both cardiac muscle and skeletal muscle. Several regulatory sites are postulated to exist on these receptors, but to date, none have been definitively identified. In the work described here, we localize one of these sites by showing that the cardiac isoform of the ryanodine receptor is a preferred substrate for multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase). Phosphorylation by CaM kinase occurs at a single site encompassing serine 2809. Antibodies generated to this site react only with the cardiac isoform of the ryanodine receptor, and immunoprecipitate only cardiac [3H]ryanodine-binding sites. When cardiac junctional sarcoplasmic reticulum vesicles or partially purified ryanodine receptors are fused with planar bilayers, phosphorylation at this site activates the Ca2+ channel. In tissues expressing the cardiac isoform of the ryanodine receptor, such as heart and brain, phosphorylation of the Ca2+ release channel by CaM kinase may provide a unique mechanism for regulating intracellular Ca2+ release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号