首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 960 毫秒
1.
To date, genome-wide association studies have identified thousands of statistically-significant associations between genetic variants, and phenotypes related to a myriad of traits and diseases. A key goal for human-genetics research is to translate these associations into functional mechanisms. Popular gene-set analysis tools, like MAGMA, map variants to genes they might affect, and then integrate genome-wide association study data (that is, variant-level associations for a phenotype) to score genes for association with a phenotype. Gene scores are subsequently used in competitive gene-set analyses to identify biological processes that are enriched for phenotype association. By default, variants are mapped to genes in their proximity. However, many variants that affect phenotypes are thought to act at regulatory elements, which can be hundreds of kilobases away from their target genes. Thus, we explored the idea of augmenting a proximity-based mapping scheme with publicly-available datasets of regulatory interactions. We used MAGMA to analyze genome-wide association study data for ten different phenotypes, and evaluated the effects of augmentation by comparing numbers, and identities, of genes and gene sets detected as statistically significant between mappings. We detected several pitfalls and confounders of such “augmented analyses”, and introduced ways to control for them. Using these controls, we demonstrated that augmentation with datasets of regulatory interactions only occasionally strengthened the enrichment for phenotype association amongst (biologically-relevant) gene sets for different phenotypes. Still, in such cases, genes and regulatory elements responsible for the improvement could be pinpointed. For instance, using brain regulatory-interactions for augmentation, we were able to implicate two acetylcholine receptor subunits involved in post-synaptic chemical transmission, namely CHRNB2 and CHRNE, in schizophrenia. Collectively, our study presents a critical approach for integrating regulatory interactions into gene-set analyses for genome-wide association study data, by introducing various controls to distinguish genuine results from spurious discoveries.  相似文献   

2.
Using a phenome-wide association study (PheWAS) approach, we comprehensively tested genetic variants for association with phenotypes available for 70,061 study participants in the Population Architecture using Genomics and Epidemiology (PAGE) network. Our aim was to better characterize the genetic architecture of complex traits and identify novel pleiotropic relationships. This PheWAS drew on five population-based studies representing four major racial/ethnic groups (European Americans (EA), African Americans (AA), Hispanics/Mexican-Americans, and Asian/Pacific Islanders) in PAGE, each site with measurements for multiple traits, associated laboratory measures, and intermediate biomarkers. A total of 83 single nucleotide polymorphisms (SNPs) identified by genome-wide association studies (GWAS) were genotyped across two or more PAGE study sites. Comprehensive tests of association, stratified by race/ethnicity, were performed, encompassing 4,706 phenotypes mapped to 105 phenotype-classes, and association results were compared across study sites. A total of 111 PheWAS results had significant associations for two or more PAGE study sites with consistent direction of effect with a significance threshold of p<0.01 for the same racial/ethnic group, SNP, and phenotype-class. Among results identified for SNPs previously associated with phenotypes such as lipid traits, type 2 diabetes, and body mass index, 52 replicated previously published genotype–phenotype associations, 26 represented phenotypes closely related to previously known genotype–phenotype associations, and 33 represented potentially novel genotype–phenotype associations with pleiotropic effects. The majority of the potentially novel results were for single PheWAS phenotype-classes, for example, for CDKN2A/B rs1333049 (previously associated with type 2 diabetes in EA) a PheWAS association was identified for hemoglobin levels in AA. Of note, however, GALNT2 rs2144300 (previously associated with high-density lipoprotein cholesterol levels in EA) had multiple potentially novel PheWAS associations, with hypertension related phenotypes in AA and with serum calcium levels and coronary artery disease phenotypes in EA. PheWAS identifies associations for hypothesis generation and exploration of the genetic architecture of complex traits.  相似文献   

3.
A single mutation can alter cellular and global homeostatic mechanisms and give rise to multiple clinical diseases. We hypothesized that these disease mechanisms could be identified using low minor allele frequency (MAF<0.1) non-synonymous SNPs (nsSNPs) associated with “mechanistic phenotypes”, comprised of collections of related diagnoses. We studied two mechanistic phenotypes: (1) thrombosis, evaluated in a population of 1,655 African Americans; and (2) four groupings of cancer diagnoses, evaluated in 3,009 white European Americans. We tested associations between nsSNPs represented on GWAS platforms and mechanistic phenotypes ascertained from electronic medical records (EMRs), and sought enrichment in functional ontologies across the top-ranked associations. We used a two-step analytic approach whereby nsSNPs were first sorted by the strength of their association with a phenotype. We tested associations using two reverse genetic models and standard additive and recessive models. In the second step, we employed a hypothesis-free ontological enrichment analysis using the sorted nsSNPs to identify functional mechanisms underlying the diagnoses comprising the mechanistic phenotypes. The thrombosis phenotype was solely associated with ontologies related to blood coagulation (Fisher''s p = 0.0001, FDR p = 0.03), driven by the F5, P2RY12 and F2RL2 genes. For the cancer phenotypes, the reverse genetics models were enriched in DNA repair functions (p = 2×10−5, FDR p = 0.03) (POLG/FANCI, SLX4/FANCP, XRCC1, BRCA1, FANCA, CHD1L) while the additive model showed enrichment related to chromatid segregation (p = 4×10−6, FDR p = 0.005) (KIF25, PINX1). We were able to replicate nsSNP associations for POLG/FANCI, BRCA1, FANCA and CHD1L in independent data sets. Mechanism-oriented phenotyping using collections of EMR-derived diagnoses can elucidate fundamental disease mechanisms.  相似文献   

4.
Genome-wide association studies have identified a wealth of genetic variants involved in complex traits and multifactorial diseases. There is now considerable interest in testing variants for association with multiple phenotypes (pleiotropy) and for testing multiple variants for association with a single phenotype (gene-based association tests). Such approaches can increase statistical power by combining evidence for association over multiple phenotypes or genetic variants respectively. Canonical Correlation Analysis (CCA) measures the correlation between two sets of multidimensional variables, and thus offers the potential to combine these two approaches. To apply CCA, we must restrict the number of attributes relative to the number of samples. Hence we consider modules of genetic variation that can comprise a gene, a pathway or another biologically relevant grouping, and/or a set of phenotypes. In order to do this, we use an attribute selection strategy based on a binary genetic algorithm. Applied to a UK-based prospective cohort study of 4286 women (the British Women''s Heart and Health Study), we find improved statistical power in the detection of previously reported genetic associations, and identify a number of novel pleiotropic associations between genetic variants and phenotypes. New discoveries include gene-based association of NSF with triglyceride levels and several genes (ACSM3, ERI2, IL18RAP, IL23RAP and NRG1) with left ventricular hypertrophy phenotypes. In multiple-phenotype analyses we find association of NRG1 with left ventricular hypertrophy phenotypes, fibrinogen and urea and pleiotropic relationships of F7 and F10 with Factor VII, Factor IX and cholesterol levels.  相似文献   

5.
To reveal the clonal architecture of melanoma and associated driver mutations, whole genome sequencing (WGS) and targeted extension sequencing were used to characterize 124 melanoma cases. Significantly mutated gene analysis using 13 WGS cases and 15 additional paired extension cases identified known melanoma genes such as BRAF, NRAS, and CDKN2A, as well as a novel gene EPHA3, previously implicated in other cancer types. Extension studies using tumors from another 96 patients discovered a large number of truncation mutations in tumor suppressors (TP53 and RB1), protein phosphatases (e.g., PTEN, PTPRB, PTPRD, and PTPRT), as well as chromatin remodeling genes (e.g., ASXL3, MLL2, and ARID2). Deep sequencing of mutations revealed subclones in the majority of metastatic tumors from 13 WGS cases. Validated mutations from 12 out of 13 WGS patients exhibited a predominant UV signature characterized by a high frequency of C->T transitions occurring at the 3′ base of dipyrimidine sequences while one patient (MEL9) with a hypermutator phenotype lacked this signature. Strikingly, a subclonal mutation signature analysis revealed that the founding clone in MEL9 exhibited UV signature but the secondary clone did not, suggesting different mutational mechanisms for two clonal populations from the same tumor. Further analysis of four metastases from different geographic locations in 2 melanoma cases revealed phylogenetic relationships and highlighted the genetic alterations responsible for differential drug resistance among metastatic tumors. Our study suggests that clonal evaluation is crucial for understanding tumor etiology and drug resistance in melanoma.  相似文献   

6.

Background

While the heritability of cigarette smoking and nicotine dependence (ND) is well-documented, the contribution of specific genetic variants to specific phenotypes has not been closely examined. The objectives of this study were to test the associations between 321 tagging single-nucleotide polymorphisms (SNPs) that capture common genetic variation in 24 genes, and early smoking and ND phenotypes in novice adolescent smokers, and to assess if genetic predictors differ across these phenotypes.

Methods

In a prospective study of 1294 adolescents aged 12–13 years recruited from ten Montreal-area secondary schools, 544 participants who had smoked at least once during the 7–8 year follow-up provided DNA. 321 single-nucleotide polymorphisms (SNPs) in 24 candidate genes were tested for an association with number of cigarettes smoked in the past 3 months, and with five ND phenotypes (a modified version of the Fagerstrom Tolerance Questionnaire, the ICD-10 and three clusters of ND symptoms representing withdrawal symptoms, use of nicotine for self-medication, and a general ND/craving symptom indicator).

Results

The pattern of SNP-gene associations differed across phenotypes. Sixteen SNPs in seven genes (ANKK1, CHRNA7, DDC, DRD2, COMT, OPRM1, SLC6A3 (also known as DAT1)) were associated with at least one phenotype with a p-value <0.01 using linear mixed models. After permutation and FDR adjustment, none of the associations remained statistically significant, although the p-values for the association between rs557748 in OPRM1 and the ND/craving and self-medication phenotypes were both 0.076.

Conclusions

Because the genetic predictors differ, specific cigarette smoking and ND phenotypes should be distinguished in genetic studies in adolescents. Fifteen of the 16 top-ranked SNPs identified in this study were from loci involved in dopaminergic pathways (ANKK1/DRD2, DDC, COMT, OPRM1, and SLC6A3).

Impact

Dopaminergic pathways may be salient during early smoking and the development of ND.  相似文献   

7.
Intellectual Disability (ID) disorders, defined by an IQ below 70, are genetically and phenotypically highly heterogeneous. Identification of common molecular pathways underlying these disorders is crucial for understanding the molecular basis of cognition and for the development of therapeutic intervention strategies. To systematically establish their functional connectivity, we used transgenic RNAi to target 270 ID gene orthologs in the Drosophila eye. Assessment of neuronal function in behavioral and electrophysiological assays and multiparametric morphological analysis identified phenotypes associated with knockdown of 180 ID gene orthologs. Most of these genotype-phenotype associations were novel. For example, we uncovered 16 genes that are required for basal neurotransmission and have not previously been implicated in this process in any system or organism. ID gene orthologs with morphological eye phenotypes, in contrast to genes without phenotypes, are relatively highly expressed in the human nervous system and are enriched for neuronal functions, suggesting that eye phenotyping can distinguish different classes of ID genes. Indeed, grouping genes by Drosophila phenotype uncovered 26 connected functional modules. Novel links between ID genes successfully predicted that MYCN, PIGV and UPF3B regulate synapse development. Drosophila phenotype groups show, in addition to ID, significant phenotypic similarity also in humans, indicating that functional modules are conserved. The combined data indicate that ID disorders, despite their extreme genetic diversity, are caused by disruption of a limited number of highly connected functional modules.  相似文献   

8.
MotivationThe availability of ontologies and systematic documentations of phenotypes and their genetic associations has enabled large-scale network-based global analyses of the association between the complete collection of phenotypes (phenome) and genes. To provide a fundamental understanding of how the network information is relevant to phenotype-gene associations, we analyze the circular bigraphs (CBGs) in OMIM human disease phenotype-gene association network and MGI mouse phentoype-gene association network, and introduce a bi-random walk (BiRW) algorithm to capture the CBG patterns in the networks for unveiling human and mouse phenome-genome association. BiRW performs separate random walk simultaneously on gene interaction network and phenotype similarity network to explore gene paths and phenotype paths in CBGs of different sizes to summarize their associations as predictions.ResultsThe analysis of both OMIM and MGI associations revealed that majority of the phenotype-gene associations are covered by CBG patterns of small path lengths, and there is a clear correlation between the CBG coverage and the predictability of the phenotype-gene associations. In the experiments on recovering known associations in cross-validations on human disease phenotypes and mouse phenotypes, BiRW effectively improved prediction performance over the compared methods. The constructed global human disease phenome-genome association map also revealed interesting new predictions and phenotype-gene modules by disease classes.  相似文献   

9.

Background

Longitudinal phenotypic data provides a rich potential resource for genetic studies which may allow for greater understanding of variants and their covariates over time. Herein, we review 3 longitudinal analytical approaches from the Genetic Analysis Workshop 19 (GAW19). These contributions investigated both genome-wide association (GWA) and whole genome sequence (WGS) data from odd numbered chromosomes on up to 4 time points for blood pressure–related phenotypes. The statistical models used included generalized estimating equations (GEEs), latent class growth modeling (LCGM), linear mixed-effect (LME), and variance components (VC). The goal of these analyses was to test statistical approaches that use repeat measurements to increase genetic signal for variant identification.

Results

Two analytical methods were applied to the GAW19: GWA using real phenotypic data, and one approach to WGS using 200 simulated replicates. The first GWA approach applied a GEE-based model to identify gene-based associations with 4 derived hypertension phenotypes. This GEE model identified 1 significant locus, GRM7, which passed multiple test corrections for 2 hypertension-derived traits. The second GWA approach employed the LME to estimate genetic associations with systolic blood pressure (SBP) change trajectories identified using LCGM. This LCGM method identified 5 SBP trajectories and association analyses identified a genome-wide significant locus, near ATOX1 (p?=?1.0E?8). Finally, a third VC-based model using WGS and simulated SBP phenotypes that constrained the β coefficient for a genetic variant across each time point was calculated and compared to an unconstrained approach. This constrained VC approach demonstrated increased power for WGS variants of moderate effect, but when larger genetic effects were present, averaging across time points was as effective.

Conclusion

In this paper, we summarize 3 GAW19 contributions applying novel statistical methods and testing previously proposed techniques under alternative conditions for longitudinal genetic association. We conclude that these approaches when appropriately applied have the potential to: (a) increase statistical power; (b) decrease trait heterogeneity and standard error; (c) decrease computational burden in WGS; and (d) have the potential to identify genetic variants influencing subphenotypes important for understanding disease progression.
  相似文献   

10.
The evolution of degenerate characteristics remains a poorly understood phenomenon. Only recently has the identification of mutations underlying regressive phenotypes become accessible through the use of genetic analyses. Focusing on the Mexican cave tetra Astyanax mexicanus, we describe, here, an analysis of the brown mutation, which was first described in the literature nearly 40 years ago. This phenotype causes reduced melanin content, decreased melanophore number, and brownish eyes in convergent cave forms of A. mexicanus. Crosses demonstrate non-complementation of the brown phenotype in F2 individuals derived from two independent cave populations: Pachón and the linked Yerbaniz and Japonés caves, indicating the same locus is responsible for reduced pigmentation in these fish. While the brown mutant phenotype arose prior to the fixation of albinism in Pachón cave individuals, it is unclear whether the brown mutation arose before or after the fixation of albinism in the linked Yerbaniz/Japonés caves. Using a QTL approach combined with sequence and functional analyses, we have discovered that two distinct genetic alterations in the coding sequence of the gene Mc1r cause reduced pigmentation associated with the brown mutant phenotype in these caves. Our analysis identifies a novel role for Mc1r in the evolution of degenerative phenotypes in blind Mexican cavefish. Further, the brown phenotype has arisen independently in geographically separate caves, mediated through different mutations of the same gene. This example of parallelism indicates that certain genes are frequent targets of mutation in the repeated evolution of regressive phenotypes in cave-adapted species.  相似文献   

11.
Mutations in the FGFR3 gene cause the phenotypic spectrum of FGFR3 chondrodysplasias ranging from lethal forms to the milder phenotype seen in hypochondroplasia (Hch). The p.N540K mutation in the FGFR3 gene occurs in ∼70% of individuals with Hch, and nearly 30% of individuals with the Hch phenotype have no mutations in the FGFR3, which suggests genetic heterogeneity. The identification of a severe case of Hch associated with the typical mutation c.1620C > A and the occurrence of a c.1150T > C change that resulted in a p.F384L in exon 10, together with the suspicion that this second change could be a modulator of the phenotype, prompted us to investigate this hypothesis in a cohort of patients. An analysis of 48 patients with FGFR3 chondrodysplasia phenotypes and 330 healthy (control) individuals revealed no significant difference in the frequency of the C allele at the c.1150 position (p = 0.34). One patient carrying the combination `pathogenic mutation plus the allelic variant c.1150T > C’ had a typical achondroplasia (Ach) phenotype. In addition, three other patients with atypical phenotypes showed no association with the allelic variant. Together, these results do not support the hypothesis of a modulatory role for the c.1150T > C change in the FGFR3 gene.  相似文献   

12.
Genome-wide scans for positive selection in humans provide a promising approach to establish links between genetic variants and adaptive phenotypes. From this approach, lists of hundreds of candidate genomic regions for positive selection have been assembled. These candidate regions are expected to contain variants that contribute to adaptive phenotypes, but few of these regions have been associated with phenotypic effects. Here we present evidence that a derived nonsynonymous substitution (370A) in EDAR, a gene involved in ectodermal development, was driven to high frequency in East Asia by positive selection prior to 10,000 years ago. With an in vitro transfection assay, we demonstrate that 370A enhances NF-κB activity. Our results suggest that 370A is a positively selected functional genetic variant that underlies an adaptive human phenotype.  相似文献   

13.
Late-onset Alzheimer’s disease (LOAD) is the most common type of dementia causing irreversible brain damage to the elderly and presents a major public health challenge. Clinical research and genome-wide association studies have suggested a potential contribution of the endocytic pathway to AD, with an emphasis on common loci. However, the contribution of rare variants in this pathway to AD has not been thoroughly investigated. In this study, we focused on the effect of rare variants on AD by first applying a rare-variant gene-set burden analysis using genes in the endocytic pathway on over 3,000 individuals with European ancestry from three large whole-genome sequencing (WGS) studies. We identified significant associations of rare-variant burden within the endocytic pathway with AD, which were successfully replicated in independent datasets. We further demonstrated that this endocytic rare-variant enrichment is associated with neurofibrillary tangles (NFTs) and age-related phenotypes, increasing the risk of obtaining severer brain damage, earlier age-at-onset, and earlier age-of-death. Next, by aggregating rare variants within each gene, we sought to identify single endocytic genes associated with AD and NFTs. Careful examination using NFTs revealed one significantly associated gene, ANKRD13D. To identify functional associations, we integrated bulk RNA-Seq data from over 600 brain tissues and found two endocytic expression genes (eGenes), HLA-A and SLC26A7, that displayed significant influences on their gene expressions. Differential expressions between AD patients and controls of these three identified genes were further examined by incorporating scRNA-Seq data from 48 post-mortem brain samples and demonstrated distinct expression patterns across cell types. Taken together, our results demonstrated strong rare-variant effect in the endocytic pathway on AD risk and progression and functional effect of gene expression alteration in both bulk and single-cell resolution, which may bring more insight and serve as valuable resources for future AD genetic studies, clinical research, and therapeutic targeting.  相似文献   

14.
Oliver Hobert 《Genetics》2010,184(2):317-319
Much of our understanding of how organisms develop and function is derived from the extraordinarily powerful, classic approach of screening for mutant organisms in which a specific biological process is disrupted. Reaping the fruits of such forward genetic screens in metazoan model systems like Drosophila, Caenorhabditis elegans, or zebrafish traditionally involves time-consuming positional cloning strategies that result in the identification of the mutant locus. Whole genome sequencing (WGS) has begun to provide an effective alternative to this approach through direct pinpointing of the molecular lesion in a mutated strain isolated from a genetic screen. Apart from significantly altering the pace and costs of genetic analysis, WGS also provides new perspectives on solving genetic problems that are difficult to tackle with conventional approaches, such as identifying the molecular basis of multigenic and complex traits.GENETIC model systems, from bacteria, yeast, plants, worms, flies, and fish to mice allow the dissection of the genetic basis of virtually any biological process by isolating mutants obtained through random mutagenesis, in which the biological process under investigation is defective. Such forward genetic analysis is unbiased and free of assumptions. The rigor and conceptual simplicity of forward genetic analysis is striking, some may say, beautiful; and the unpredictability of what one finds—be that an unexpected phenotype popping out of a screen or the eventual molecular nature of the gene (take the discovery of miRNAs as an example; Lee et al. 1993)—appeals to the adventurous. Even though mutant phenotypic analysis alone can reveal the logic of underlying biological processes (take Ed Lewis'' analysis of homeotic mutants as an example; Lewis 1978)—it is the identification of the molecular lesions in mutant animals that provides the key mechanistic and molecular details that propel our understanding of biological processes.The identification of the molecular lesion in mutant organisms depends on how the mutation was introduced. Classically, two types of mutagens have been used in most model systems: biological agents such as plasmids, viruses, or transposons whose insertions disrupt functional DNA elements (either coding or regulatory elements) or chemical mutagens, such as ethyl methane sulfonate (EMS) or N-ethyl N-nitroso urea (ENU), that introduce point mutations or deletions. Point mutation-inducing chemical mutagens are in many ways a superior mutagenic agent because their mutational frequency is high and because the spectrum of their effects on a given locus—producing hypomorphs, hypermorphs, amorphs, neomorphs, etc.—is hard to match by biological mutagens. Moreover, chemical mutagens do not display the positional bias of many biological agents. In addition, point mutations in a gene are often crucial in dissecting the functionally relevant domains of the gene product. In spite of the advantages of chemical mutagens, model system geneticists often prefer biological mutagens simply because the molecular lesions induced by those agents are characterized by the easily locatable DNA footprint that these agents generate. In contrast, the location of a point mutation (or deletion) has to be identified through conventional mapping strategies, which tend to be tedious and time consuming. Even in model systems in which positional cloning is quite fast and straightforward (e.g., Caenorhabditis elegans, which has a short generation time and a multitude of mapping tools available), it nevertheless is a significant effort that can occasionally present hurdles that are difficult to surmount (e.g., if the gene maps into a region with few genetic markers that allow for mapping). These difficulties explain why RNAi-based “genetic screens” have gained significant popularity in C. elegans; they circumvent mapping and reveal molecular identities of genes involved in a given process straight away (Kamath and Ahringer 2003). However, genes and cells show differential susceptibility to RNAi; off-target effects and lack of reproducibility can be a problem, and the range of effects that RNAi has on gene activity is generally more limited compared to chemically induced gene mutations.The recent application of next generation, deep sequencing technology (see Bentley 2006; Morozova and Marra 2008 for technology reviews) is beginning to significantly alter the landscape of genetic analysis as it allows the use of chemical mutagens without having to deal with its disadvantages. Deep sequencing technology incorporated into platforms such as Illumina''s Genome Analyzer or ABI''s SOLiD, allows one-shot sequencing of the entire model system''s genome, resulting in the detection of mutagen-induced sequence alterations compared to a nonmutagenized reference genome. Proof-of-concept studies have so far been conducted in bacteria, yeast, plant, worms, and flies, all published within the last year (Sarin et al. 2008; Smith et al. 2008; Srivatsan et al. 2008; Blumenstiel et al. 2009; Irvine et al. 2009; Rigola et al. 2009). Many more studies are under way; for example, since our first proof-of-principle study (Sarin et al. 2008), my laboratory has identified the molecular basis of >10 C. elegans strains defective in neuronal development and homeostasis (V. Bertrand, unpublished data; M. Doitsidou, unpublished data; E. Flowers, unpublished data; S. Sarin, unpublished data).The advantages of whole genome sequencing (WGS) are obvious. The process is extraordinarily fast with the sequencing taking only ∼5 days and the subsequent sequence data analysis only a few hours, particularly if the end user employs bioinformatic tools customized for mutant detection (Bigelow et al. 2009). The process is also remarkably cost effective. For example, a C. elegans genome can be sequenced with a required sequence coverage of ∼10 times for <$2,000 in reagent and machine operating costs. The capacity of deep sequencing machines—and hence the costs associated with sequencing a genome—apparently follow Moore''s law of doubling its capacity about every 2 years, like many technological innovations do (Pettersson et al. 2009). That is, the <$1,000 genome for C. elegans (∼100-Mb genome) and Drosophila (∼123-Mb genome) is just around the corner and other models will sooner or later follow suit. The cost effectiveness becomes particularly apparent if one compares the cost of WGS to the personnel and reagent costs associated with multiple-month to multiple-year mapping-based cloning efforts.WGS identifies sequence variants between a mutated genome and a premutagenesis reference genome. Chemical mutagens randomly introduce many mutations in the genome and, therefore, the phenotype-causing sequence variant needs to be identified as such out of a large pool of sequence variants. Sequence variants that have no impact on the phenotype can be outcrossed before sequencing or eliminated through some rough mapping of the mutation, which allows the experimenter to focus only on those variants contained in a specific sequence interval. Ensuing functional tests such as transformation rescue or phenocopy by RNAi and the availability of other alleles of the same locus are critical means to validate a phenotype-causing sequence variant (Sarin et al. 2008). The latter approach—the availability of multiple alleles of the same locus—is in many ways the most powerful one to sift through a number of candidate variants revealed by WGS. In this approach, candidate loci revealed by WGS are resequenced by conventional Sanger sequencing in allelic strains and only those that are indeed phenotype causing will show up mutated in all allelic variants of the locus (Sarin et al. 2008). The availability of multiple alleles of a locus is highly desirable for many aspects of genetic analysis anyway and therefore does not represent an additional and specific burden for undertaking a WGS project.The importance of WGS on model system genetics will be substantial and wide ranging. Speed and cost effectiveness means that the wastelands of genetic mapping can be trespassed fast enough to allow an experimenter to multitask a whole mutant collection in parallel, thereby closing in on the “holy grail” of genetic analysis—the as-complete-as-possible mutational saturation of a biological process and the resulting deciphering of complete genetic pathways and networks. What will become limiting steps are not any more the tediousness of mapping, but rather the effectiveness with which mutant collections can be built. Novel technologies that involve machine-based, semiautomated selection of mutant animals have been developed over the past few years to study a variety of distinct biological processes in several metazoan model systems, e.g., gfp-based morphology or cell fate screens in worms (Crane et al. 2009; Doitsidou et al. 2008) or behavioral screens in flies (Dankert et al. 2009) and are important steps in this direction. Such an “industrial revolution” of genetic screening (i.e., the mutant selection part, followed by WGS) moves us geneticists away from, not into the trenches of factory life and frees us up to do what we should like to enjoy most—thinking of designing interesting screens, seeing how genes interact, and interpreting it all.Another important impact of WGS is that it will allow tackling problems that were previously hard to deal with. For example, the tediousness of following subtle phenotypes, low penetrance phenotypes, or phenotypes that are cumbersome to score often hampers positional cloning approaches that rely on identifying rare recombinants in a large sibling pool. Moreover, many genetic traits such as behavioral genetic traits are very sensitive to genetic background and are therefore also often hard to map in the conventional way. WGS hones in on candidate genes straight away. Taking this notion a step further, WGS will also be able to get at the molecular basis of multigenic traits and quantitative trait loci, which again are hard to molecularly identify through conventional mapping strategies; a proof-of-principle study has made this point already in bacteria (Srivatsan et al. 2008). In principle, such multigenic traits may have been mutationally induced or could be present in natural variants of a species, which provides intriguing perspective for the population geneticist.Model organisms of biological interest that were previously relatively intractable for classic genetic mutant analysis due to the absence of genetic markers or other practical problems such as prohibitive generation times, may also now be movable into the arena of genetic model systems, through the WGS-mediated molecular analysis of mutagen-induced variants or through the study of natural variants.The sequencing of human cancer genomes has already begun to illustrate the impact of WGS on human genetics (Campbell et al. 2008; Ley et al. 2008). However, those human WGS studies illustrate why model systems will continue to be extremely important—their experimental accessibility allows us to address which of the many variants detected by WGS is indeed the phenotype-causing one.The message to model system geneticists is clear: Get access to a deep sequencer, buckle up, and get ready for the ride.  相似文献   

15.
Circadian clock genes are critical regulators of energy homeostasis and metabolism. However, whether variation in the circadian genes is associated with metabolic phenotypes in humans remains to be explored. In this study, we systemically genotyped 20 tag single nucleotide polymorphisms (SNPs) in 8 candidate genes involved in circadian clock, including CLOCK, BMAL1(ARNTL), PER1, PER2, CRY1, CRY2, CSNK1E,, and NOC(CCRN4L) in 1,510 non-diabetic Chinese subjects in Taipei and Yunlin populations in Taiwan. Their associations with metabolic phenotypes were analyzed. We found that genetic variation in the NOC gene, rs9684900 was associated with body mass index (BMI) (P = 0.0016, Bonferroni corrected P = 0.032). Another variant, rs135764 in the CSNK1E gene was associated with fasting glucose (P = 0.0023, Bonferroni corrected P = 0.046). These associations were consistent in both Taipei and Yunlin populations. Significant epistatic and joint effects between SNPs on BMI and related phenotypes were observed. Furthermore, NOC mRNA levels in human abdominal adipose tissue were significantly increased in obese subjects compared to non-obese controls.

Conclusion

Genetic variation in the NOC gene is associated with BMI in Chinese subjects.  相似文献   

16.
17.
LYST is a large cytosolic protein that influences the biogenesis of lysosome-related organelles, and mutation of the encoding gene, LYST, can cause Chediak-Higashi syndrome. Recently, Lyst-mutant mice were recognized to also exhibit an iris disease resembling exfoliation syndrome, a common cause of glaucoma in humans. Here, Lyst-mutant iris phenotypes were used in a search for genes that influence Lyst pathways. In a candidate gene–driven approach, albino Lyst-mutant mice homozygous for a mutation in Tyr, whose product is key to melanin synthesis within melanosomes, exhibited complete rescue of Lyst-mutant iris phenotypes. In a genetic background–driven approach using a DBA/2J strain of congenic mice, an interval containing Tyrp1 enhanced Lyst-dependent iris phenotypes. Thus, both experimental approaches implicated the melanosome, an organelle that is a potential source of oxidative stress, as contributing to the disease phenotype. Confirming an association with oxidative damage, Lyst mutation resulted in genetic context–sensitive changes in iris lipid hydroperoxide levels, being lowest in albino and highest in DBA/2J mice. Surprisingly, the DBA/2J genetic background also exposed a late-onset neurodegenerative phenotype involving cerebellar Purkinje-cell degeneration. These results identify an association between oxidative damage to lipid membranes and the severity of Lyst-mutant phenotypes, revealing a new mechanism that contributes to pathophysiology involving LYST.  相似文献   

18.
《PloS one》2014,9(8)
Asthma is a complex genetic disease caused by a combination of genetic and environmental risk factors. We sought to test classes of genetic variants largely missed by genome-wide association studies (GWAS), including copy number variants (CNVs) and low-frequency variants, by performing whole-genome sequencing (WGS) on 16 individuals from asthma-enriched and asthma-depleted families. The samples were obtained from an extended 13-generation Hutterite pedigree with reduced genetic heterogeneity due to a small founding gene pool and reduced environmental heterogeneity as a result of a communal lifestyle. We sequenced each individual to an average depth of 13-fold, generated a comprehensive catalog of genetic variants, and tested the most severe mutations for association with asthma. We identified and validated 1960 CNVs, 19 nonsense or splice-site single nucleotide variants (SNVs), and 18 insertions or deletions that were out of frame. As follow-up, we performed targeted sequencing of 16 genes in 837 cases and 540 controls of Puerto Rican ancestry and found that controls carry a significantly higher burden of mutations in IL27RA (2.0% of controls; 0.23% of cases; nominal p = 0.004; Bonferroni p = 0.21). We also genotyped 593 CNVs in 1199 Hutterite individuals. We identified a nominally significant association (p = 0.03; Odds ratio (OR) = 3.13) between a 6 kbp deletion in an intron of NEDD4L and increased risk of asthma. We genotyped this deletion in an additional 4787 non-Hutterite individuals (nominal p = 0.056; OR = 1.69). NEDD4L is expressed in bronchial epithelial cells, and conditional knockout of this gene in the lung in mice leads to severe inflammation and mucus accumulation. Our study represents one of the early instances of applying WGS to complex disease with a large environmental component and demonstrates how WGS can identify risk variants, including CNVs and low-frequency variants, largely untested in GWAS.  相似文献   

19.
The objectives of this study were to identify antimicrobial resistance genotypes for Campylobacter and to evaluate the correlation between resistance phenotypes and genotypes using in vitro antimicrobial susceptibility testing and whole-genome sequencing (WGS). A total of 114 Campylobacter species isolates (82 C. coli and 32 C. jejuni) obtained from 2000 to 2013 from humans, retail meats, and cecal samples from food production animals in the United States as part of the National Antimicrobial Resistance Monitoring System were selected for study. Resistance phenotypes were determined using broth microdilution of nine antimicrobials. Genomic DNA was sequenced using the Illumina MiSeq platform, and resistance genotypes were identified using assembled WGS sequences through blastx analysis. Eighteen resistance genes, including tet(O), blaOXA-61, catA, lnu(C), aph(2)-Ib, aph(2)-Ic, aph(2)-If, aph(2)-Ig, aph(2)-Ih, aac(6)-Ie-aph(2)-Ia, aac(6)-Ie-aph(2)-If, aac(6)-Im, aadE, sat4, ant(6), aad9, aph(3)-Ic, and aph(3)-IIIa, and mutations in two housekeeping genes (gyrA and 23S rRNA) were identified. There was a high degree of correlation between phenotypic resistance to a given drug and the presence of one or more corresponding resistance genes. Phenotypic and genotypic correlation was 100% for tetracycline, ciprofloxacin/nalidixic acid, and erythromycin, and correlations ranged from 95.4% to 98.7% for gentamicin, azithromycin, clindamycin, and telithromycin. All isolates were susceptible to florfenicol, and no genes associated with florfenicol resistance were detected. There was a strong correlation (99.2%) between resistance genotypes and phenotypes, suggesting that WGS is a reliable indicator of resistance to the nine antimicrobial agents assayed in this study. WGS has the potential to be a powerful tool for antimicrobial resistance surveillance programs.  相似文献   

20.
《Genomics》2022,114(4):110389
Disorders of sex development (DSDs) are congenital malformations defined as discrepancies between sex chromosomes and phenotypical sex. Testicular or ovotesticular XX DSDs are frequently observed in female dogs, while monogenic XY DSDs are less frequent. Here, we applied whole genome sequencing (WGS) to search for causative mutations in XX DSD females in French Bulldogs (FB) and American Staffordshire Terries (AST) and in XY DSD Yorkshire Terries (YT). The WGS results were validated by Sanger sequencing and ddPCR. It was shown that a missense SNP of the PADI6 gene, is significantly associated with the XX DSD (SRY-negative) phenotype in AST (P = 0.0051) and FB (P = 0.0306). On the contrary, we did not find any associated variant with XY DSD in YTs. Our study suggests that the genetic background of the XX DSD may be more complex and breed-specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号