首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Frozen hydrated specimens of Pratylenchus agilis and dauer larvae of Steinernema carpocapsae were observed with low-temperature field emission scanning electron microscopy. This new technique provides information about the surface features of nematodes and also allows specimens to be fractured to reveal their internal structure. Furthermore, both halves of fractured specimens can be retained, examined, and photographed either as two-dimensional micrographs or as three-dimensional images for stereo observation (stereology) or quantitative measurements (stereometry). This technique avoids artifacts normally associated with procedures required to prepare nematodes for examination in the transmission and scanning electron microscopes, such as chemical fixation, dehydration, and sectioning or critical point drying.  相似文献   

2.
The plant parasitic nematodes Helicotylenchus multicinctus, Meloidogyne javanica, Tylenchulus semipenetrans, and Xiphinema index, differing in their host specificity and parasitic habits, were analyzed as to their cuticle surface sialyl, galaclosyl, and/or N-acetylgalactosaminyl residues. The procedure involved the selective oxidation of sialic acid and galactose/N-acetylgal-actosamine residues using periodate and galactose oxidase, respectively, to form reactive aldehyde groups. These functional groups were coupled directly with a new hydrazide-containing compound, the fluorescent reagent lissamine rhodamine-β-alanine hydrazide, or they were utilized to introduce DPN-groups to the nematode cuticle. The distribution of the DNP-tagged glycoconjugates was visualized by treating the nematodes with rabbit anti-DNP antibody and staining with fluorescein isothiocyanate (FITC)-labeled goat antirabbit IgG. Sialo residues were observed along the entire outer body wall of the first three aforementioned nematodes, but there were some differences in reaction among the various life stages within the species. In X. index, sialo residues were sited in the tail and head areas, mainly on the lips, oral opening, amphid apertures and stylet. Galactose oxidase treatments revealed galactose on N-acytylgalactosamine residues on T. sentipenetrans and X. index, but there were no indications that their presence was dependent on the developmental stage. Trypsin, pronase, and neuraminidase pretreatment completely abolished the fluorescence in T. semipenetrans but did not alter the sialo residue binding reaction in H. multicinctus or M. javanica, indicating possible differences in the outer body wall saccharide structure and composition between these nematodes. The existence and nature of sugar residues on the cuticle surface of nematodes could contribute to an understanding of the specific recognition by phytophagous nematodes of their host, and perhaps also of the virus transmission mechanism in those nematodes which serve as vectors.  相似文献   

3.
Three basic procedures for treating nematode-bearing soil samples for international shipment or from areas under quarantine were tested for their killing effect and recovery of nematodes by sugar flotation for diagnostic and advisory purposes. These were: fumigation with methyl bromide followed by storage at -15 C; microwave treatment (2450 MHz, 630 w, 2-5 min) followed by addition of FAA + picric acid or 5% Formalin; and adding chemical preservatives (FAA + picric acid, 5% Formalin, NAN₃, and 2-phenoxyethanol) directly to the soil. Larvae of Heterodera glycines in eggs within cysts were stimulated to hatch by 2-rain exposure to microwaves, and an exposure of 5 rain was required to kill them. Soil type and moisture significantly affected microwave effectiveness. Direct saturation of soil samples with preservative chemical solutions (FAA + picric acid or 5% Formalin) was most effective, and often increased the number of nematodes recovered. The high concentration (2%) of NaN₃ a required for soil sterilization is too hazardous for routine work. NaN₃, therefore, is not recommended for this purpose.  相似文献   

4.
The incidence of adhesion of Pasteuria penetrans endospores to Meloidogyne incognita second-stage juveniles (J2) was studied after pretreatment of the latter with monoclonal antibodies (MAb), cationized ferritin, and other organic molecules in replicated trials. Monoclonal antibodies developed to a cuticular epitope of M. incognita second-stage juveniles gave significant reductions in attachment of P. penetrans endospores to treated nematodes. MAb bound to the entire length of J2 except for the area of the lateral field, where binding was restricted to the incisures. Since reductions in attachment with MAb treatment were modest, it is uncertain if these results implicated a specific surface protein as a factor that interacted in binding of the endospore to the nematode cuticle. Endospore attachment was decreased following treatment of the nematode with the detergents sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB). Endospore attachment to live nematodes was significantly greater than attachment to dead nematodes. Attachment rates of three P. penetrans isolates to M. incognita race 3 varied between isolates. The effects of neuraminidase, pronase, pepsin, trypsin, lipase, and Na periodate on endospore attachment were inconsistent. The cationic dye alcian blue, which binds sulfate and carboxyl groups on acidic glycans, had no consistent effect on endospore attachment. The incidence of endospore attachment was significantly lower but modest, at best, for nematodes that were treated with cationized ferritin alone or cationized ferritin following monoclonal antibody. The lack of consistency or extreme reduction in most experiments suggests that attachment of P. penetrans spores to M. incognita is not specified by only one physico-chemical factor, but may involve a combination of at least two physico-chemical factors (including surface charge and movement of the J2). This points to a need for analysis of combined or factorial treatment effects.  相似文献   

5.
The occurrence and distribution of several lectin binding sites on the outer surfaces of eggs, preparasitic second-stage juveniles (J2), parasitic second-stage juveniles (PJ2), females, and males of two tylenchid nematodes, Anguina tritici and Meloidogyne incognita race 3, were compared. In both species, a greater variety of lectins bound to the eggs than to other life stages; lectin binding to eggs was also more intense than it was to other life stages. Species-specific differences also occurred. More lectins bound to the amphids or amphidial secretions of M. incognita J2 than to the amphids or amphidial secretions of A. tritici J2. Lectins also bound to the amphids or amphidial secretions of adult male and female A. tritici, but binding to the cuticle occurred only at the head and tail and was not consistent in all specimens. Canavalia ensiformis and Ulex europaeus lectins bound specifically to the outer cuticle of M. incognita. Several other lectins bound nonspecifically. Oxidation of the cuticle with periodate under mild conditions, as well as pretreatment of the nematodes with lipase, markedly increased the binding of lectins to the cuticle of A. tritici J2 but not, in most cases, to M. incognita J2 or eggs of either species.  相似文献   

6.
Live adult and juvenile entomopathogenic Steinernema carpocapsae DD136 (P. Nematoda) were not subjected to adhesion by haemocytes of lepidopteran insect larvae of Galleria mellonella or Malacosoma disstriain vitro or in vivo. In vitro freeze-killed nematodes exhibited haemocyte attachment, the intensity increasing with time. Accumulation of haemocytes on the dead nematodes was associated with host phenoloxidase activity; live nematodes and their exudates did not activate the enzyme whereas dead nematodes but not their exudate did activate phenoloxidase. Live-nematode exudate inhibited granular cell and some plasmatocyte adhesion to slides, increased granular cell but not plasmatocyte dissociation from preformed haemocyte monolayers and in vivo elevated total haemocyte counts and changed the floating haemocyte types while impairing bacterial removal from the haemolymph. Dead-nematode exudate did not affect these parameters thus immunosuppressant activity by live nematodes may represent the release of inhibitors not associated with their cuticle. The third stage juveniles released the inhibitors.  相似文献   

7.
Studies performed in Drosophila melanogaster embryos and larvae provide crucial insight into developmental processes such as cell fate specification and organogenesis. Immunostaining allows for the visualization of developing tissues and organs. However, a protective cuticle that forms at the end of embryogenesis prevents permeation of antibodies into late-stage embryos and larvae. While dissection prior to immunostaining is regularly used to analyze Drosophila larval tissues, it proves inefficient for some analyses because small tissues may be difficult to locate and isolate. Sonication provides an alternative to dissection in larval Drosophila immunostaining protocols. It allows for quick, simultaneous processing of large numbers of late-stage embryos and larvae and maintains in situ morphology. After fixation in formaldehyde, a sample is sonicated. Sample is then subjected to immunostaining with antigen-specific primary antibodies and fluorescently labeled secondary antibodies to visualize target cell types and specific proteins via fluorescence microscopy. During the process of sonication, proper placement of a sonicating probe above the sample, as well as the duration and intensity of sonication, is critical. Additonal minor modifications to standard immunostaining protocols may be required for high quality stains. For antibodies with low signal to noise ratio, longer incubation times are typically necessary. As a proof of concept for this sonication-facilitated protocol, we show immunostains of three tissue types (testes, ovaries, and neural tissues) at a range of developmental stages.  相似文献   

8.
Although several attempts have been made to differentiate nematode species with polyclonal antisera, these efforts thus far have met with limited success because of extensive crossreactivities of the sera. Since the hybridoma technique offers the opportunity to develop more specific serological reagents, some research groups have recently started to apply this technology to the problem of species identification in nematology. Monoclonal antibodies (MA) that differentiate the potato-cyst nematodes Globodera rostochiensis and G. pallida, as well as MA specific for Meloidogyne species, have been developed. The possibilities of developing serodiagnostic tools for identification of nematodes recovered from soil samples and the implications of such monitoring of nematode infestations in view of integrated control of plant-parasitic nematodes are discussed.  相似文献   

9.
"Pesta," a new granular product for use with entrapped biocontrol agents, is based on a cohesive dough made of wheat flour, fillers, and other additives. Infective juveniles of the entomopathogen Steinernema carpocapsae strain All incorporated in Pesta granules emerged when the granules were softened by immersion in water. These granules may be useful for the biocontrol of insect pests in the soil. Storage temperature had the greatest effect on recovery of nematodes, followed by the moisture content of the granules. Recovery of nematodes was the same among the formulations tested and was unaffected by storage in nitrogen. Nematode recovery after storage at 21 C decreased to zero after 3-6 weeks. Storage of samples at 4 C and with a high moisture content (19.9-23.1%) greatly improved nematode viability.  相似文献   

10.
Entomopathogenic Nematode Production and Application Technology   总被引:1,自引:0,他引:1  
Production and application technology is critical for the success of entomopathogenic nematodes (EPNs) in biological control. Production approaches include in vivo, and in vitro methods (solid or liquid fermentation). For laboratory use and small scale field experiments, in vivo production of EPNs appears to be the appropriate method. In vivo production is also appropriate for niche markets and small growers where a lack of capital, scientific expertise or infrastructure cannot justify large investments into in vitro culture technology. In vitro technology is used when large scale production is needed at reasonable quality and cost. Infective juveniles of entomopathogenic nematodes are usually applied using various spray equipment and standard irrigation systems. Enhanced efficacy in EPN applications can be facilitated through improved delivery mechanisms (e.g., cadaver application) or optimization of spray equipment. Substantial progress has been made in recent years in developing EPN formulations, particularly for above ground applications, e.g., mixing EPNs with surfactants or polymers or with sprayable gels. Bait formulations and insect host cadavers can enhance EPN persistence and reduce the quantity of nematodes required per unit area. This review provides a summary and analysis of factors that affect production and application of EPNs and offers insights for their future in biological insect suppression.  相似文献   

11.
Living Xiphinema americanum (Xa) and X. rivesi (Xr) extracted from soil samples and stored for 1-5 days at 4 or 20 C contained aseptate fungal hyphae. The fungi directly penetrated the nematode''s cuticle from spores encysted near the head. Penetration through the stoma, vulva, or anus was rare. Catenaria anguillulae (Cat), Lagenidium caudatura (Lag), Aphanomyces sp. (Aph), and Leptolegnia sp. (Lep) were isolated into pure culture from infected nematodes. The pathogenicity of these zoosporic fungi was determined by incubating mixed freshly extracted Xa and Xr in 2% soil extract (pH = 6.7, conductivity = 48 μmhos, 20 ± 2 C) containing zoospores obtained from single-spore isolates. After 4 days, Cat, Lag, Aph, and Lep had infected 78, 18, 13, and 22%, respectively, of the nematodes. Both Xa and Xr were infected by every fungus; however, the relative susceptibility of Xa and Xr to these fungi was not determined. All noninoculated control nematodes remained uninfected and alive. In a second experiment, parasitism of Xa and Xr by Aph and Lep was increased when nematodes were incubated in 2% soil extract for 4 days before exposure to zoospores. In a third experiment, parasitism of Xa and Xr by Cat was greater in diluted saturation soil extract (conductivity = 100-400 μmhos) than in undiluted saturation extract (conductivity = 780 μmhos). Cat produced small zoospores (4-μm-d), bulbous infection hyphae, and assimilative hyphae of varying diameters in nematodes, whereas Lag, Aph, and Lep produced large zoospores (8-μm-d) and tubular, uniform infection and assimilative hyphae in nematodes.  相似文献   

12.
Second-stage juveniles of Meloidogyne incognita were prepared by several different techniques for scanning electron microscopy (SEM). Sequential fixation in the cold (4-8 C) was superior to rapid fixation at room temperature, glutaraldehyde and glutaraldehyde-formalin were better fixatives than formalin alone, and critical point drying with carbon dioxide or Freon gave similar results that were only slightly better than air drying with Freon. Freeze drying sequentially fixed nematodes from 100% ethanol in liquid propane produced the best preserved specimens with the fewest artifacts. Specimens of various free-living and plant-parasitic nematodes were prepared for SEM by freeze drying. This technique was adequate for most genera but unsatisfactory for a few. Although each genus may require a different procedure for optimum preservation of detail, sequential fixation with glutaraldehyde and freeze drying are comparable and often superior to commonly used techniques for preparing nematodes for SEM.  相似文献   

13.
The effects of a North Carolina population of Meloidogyne incognita on N₂ fixation on root-knot-susceptible ''Lee 68'' and moderately resistant ''Forrest'' soybean were evaluated 50, 75, I00, and 135 days after inoculation with nematodes. Nematodes stimulated N₂ fixation in Lee 68 by 50 days and in Forrest by 75 days. At all other intervals, N₂ fixation was either depressed or unaffected by nematodes. Additional observations indicate that the susceptibility of Lee 68 is associated with greater rates of penetration by larvae and more favorable responses of host tissues to nematodes than occur in Forrest. With time, however, the histological reactions of both hosts became less favorable for nematode development. Resistant or hypersensitive responses became common in Forrest by 75 days but not in Lee 68 until 90 days after inoculation. This population of M. incognita may stimulate N₂ fixation at a specific time interval and depress it at others; therefore, disease of susceptible soybeans caused by this nematode is probably not primarily due to a net loss of fixed nitrogen but to pathogenicity similar to that which occurs on nonlegume hosts.  相似文献   

14.
Spores of an unidentified bacterium were discovered adhering to cuticles of third-stage infective juvenile (IJ) Steinernema diaprepesi endemic in a central Florida citrus orchard. The spores were cup-shaped, 5 to 6 mm in length, and contained a central endospore. Based on 16S rDNA gene sequencing, the bacterium is closely related to the insect pathogens Paenibacillus popilliae and P. lentimorbus. However, unlike the latter bacteria, the Paenibacillus sp. is non-fastidious and grew readily on several standard media. The bacterium did not attach to cuticles of several entomopathogenic or plant-parasitic nematodes tested, suggesting host specificity to S. diaprepesi. Attachment of Paenibacillus sp. to the third-stage cuticle of S. diaprepesi differed from Paenibacillus spp. associated with heterorhabditid entomopathogenic nematodes, which attach to the IJ sheath (second-stage cuticle). The inability to detect endospores within the body of S. diaprepesi indicates that the bacterial association with the nematode is phoretic. The Paenibacillus sp. showed limited virulence to Diaprepes abbreviatus, requiring inoculation of larvae with 108 spores to achieve death of the insect and reproduction of the bacterium. The effect of the bacterium on the nematode population biology was studied in 25-cm-long vertical sand columns. A single D. abbreviatus larva was confined below 15-cm depth, and the soil surface was inoculated with either spore-free or spore-encumbered IJ nematodes. After 7 days, the proportion of IJ below 5-cm depth was seven-fold greater for spore-free IJ than for spore-encumbered nematodes. Mortality of D. abbreviatus larvae was 72% greater (P <= 0.01) for spore-free compared to spore-encumbered S. diaprepesi. More than 5 times as many progeny IJs (P <= 0.01) were produced by spore-free compared to spore-encumbered nematodes. These data suggest that the bacterium is a component of the D. abbreviatus food web with some potential to regulate a natural enemy of the insect.  相似文献   

15.
In two studies to estimate sampling requirements for entomogenous nematodes in the field, highest persistence of Heterorhabditis bacteriophora after application occurred beneath the canopies of mature citrus trees. Nematode persistence declined with distance from the center-line of the tree row toward the row-middles. Immediately after nematode application to soil, 32 samples (15 cm deep, 2.5-cm diameter) beneath a single tree were required to derive 95% confidence intervals that were within 40% of mean nematode population density. The estimated probability of measuring the mean density within 40%, using 32 samples, declined to 88% at 2 days post-application and to 76% at 7 days. The persistence in soil of Steinernema carpocapsae, S. riobravis, and two formulations containing H. bacteriophora and their efficacy against the larvae of Diaprepes abbreviatus were compared in a grove of 4-year-old citrus trees. Within 6 days, the recovered population densities of all nematodes declined to <5% of levels on day 0. The recovery of H. bacteriophora during the first 2 weeks was lower than that of the other two species. Steinemema riobravis and both formulations of H. bacteriophora reduced recovery of D. abbreviatus by more than 90% and 50%, respectively. Steinernema carpocapsae did not affect population levels of the insect.  相似文献   

16.
Numbers of Steinernema sp. (CB2B) and S. carpocapsae (Agriotos) exponentially declined after application into a clay loam soil. Over a 35-day sampling period, Steinernema sp. (CB2B) was more persistent than S. carpocapsae (Agriotos). The presence or absence of the second-stage cuticle on the third-stage juveniles (J3) at the time of application did not alter the rate of population decline of Steinernema sp. (CB2B). Nearly all J3 of Steinernema sp. (CB2B) and S. carpocapsae (Agriotos) lost their cuticle within 24 hours of being in soil. Centrifugal flotation recovered the greatest number of nematodes, with a lower variance than either the live bait or Baermann funnel techniques. A strong positive linear relationship was evident between numbers of nematodes present in the soil and the numbers that established in a bait insect. Approximately 40% of Steinernema sp. (CB2B) and 30% of the S. carpocapsae (Agriotos) present in the soil established in Galleria mellonella larvae. The extraction techniques had different efficiencies and gave different relative estimates of persistence for the two species. Persistence and infectivity was best measured using a combination of live bait and flotation techniques.  相似文献   

17.
Plant-parasitic nematodes can be very damaging to turfgrasses. The projected cancellation of the registration for fenamiphos in the near future has generated a great deal of interest in identifying acceptable alternative nematode management tactics for use on turfgrasses. Two field experiments were conducted to evaluate the effectiveness of repeated applications of several commercially available nematicides and root biostimulants for reducing population densities of plant-parasitic nematodes and (or) promoting health of bermudagrass in nematode-infested soil. One experimental site was infested with Hoplolaimus galeatus and Trichodorus obtusus, the second with Belonolaimus longicaudatus. In both trials, none of the experimental treatments reduced population densities (P ≤ 0.1) of plant-parasitic nematodes, or consistently promoted turf visual performance or turf root production. Nematologists with responsibility to advise turf managers regarding nematode management should thoroughly investigate the validity of product claims before advising clientele in their use.  相似文献   

18.
A collection of Caenorhabditis elegans mutants that show ectopic surface lectin binding (Srf mutants) was analyzed to determine the biochemical basis for this phenotype. This analysis involved selective removal or labeling of surface components, specific labeling of surface glycans, and fractionation of total protein with subsequent detection of wheat germ agglutinin (WGA) binding proteins. Wild-type and mutant nematodes showed no differences in their profiles of extractable surface glycoproteins or total WGA-binding proteins, suggesting that the ectopic lectin binding does not result from the novel expression of surface glycans. Instead, these results support a model in which ectopic lectin binding results from an unmasking of glycosylated components present in the insoluble cuticle matrix of wild-type animals. To explain the multiple internal defects found in some surface mutants, we propose that these mutants have a basic defect in protein processing. This defect would interfere with the expression of the postulated masking protein(s), as well as other proteins required for normal development.  相似文献   

19.
Strawberry roots were sampled through the year to determine the populations and distribution of Pratylenchus penetrans and Meloidogyne hapla. Three strawberry root types were sampled—structural roots; feeder roots without secondary tissues; and suberized, black perennial roots. Both lesion and root-knot nematodes primarily infected feeder roots from structural roots or healthy perennial roots. Few nematodes were recovered from soil, diseased roots, or suberized roots. Lesion nematode recovery was correlated with healthy roots. In both 1997 and 1998, P. penetrans populations peaked about day 150 (end of May) and then declined. The decline in numbers corresponded to changes in total strawberry root weight and root type distribution. The loss of nematode habitat resulted from loss of roots due to disease and the transition from structural to suberized perennial roots. Meloidogyne hapla juvenile recovery peaked around 170 days (mid June) in 1997 and at 85, 147, 229, and 308 days (late March, late May, mid August, and early November, respectively) in 1998. There appear to be at least four generations per year of M. hapla in Connecticut. Diagnostic samples from an established strawberry bed may be most reliable and useful when they include feeder roots taken in late May.  相似文献   

20.
Five species of nematodes - Hemicriconemoides pseudobrachyurum, Hemicycliophora conida, Macroposthonia ornata, Aphelenchoides ritzemabosi, and Psilenchus hilarulus -were desiccated to study their capacity to survive anhydrobiotically. Results indicate that the ability of the sheath to shrink quickly and its relatively loose attachment with the nematode body allow H. conida to survive longer than H. pseudobrachyurum; the survival of M. ornata was intermediate, A. ritzemabosi and P. hilarulus survived immersion in paraffin oil for 12 and 17 days, respectively. Both of these nematodes possess multiple contraction ability; i.e., coiling coupled with transverse and longitudinal folding of the cuticle. P. hilarulus is a new addition to the list of anhydrobiotic nematodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号