首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ATP-binding cassette protein A1 (ABCA1) plays a major role in cholesterol homeostasis and high-density lipoprotein (HDL) metabolism. Although it is predicted that apolipoprotein A-I (apoA-I) directly binds to ABCA1, the physiological importance of this interaction is still controversial and the conformation required for apoA-I binding is unclear. In this study, the role of the two nucleotide-binding domains (NBD) of ABCA1 in apoA-I binding was determined by inserting a TEV protease recognition sequence in the linker region of ABCA1. Analyses of ATP binding and occlusion to wild-type ABCA1 and various NBD mutants revealed that ATP binds equally to both NBDs and is hydrolyzed at both NBDs. The interaction with apoA-I and the apoA-I-dependent cholesterol efflux required not only ATP binding but also hydrolysis in both NBDs. NBD mutations and cellular ATP depletion decreased the accessibility of antibodies to a hemagglutinin (HA) epitope that was inserted at position 443 in the extracellular domain (ECD), suggesting that the conformation of ECDs is altered by ATP hydrolysis at both NBDs. These results suggest that ATP hydrolysis at both NBDs induces conformational changes in the ECDs, which are associated with apoA-I binding and cholesterol efflux.  相似文献   

2.
Multidrug resistance protein (MRP1) utilizes two non-equivalent nucleotide-binding domains (NBDs) to bind and hydrolyze ATP. ATP hydrolysis by either one or both NBDs is essential to drive transport of solute. Mutations of either NBD1 or NBD2 reduce solute transport, but do not abolish it completely. How events at these two domains are coordinated during the transport cycle have not been fully elucidated. Earlier reports (Gao, M., Cui, H. R., Loe, D. W., Grant, C. E., Almquist, K. C., Cole, S. P., and Deeley, R. G. (2000) J. Biol. Chem. 275, 13098-13108; Hou, Y., Cui, L., Riordan, J. R., and Chang, X. (2000) J. Biol. Chem. 275, 20280-20287) indicate that intact ATP is observed bound at NBD1, whereas trapping of the ATP hydrolysis product, ADP, occurs predominantly at NBD2 and that trapping of ADP at NBD2 enhances ATP binding at NBD1 severalfold. This suggested transmission of a positive allosteric interaction from NBD2 to NBD1. To assess whether ATP binding at NBD1 can enhance the trapping of ADP at NBD2, photoaffinity labeling experiments with [alpha-(32)P]8-N(3)ADP were performed and revealed that when presented with this compound labeling of MRP1 occurred at both NBDs. However, upon addition of ATP, this labeling was enhanced 4-fold mainly at NBD2. Furthermore, the nonhydrolyzable ATP analogue, 5'-adenylylimidodiphosphate (AMP-PNP), bound preferentially to NBD1, but upon addition of a low concentration of 8-N(3)ATP, the binding at NBD2 increased severalfold. This suggested that the positive allosteric stimulation from NBD1 actually involves an increase in ATP binding at NBD2 and hydrolysis there leading to the trapping of ADP. Mutations of Walker A or B motifs in either NBD greatly reduced their ability to be labeled by [alpha-(32)P]8-N(3)ADP as well as by either [alpha-(32)P]- or [gamma-(32)P]8-N(3)ATP (Hou et al. (2000), see above). These mutations also strongly diminished the enhancement by ATP of [alpha-(32)P]8-N(3)ADP labeling and the transport activity of the protein. Taken together, these results demonstrate directly that events at NBD1 positively influence those at NBD2. The interactions between the two asymmetric NBDs of MRP1 protein may enhance the catalytic efficiency of the MRP1 protein and hence of its ATP-dependent transport of conjugated anions out of cells.  相似文献   

3.
Multidrug resistance-associated protein (MRP1) transports solutes in an ATP-dependent manner by utilizing its two nonequivalent nucleotide binding domains (NBDs) to bind and hydrolyze ATP. We found that ATP binding to the first NBD of MRP1 increases binding and trapping of ADP at the second domain (Hou, Y., Cui, L., Riordan, J. R., and Chang, X. (2002) J. Biol. Chem. 277, 5110-5119). These results were interpreted as indicating that the binding of ATP at NBD1 causes a conformational change in the molecule and increases the affinity for ATP at NBD2. However, we did not distinguish between the possibilities that the enhancement of ADP trapping might be caused by either ATP binding alone or hydrolysis. We now report the following. 1) ATP has a much lesser effect at 0 degrees C than at 37 degrees C. 2) After hexokinase treatment, the nonhydrolyzable ATP analogue, adenyl 5'-(yl iminodiphosphate), does not enhance ADP trapping. 3) Another nonhydrolyzable ATP analogue, adenosine 5'-(beta,gamma-methylene)triphosphate, whether hexokinase-treated or not, causes a slight enhancement. 4) In contrast, the hexokinase-treated poorly hydrolyzable ATP analogue, adenosine 5'-O-(thiotriphosphate) (ATPgammaS), enhances ADP trapping to a similar extent as ATP under conditions in which ATPgammaS should not be hydrolyzed. We conclude that: 1) ATP hydrolysis is not required to enhance ADP trapping by MRP1 protein; 2) with nucleotides having appropriate structure such as ATP or ATPgammaS, binding alone can enhance ADP trapping by MRP1; 3) the stimulatory effect on ADP trapping is greatly diminished when the MRP1 protein is in a "frozen state" (0 degrees C); and 4) the steric structure of the nucleotide gamma-phosphate is crucial in determining whether binding of the nucleotide to NBD1 of MRP1 protein can induce the conformational change that influences nucleotide trapping at NBD2.  相似文献   

4.
ATP-binding cassette transporter A1 (ABCA1) is critical for the generation of nascent high-density lipoprotein (HDL) and plays important roles in cholesterol homeostasis. ABCA1 has two large extracellular domains (ECDs), which may interact directly with apolipoprotein A-I (apoA-I). However, the molecular mechanisms underlying HDL formation and the importance of ABCA1–apoA-I interactions in HDL formation remain unclear. We investigated the ABCA1–apoA-I interaction in photo-activated crosslinking experiments using sulfo-SBED–labeled apoA-I. ApoA-I bound to cells expressing ABCA1, but not to untransfected cells or cells expressing non-functional ABCA1. Binding was inhibited by sulfo-SBED–labeled apoA-I, and crosslinking of sulfo-SBED–labeled apoA-I with ABCA1 was inhibited by non-labeled apoA-I, suggesting that sulfo-SBED–labeled apoA-I specifically binds and crosslinks with functional ABCA1. Proteolytic digestion of crosslinked ABCA1 revealed that apoA-I bound the N-terminal half of ABCA1, and that the first ECD of ABCA1 is an apoA-I binding site.

Abbreviations: ABC: ATP-binding cassette; apoA-I: apolipoprotein A-I; ATP: adenosine triphosphate; CHAPS: 3-(3-cholamidepropyl)dimethylammonio-1- propanesulphonate; DTT: dithiothreitol; ECD: extra cellular domain; EDTA: ethylenediaminetetraacetic acid; GFP: green fluorescent protein; HA: hemagglutinin; HDL: high density lipoprotein; HEK: human embryonic kidney; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; sulfo-SBED: (sulfosuccinimidyl-2-[6-(biotinamido)-2-(p-azidobenzamido)hexanoamido] ethyl-1,3?-dithiopropionate; NHS-ester, N-hydroxysuccinimide-ester  相似文献   


5.
6.
ABCR, also known as ABCA4, is a member of the superfamily of ATP binding cassette transporters that is believed to transport retinal or retinylidene-phosphatidylethanolamine across photoreceptor disk membranes. Mutations in the ABCR gene are responsible for Stargardt macular dystrophy and related retinal dystrophies that cause severe loss in vision. ABCR consists of two tandemly arranged halves each containing a membrane spanning segment followed by a large extracellular/lumen domain, a multi-spanning membrane domain, and a nucleotide binding domain (NBD). To define the role of each NBD, we examined the nucleotide binding and ATPase activities of the N and C halves of ABCR individually and co-expressed in COS-1 cells and derived from trypsin-cleaved ABCR in disk membranes. When disk membranes or membranes from co-transfected cells were photoaffinity labeled with 8-azido-ATP and 8-azido-ADP, only the NBD2 in the C-half bound and trapped the nucleotide. Co-expressed half-molecules displayed basal and retinal-stimulated ATPase activity similar to full-length ABCR. The individually expressed N-half displayed weak 8-azido-ATP labeling and low basal ATPase activity that was not stimulated by retinal, whereas the C-half did not bind ATP and exhibited little if any ATPase activity. Purified ABCR contained one tightly bound ADP, presumably in NBD1. Our results indicate that only NBD2 of ABCR binds and hydrolyzes ATP in the presence or absence of retinal. NBD1, containing a bound ADP, associates with NBD2 to play a crucial, non-catalytic role in ABCR function.  相似文献   

7.
Hereditary nonpolyposis colorectal cancer is caused by germline mutations in DNA mismatch repair genes. The majority of cases are associated with mutations in hMSH2 or hMLH1; however, about 12% of cases are associated with alterations in hMSH6. The hMSH6 protein forms a heterodimer with hMSH2 that is capable of recognizing a DNA mismatch. The heterodimer then utilizes its adenosine nucleotide processing ability in an, as of yet, unclear mechanism to facilitate communication between the mismatch and a distant strand discrimination site. The majority of reported mutations in hMSH6 are deletions or truncations that entirely eliminate the function of the protein; however, nearly a third of the reported variations are missense mutations whose functional significance is unclear. We analyzed seven cancer-associated single amino acid alterations in hMSH6 distributed throughout the functional domains of the protein to determine their effect on the biochemical activity of the hMSH2-hMSH6 heterodimer. Five alterations affect mismatch-stimulated ATP hydrolysis activity providing functional evidence that missense variants of hMSH6 can disrupt mismatch repair function and may contribute to disease. Of the five mutants that affect mismatch-stimulated ATP hydrolysis, only two (R976H and H1248D) affect mismatch recognition. Thus, three of the mutants (G566R, V878A, and D803G) appear to uncouple the mismatch binding and ATP hydrolysis activities of the heterodimer. We also demonstrate that these three mutations alter ATP-dependent conformation changes of hMSH2-hMSH6, suggesting that cancer-associated mutations in hMSH6 can disrupt the intramolecular signaling that coordinates mismatch binding with adenosine nucleotide processing.  相似文献   

8.
Cellular localization and trafficking of the human ABCA1 transporter   总被引:16,自引:0,他引:16  
ABCA1, the ATP-binding cassette protein mutated in Tangier disease, mediates the efflux of excess cellular sterol to apoA-I and thereby the formation of high density lipoprotein. The intracellular localization and trafficking of ABCA1 was examined in stably and transiently transfected HeLa cells expressing a functional human ABCA1-green fluorescent protein (GFP) fusion protein. The fluorescent chimeric ABCA1 transporter was found to reside on the cell surface and on intracellular vesicles that include a novel subset of early endosomes, as well as late endosomes and lysosomes. Studies of the localization and trafficking of ABCA1-GFP in the presence of brefeldin A or monensin, agents known to block intracellular vesicular trafficking, as well as apoA-I-mediated cellular lipid efflux, showed that: (i) ABCA1 functions in lipid efflux at the cell surface, and (ii) delivery of ABCA1 to lysosomes for degradation may serve as a mechanism to modulate its surface expression. Time-lapse fluorescence microscopy revealed that ABCA1-GFP-containing early endosomes undergo fusion, fission, and tubulation and transiently interact with one another, late endocytic vesicles, and the cell surface. These studies establish a complex intracellular trafficking pathway for human ABCA1 that may play important roles in modulating ABCA1 transporter activity and cellular cholesterol homeostasis.  相似文献   

9.
Two highly conserved amino acid residues, an arginine and a glutamine, located near the C-terminal end of the gamma subunit, form a "catch" by hydrogen bonding with residues in an anionic loop on one of the three catalytic beta subunits of the bovine mitochondrial F1-ATPase [Abrahams, J. P., Leslie, A. G., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628]. The catch is considered to play a critical role in the binding change mechanism whereby binding of ATP to one catalytic site releases the catch and induces a partial rotation of the gamma subunit. This role is supported by the observation that mutation of the equivalent arginine and glutamine residues in the Escherichia coli F1 gamma subunit drastically reduced all ATP-dependent catalytic activities of the enzyme [Greene, M. D., and Frasch, W. D. (2003) J. Biol. Chem. 278, 5194-5198]. In this study, we show that simultaneous substitution of the equivalent residues in the chloroplast F1 gamma subunit, arginine 304 and glutamine 305, with alanine decreased the level of proton-coupled ATP synthesis by more than 80%. Both the Mg2+-dependent and Ca2+-dependent ATP hydrolysis activities increased by more than 3-fold as a result of these mutations; however, the sulfite-stimulated activity decreased by more than 60%. The Mg2+-dependent, but not the Ca2+-dependent, ATPase activity of the double mutant was insensitive to inhibition by the phytotoxic inhibitor tentoxin, indicating selective loss of catalytic cooperativity in the presence of Mg2+ ions. The results indicate that the catch residues are required for efficient proton coupling and for activation of multisite catalysis when MgATP is the substrate. The catch is not, however, required for CaATP-driven multisite catalysis or, therefore, for rotation of the gamma subunit.  相似文献   

10.
Extremely low concentrations of high density lipoprotein (HDL)-cholesterol and apolipoprotein (apo) AI are features of Tangier disease caused by autosomal recessive mutations in ATP-binding cassette transporter A1 (ABCA1). Less deleterious, but dominantly inherited mutations cause HDL deficiency. We investigated causes of severe HDL deficiency in a 42-year-old female with progressive coronary disease. ApoAI-mediated efflux of cholesterol from the proband's fibroblasts was less than 10% of normal and nucleotide sequencing revealed inheritance of two novel mutations in ABCAI, V1704D and L1379F. ABCA1 mRNA was approximately 3-fold higher in the proband's cells than in control cells; preincubation with cholesterol increased it 5-fold in control and 8-fold in the proband's cells, but similar amounts of ABCA1 protein were present in control and mutant cells. When transiently transfected into HEK293 cells, confocal microscopy revealed that both mutant proteins were retained in the endoplasmic reticulum, while wild-type ABCA1 was located at the plasma membrane. Severe HDL deficiency in the proband was caused by two novel autosomal recessive mutations in ABCA1, one (V1704D) predicted to lie in a transmembrane segment and the other (L1379F) in a large extracellular loop. Both mutations prevent normal trafficking of ABCA1, thereby explaining their inability to mediate apoA1-dependent lipid efflux.  相似文献   

11.
Although perturbation of organic anion transport protein (oatp) cell surface expression can result in drug toxicity, little is known regarding mechanisms regulating its subcellular distribution. Many members of the oatp family, including oatp1a1, have a COOH-terminal PDZ consensus binding motif that interacts with PDZK1, while serines upstream of this site (S634 and S635) can be phosphorylated. Using oatp1a1 as a prototypical member of the oatp family, we prepared plasmids in which these serines were mutated to glutamic acid [E634E635 (oatp1a1(EE)), phosphomimetic] or alanine [A634A635 (oatp1a1(AA)), nonphosphorylatable]. Distribution of oatp1a1(AA) and oatp1a1(EE) was largely intracellular in transfected human embryonic kidney (HEK) 293T cells. Cotransfection with a plasmid encoding PDZK1 revealed that oatp1a1(AA) was now expressed largely on the cell surface, while oatp1a1(EE) remained intracellular. To quantify these changes, studies were performed in HuH7 cells stably transfected with these oatp1a1 plasmids. These cells endogenously express PDZK1. Surface biotinylation at 4°C followed by shift to 37°C showed that oatp1a1(EE) internalizes quickly compared with oatp1a1(AA). To examine a physiological role for phosphorylation in oatp1a1 subcellular distribution, studies were performed in rat hepatocytes exposed to extracellular ATP, a condition that stimulates serine phosphorylation of oatp1a1 via activity of a purinergic receptor. Internalization of oatp1a1 under these conditions was rapid. Thus, although PDZK1 binding is required for optimal cell surface expression of oatp1a1, phosphorylation provides a mechanism for fast regulation of the distribution of oatp1a1 between the cell surface and intracellular vesicular pools. Identification of the proteins and motor molecules that mediate these trafficking events represents an important area for future study.  相似文献   

12.
The velocity of ATP hydrolysis, catalyzed by purified F1ATPase from Micrococcus luteus, was decelerated on decreasing the temperature. At 13 degrees C one reaction cycle is completed after 20 s. Hydrolysis was triggered upon rapid mixing of the enzyme with ATP. During the first reaction cycle, succeeding structural alterations of the F1ATPase were traced by time resolved X-ray scattering. The scattering spectra obtained from consecutive intervals of 1 s, revealed the F1ATPase to pass a conformational state exhibiting an expanded (6%) molecular shape. The expanded state was observed between 45% and 65% of the time required to complete the reaction cycle. This points out a conformational pulsation during ATP hydrolysis.  相似文献   

13.
MutL homologs belong to a family of proteins that share a conserved ATP binding site. We demonstrate that amino-terminal domains of the yeast MutL homologs Mlh1 and Pms1 required for DNA mismatch repair both possess independent, intrinsic ATPase activities. Amino acid substitutions in the conserved ATP binding sites concomitantly reduce ATP binding, ATP hydrolysis, and DNA mismatch repair in vivo. The ATPase activities are weak, consistent with the hypothesis that ATP binding is primarily responsible for modulating interactions with other MMR components. Three approaches, ATP hydrolysis assays, limited proteolysis protection, and equilibrium dialysis, provide evidence that the amino-terminal domain of Mlh1 binds ATP with >10-fold higher affinity than does the amino-terminal domain of Pms1. This is consistent with a model wherein ATP may first bind to Mlh1, resulting in events that permit ATP binding to Pms1 and later steps in DNA mismatch repair.  相似文献   

14.
Popovic Z  Templeton DM 《The FEBS journal》2007,274(12):3108-3119
Iron regulatory protein-1 binding to the iron-responsive element of mRNA is sensitive to iron, oxidative stress, NO, and hypoxia. Each of these agents changes the level of intracellular ATP, suggesting a link between iron levels and cellular energy metabolism. Furthermore, restoration of iron regulatory protein-1 aconitase activity after NO removal has been shown to require mitochondrial ATP. We demonstrate here that the iron-responsive element-binding activity of iron regulatory protein is ATP-dependent in HepG2 cells. Iron cannot decrease iron regulatory protein binding activity in cell extracts if they are simultaneously treated with an uncoupler of oxidative phosphorylation. Physiologic concentrations of ATP inhibit iron-responsive element/iron regulatory protein binding in cell extracts and binding of iron-responsive element to recombinant iron regulatory protein-1. ADP has the same effect, in contrast to the nonhydrolyzable analog adenosine 5'-(beta,gamma-imido)triphosphate, indicating that in order to inhibit iron regulatory protein-1 binding activity, ATP must be hydrolyzed. Indeed, recombinant iron regulatory protein-1 binds ATP with a Kd of 86+/-17 microM in a filter-binding assay, and can be photo-crosslinked to azido-ATP. Upon binding, ATP is hydrolyzed. The kinetic parameters [Km=5.3 microM, Vmax=3.4 nmol.min(-1).(mg protein)(-1)] are consistent with those of a number of other ATP-hydrolyzing proteins, including the RNA-binding helicases. Although the iron-responsive element does not itself hydrolyze ATP, its presence enhances iron regulatory protein-1's ATPase activity, and ATP hydrolysis results in loss of the complex in gel shift assays.  相似文献   

15.
We have characterized various structural and enzymatic properties of the (68K-30K)-S-1 derivative obtained by thrombic cleavage [Chaussepied, P., Mornet, D., Audemard, E., Derancourt, J., & Kassab, R. (1986) Biochemistry (preceding paper in this issue)]. The far-ultraviolet CD spectra and thiol reactivity measurements indicated an unchanged overall polypeptide conformation of the enzyme whereas the CD spectra in the near-ultraviolet region suggested a local change in the environments of phenylalanine side chains; the latter finding was rationalized by considering the existence of about five of these amino acids in the vicinity of the cleavage sites. When the binding of Mg2+-ATP and Mg2+-ADP to the derivative was assessed by CD spectroscopy, distinct spectra were obtained with the two nucleotides as with native subfragment 1 (S-1), but some spectral features were unique to the nicked S-1. Stern-Volmer fluorescence quenching studies using acrylamide and the analogues 1,N6-ethenoadenosine 5'-triphosphate and 1,N6-ethenoadenosine 5'-diphosphate indicated that the complexes formed with the modified S-1 have a solute quencher accessibility close to that observed for the complexes with the normal S-1. However, in contrast to the parent enzyme, the thrombin-cut S-1 was unable to bind irreversibly Mg2+-ATP, nor did it form a stable Mg2+-ADP-sodium vanadate complex or achieve the entrapping of Mg2+-ADP after cross-linking of SH1 and SH2 with N,N'-p-phenylenedimaleimide. Additionally, the amplitude of the Pi burst was very low, indicating that the inactivation of the proteolyzed S-1 was linked to the suppression of the hydrolysis step in the ATPase cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The Rad51 recombinase polymerizes on ssDNA to yield a right-handed nucleoprotein filament, called the presynaptic filament, that can search for homology in duplex DNA and pair the recombining DNA molecules to form a DNA joint. ATP is needed for presynaptic filament assembly and homologous DNA pairing, but the roles of ATP binding and ATP hydrolysis in the overall reaction scheme have not yet been clearly defined. To address this issue, we have constructed two mutants of hRad51, hRad51 K133A and hRad51 K133R, expressed these mutant variants in Escherichia coli, and purified them to near homogeneity. Both hRad51 mutant variants are greatly attenuated for ATPase activity, but hRad51 K133R retains the ability to protect DNA from restriction enzyme digest and induce topological changes in duplex DNA in an ATP-dependent manner, whereas the hRad51 K133A variant is inactive. With biochemical means, we show that the presynaptic filament becomes greatly stabilized when ATP hydrolysis is prevented, leading to an enhanced ability of the presynaptic filament to catalyze homologous pairing. These results help form the basis for understanding the functions of ATP binding and ATP hydrolysis in hRad51-mediated recombination reactions.  相似文献   

17.
The 26S proteasome degrades polyubiquitinated proteins by an energy-dependent mechanism. Here we define multiple roles for ATP in 26S proteasome function. ATP binding is necessary and sufficient for assembly of 26S proteasome from 20S proteasome and PA700/19S subcomplexes and for proteasome activation. Proteasome assembly and activation may require distinct ATP binding events. The 26S proteasome degrades nonubiquitylated, unstructured proteins without ATP hydrolysis, indicating that substrate translocation per se does not require the energy of hydrolysis. Nonubiquitylated folded proteins and certain polyubiquitylated folded proteins were refractory to proteolysis. The latter were deubiquitylated by an ATP-independent mechanism. Other folded as well as unstructured polyubiquitylated proteins required ATP hydrolysis for proteolysis and deubiquitylation. Thus, ATP hydrolysis is not used solely for substrate unfolding. These results indicate that 26S proteasome-catalyzed degradation of polyubiquitylated proteins involves mechanistic coupling of several processes and that such coupling imposes an energy requirement not apparent for any isolated process.  相似文献   

18.
Sequence comparison of the human immunodeficiency virus type 1 and type 2 env genes revealed the presence of six linear regions in the extracellular glycoprotein that are highly conserved. To investigate the functional significance of these regions, we made short deletions in each and assayed the ability of the mutated proteins to bind CD4 antigen. Small deletions in four of the highly conserved regions drastically reduced receptor binding. Some deletions interfered with the maturation of the envelope glycoprotein, but maturation did not necessarily correlate with the ability to bind CD4 antigen.  相似文献   

19.
We report the sequence, conservation and cell biology of a novel protein, Psc1, which is expressed and regulated within the embryonic pluripotent cell population of the mouse. The Psc1 sequence includes an RS domain and an RNA recognition motif (RRM), and a sequential arrangement of protein motifs that has not been demonstrated for other RS domain proteins. This arrangement was conserved in a second mouse protein (BAC34721). The identification of Psc1 and BAC34721 homologues in vertebrates and related proteins, more widely throughout evolution, defines a new family of RS domain proteins termed acidic rich RS (ARRS) domain proteins. Psc1 incorporated into the nuclear speckles, but demonstrated novel aspects of subcellular distribution including localization to speckles proximal to the nuclear periphery and localization to punctate structures in the cytoplasm termed cytospeckles. Integration of Psc1 into cytospeckles was dependent on the RRM. Cytospeckles were dynamic within the cytoplasm and appeared to traffic into the nucleus. These observations suggest a novel role in RNA metabolism for ARRS proteins.  相似文献   

20.
A number of signaling molecules contain small pleckstrin homology (PH) domains capable of binding phosphoinositides or proteins. Phospholipase C (PLC)-gamma1 has two putative PH domains, an NH(2)-terminal (PH(1)) and a split PH domain (nPH(2) and cPH(2)). We previously reported that the split PH domain of PLC-gamma1 binds to phosphatidylinositol 4-phosphate (PI(4)P) and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) (Chang et al., 2002). To identify the amino acid residues responsible for binding with PI(4)P and PI(4,5)P(2), we used site-directed mutagenesis to replace each amino acid in the variable loop-1 (VL-1) region of the PLC-gamma1 nPH(2) domain with alanine (a neutral amino acid). The phosphoinositide-binding affinity of these mutant molecules was analyzed by Dot-blot assay followed by ECL detection. We found that two PLC-gamma1 nPH2 domain mutants, P500A and H503A, showed reduced affinities for phosphoinositide binding. Furthermore, these mutant PLC-gamma1 molecules showed reduced PI(4,5)P(2) hydrolysis. Using green fluorescent protein (GFP) fusion protein system, we showed that both PH(1) and nPH(2) domains are responsible for membrane-targeted translocation of PLC-gamma1 upon serum stimulation. Together, our data reveal that the amino acid residues Pro(500) and His(503) are critical for binding of PLC-gamma1 to one of its substrates, PI(4,5)P(2) in the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号