首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The motional behavior of spin-labeled deoxygenated sickle hemoglobin has been studied by using both 9- and 35-GHz saturation-transfer electron paramagnetic resonance (EPR). Using spectral subtraction techniques and saturation-transfer EPR parameter correlation plots, we find that the saturation-transfer EPR spectra for the sickle hemoglobin gel state at high temperature and high hemoglobin concentration cannot be described as a simple superposition of spectra from immobilized hemoglobin plus solution-state hemoglobin but instead suggest that the individual sickle hemoglobin molecules exhibit limited, anisotropic, rotational oscillation within the polymer fiber. The spectra also imply that the symmetry axis for sickle hemoglobin rotational oscillation is approximately coincident with the nitroxide z axis of the covalently attached spin-label. We suggest that this anisotropic rotational motion may be produced by one or two of the known intermolecular contact sites within the sickle hemoglobin fiber acting as strong intermolecular binding sites, and producing "motional alignment" within the fiber; determining the location of the strong binding site should be important in focusing the future development of antisickling agents.  相似文献   

2.
Interaction of netropsin, distamycin A and a number of bis-netropsins with DNA fragments of definite nucleotide sequence was studied by footprinting technique. The nuclease protection experiments were made at fixed DNA concentration and varying ligand concentrations. The affinity of ligand for a DNA site was estimated from measurements of ligand concentration that causes 50% protection of the DNA site. Distribution pattern of the protected and unprotected regions along the DNA fragment was compared with the theoretically expected arrangement of the ligand along the same DNA. The comparison led us to the following conclusions: 1. Footprinting experiments show that at high levels of binding the arrangement of netropsin molecules along the DNA corresponds closely to the distribution pattern expected from theoretical calculations based on the known geometry of netropsin--DNA complex. However, the observed differences in the affinity of netropsin for various DNA sequences is markedly greater than that expected from theoretical calculations. 2. Netropsin exhibits a greater selectivity of binding than that expected for a ligand with three specific reaction centers associated with the antibiotic amide groups. It binds preferentially to DNA regions containing four or more successive AT pairs. Among 13 putative binding sites for netropsin with four or more successive AT pairs there are 11 strong binding sites and two weaker sites which are occupied at 2 D/P less than or equal to 1/9 and 2 D/P = 1/4, respectively. 3. The extent of specificity manifested by distamycin A is comparable to that shown by netropsin although the molecule of distamycin A contains four rather than three amide groups. At high levels of binding distamycin A occupies the same binding sites on DNA as netropsin does. 4. The binding specificity of bis-netropsins is greater than that of netropsin. Bis-netropsins can bind to DNA in such a way that the two netropsin-like fragments are implicated in specific interaction with DNA base pairs. However, the apparent affinity of bis-netropsins estimated from footprinting experiments is comparable with that of netropsin for the same DNA region. 5. At high levels of binding bis-netropsins and distamycin A (but not netropsin) can occupy any potential site on DNA irrespectively of the DNA sequence. 6. Complex formation with netropsin increases sensitivity to DNase I at certain DNA sites along with the protection effect observed at neighboring sites.  相似文献   

3.
The binding of hemoglobins A, S, and A2 to red cell membranes prepared by hypotonic lysis from normal blood and blood from persons with sickle cell anemia was quantified under a variety of conditions using hemoglobin labelled by alkylation with 14C-labelled Nitrogen Mustard. Membrane morphology was examined by electron microscopy. Normal membranes were found capable of binding native hemoglobin A and hemoglobin S in similar amounts when incubated at low hemoglobin: membrane ratios, but at high ratios hemoglobin saturation levels of the membranes increased progressively for hemoglobin A, hemoglobin S and hemoglobin A2, respectively, in order of increasing electropositivity. Binding was unaffected by variations in temperature (4-22 degrees C) and altered little by the presence of sulfhydryl reagents, but was inhibited at pH levels above 7.35; disrupted at high ionic strength; and dependent on the ionic composition of the media. These findings suggest that electrostatic, but not hydrophobic or sulfhydryl bonds are important in membrane binding of the hemoglobin under the conditions studied. An increased retention of hemoglobin in preparations of membranes from red cells of patients with sickle cell anemia (homozygote S) was attributable to the dense fraction of homozygote S red cells rich in irreversibly sickled cells, and the latter membranes had a smaller residual binding capacity for new hemoglobin. This suggests that in homozygote S cells which have become irreversibly sickled cells in vivo, there are membrane changes which involve alteration and/or blockade of hemoglobin binding sites. These findings support the notion that hemoglobin participates in the dynamic structure of the red cell membrane in a manner which differs in normal and pathological states.  相似文献   

4.
Summary Using the label-fracture technique, an ultrastructural comparison was made of the number and distribution of wheat germ agglutinin (WGA)-binding sites between human normal and sickle red blood cells. The WGA was adsorbed to colloidal gold, and quantitative analysis of the electron micrographs revealed that more binding sites were present on the sickle erythrocytes than on the normal erythrocytes. Moreover, the sites were more clustered on the sickle red cells than on the normal red cells. Use of another lectin, Bandieraea simplicifolia-II, revealed that it did not bind to normal or sickle red cells. Because of the affinity of the WGA for sialic acid residues, it is probable that the WGA is binding to a transmembrane sialoglycoprotein, glycophorin A. The conformation and/or distribution of the glycophorin A molecules may be altered by the sickle hemoglobin that binds to the red cell membrane. Hence, as detected by WGA, new surface receptors, which could play a role in the adhesion of sickle cells to endothelium may be exposed.  相似文献   

5.
The binding of hemoglobins A, S, and A2 to red cell membranes prepared by hypotonic lysis from normal blood and blood from persons with sickle cell anemia was quantified under a variety of conditions using hemoglobin labelled by alkylation with 14C-labelled Nitrogen Mustard. Membrane morphology was examined by electron microscopy. Normal membranes were found capable of binding native hemoglobin A and hemoglobin S in similar amounts when incubated at low hemoglobin: membrane ratios, but at high ratios hemoglobin saturation levels of the membranes increased progressively for hemoglobin A, hemoglobin S and hemoglobin A2, respectively, in order of increasing electropositivity. Binding was unaffected by variations in temperature (4–22 °C) and altered little by the presence of sulfhydryl reagents, but was inhibited at pH levels above 7.35; disrupted at high ionic strength; and dependent on the ionic composition of the media. These findings suggest that electrostatic, but not hydrophobic or sulfhydryl bonds are important in membrane binding of the hemoglobin under the conditions studied.An increased retention of hemoglobin in preparations of membranes from red cells of patients with sickle cell anemia (homozygote S) was attributable to the dense fraction of homozygote S red cells rich in irreversibly sickled cells, and the latter membranes had a smaller residual binding capacity for new hemoglobin. This suggests that in homozygote S cells which have become irreversibly sickled cells in vivo, there are membrane changes which involve alteration and/or blockade of hemoglobin binding sites.These findings support the notion that hemoglobin participates in the dynamic structure of the red cell membrane in a manner which differs in normal and pathological states.  相似文献   

6.
The Verotoxin 1 (VT1) B subunit binds to the glycosphingolipid receptor globotriaosylceramide (Gb3). Receptor-binding specificity is associated with the terminally linked Galalpha(1-4) Galbeta disaccharide sequence of the receptor. Recently, three globotriose (Galalpha[1-4] Galbeta [1-4] Glcbeta) binding sites per B-subunit monomer were identified by crystallography. Two of these sites (sites I and II) are located adjacent to phenylalanine-30. Site I was originally predicted as a potential Gb3 binding site on the basis of sequence conservation, and site II was additionally predicted based on computer modelling and receptor docking. The third (site III) was also identified by crystallography and is located at the N-terminal end of the alpha-helix. To determine the biological significance of sites II and III, and to support our previous findings of the significance of site I, we examined the binding properties and cytotoxicity of VT1 mutants designed to block Gb3 binding at each site selectively. The Scatchard analysis of saturation-binding data for each mutant revealed that only the amino acid substitutions predicted to affect site I (D-17E) or site II (G-62T) caused reductions in the binding affinity and capacity of VT1 for Gb3. Similarly, those mutations at sites I and II also caused significant reductions in both Vero and MRC-5 cell cytotoxicity (by seven and five logs, respectively, for G-62T and by four and two logs, respectively, for D-17E). In contrast, the substitution of alanine for W-34 at site III did not reduce the high-affinity binding of the B subunit, despite causing a fourfold reduction in the receptor-binding capacity. The corresponding mutant W-34A holotoxin had a two-log reduction in cytotoxicity on Vero cells and no statistically significant reduction on MRC-5 cells. We conclude that the high-affinity receptor binding most relevant for cell cytotoxicity occurs at sites I and II. In contrast, site III appears to mediate the recognition of additional Gb3 receptor epitopes but with lower affinity. Our results support the significance of the indole ring of W-34 for binding at this site.  相似文献   

7.
Methyl acetyl phosphate binds to the 2,3-diphosphoglycerate (2,3-DPG) binding site of hemoglobin and selectively acetylates three amino groups at or near that site. The subsequent binding of 2,3-DPG is thus impeded. When intact sickle cells are exposed to methyl acetyl phosphate, their abnormally high density under anaerobic conditions is reduced to the density range of oxygenated, nonsickling erythrocytes. This change is probably due to a combination of direct and indirect effects induced by the specific acetylation. The direct effect is on the solubility of deoxyhemoglobin S, which is increased from 17 g/dL for unmodified hemoglobin S to 22 g/dL for acetylated hemoglobin S at pH 6.8. Acetylated hemoglobin S does not gel at pH 7.4, up to a concentration of 32 g/dL. The indirect effect could be due to the decreased binding of 2,3-DPG to deoxyhemoglobin S within the sickle erythrocyte, thus hindering the conversion of oxyhemoglobin S to the gelling form, deoxyhemoglobin S.  相似文献   

8.
The three-dimensional structure of the alpha 2 beta 2 complex of tryptophan synthase from Salmonella typhimurium has been determined by x-ray crystallography at 2.5 A resolution. The four polypeptide chains are arranged nearly linearly in an alpha beta beta alpha order forming a complex 150 A long. The overall polypeptide fold of the smaller alpha subunit, which cleaves indole glycerol phosphate, is that of an 8-fold alpha/beta barrel. The alpha subunit active site has been located by difference Fourier analysis of the binding of indole propanol phosphate, a competitive inhibitor of the alpha subunit and a close structural analog of the natural substrate. The larger pyridoxal phosphate-dependent beta subunit contains two domains of nearly equal size, folded into similar helix/sheet/helix structures. The binding site for the coenzyme pyridoxal phosphate lies deep within the interface between the two beta subunit domains. The active sites of neighboring alpha and beta subunits are separated by a distance of about 25 A. A tunnel with a diameter matching that of the intermediate substrate indole connects these active sites. The tunnel is believed to facilitate the diffusion of indole from its point of production in the alpha subunit active site to the site of tryptophan synthesis in the beta active site and thereby prevent its escape to the solvent during catalysis.  相似文献   

9.
The binding of hemoglobin to the red cell membrane was characterized over a wide range of free hemoglobin concentrations by measurement of membrane bound and supernatant hemoglobin. Scatchard analysis of the binding data revealed two classes of sites: high affinity sites with a binding constant of 1 X 10(8) M-1 and 1.2 X 10(6) sites per cell, and a second, low affinity class of sites with a binding constant of 6 X 10(6)M-1 and 6 X 10(6) sites per cell. The low affinity sites are shown to be nonspecific and appear to be a result of the ghost preparation. The high affinity sites are shown to be specific to the inner surface of the red cell membrane. The competition of hemoglobin and glyceraldehyde-3-phosphate dehydrogenase suggests band III proteins as a potential binding site for hemoglobin.  相似文献   

10.
The development of chemical modification agents that reduce the tendency of sickle hemoglobin (HbS) to aggregate represents an important chemotherapeutic goal. Methyl acetylphosphate (MAP) has been reported to bind to the 2,3-diphosphoglycerate (2,3-DPG) binding site of hemoglobin, where it selectively acetylates residues, resulting in increased solubility of HbS. We have prepared [1-(13)C]MAP and evaluated the adduct formation with hemoglobin using (1)H-(13)C HMQC and HSQC NMR studies. These spectra of the acetylated hemoglobin adducts showed 10-11 well resolved adduct peaks, indicating that the acetylation was not highly residue specific. The chemical shift pattern observed is in general similar to that obtained recently using [1'-(13)C]aspirin as the acetylating agent (Xu, A. S. L., Macdonald, J. M., Labotka, R. J., and London, R. E. (1999) Biochim. Biophys. Acta 1432, 333-349). Blocking the 2, 3-DPG binding site with inositol hexaphosphate (IHP) resulted in a selective reduction in intensity of adduct resonances, presumably corresponding to residues located in the 2,3-DPG binding cleft. The pattern of residue protection appeared to be identical to that observed in our previous study using IHP and labeled aspirin. Pre-acetylation of hemoglobin using unlabeled MAP, followed by acetylation with [1'-(13)C]aspirin indicated a general protective effect, with the greatest reduction of intensity for resonances corresponding to acetylated residues in the 2,3-DPG binding site. These studies indicated that both MAP and aspirin exhibit similar, although not identical, acetylation profiles and target primarily the betaLys-82 residue in the 2,3-DPG binding site, as well as sites such as betaLys-59 and alphaLys-90, which are not located in the beta-cleft of hemoglobin.  相似文献   

11.
Acetylcholinesterase (AChE) inhibitory activity is one of the proposed targets for indole analogs. Simple indoles with substitution of methoxy, carboxy or hydroxy at the benzene ring showed a low percent of inhibitory activity in eel-AChE. Adding a side chain at the pyrrole ring, such as serotonin, β-carbolines and quinolines (the bioisostere of indole), improved the inhibitory activity significantly. However, proper substitution and conformation of the ring were required for good binding. The result of inhibition in human-AChE of serotonin, β-carbolines and quinolines showed similar profile as eel-AChE with lower magnitude. The data from molecular docking showed that they shared the same binding site as galantamine.  相似文献   

12.
The energetic changes that occur on ligand binding in human hemoglobin have been investigated by measurements of the exchange rates of the indole proton of Trpbeta37(C3). The Trpbeta37 residues are located in helices C of the beta-subunits and are involved in contacts with the segments FG of the alpha-subunits at the interdimeric alpha1beta2 and alpha2beta1 interfaces of the hemoglobin tetramer. In the quaternary structure change that accompanies ligand binding to hemoglobin, these contacts undergo minimal changes in relative orientation and in packing, thereby acting as hinges, or flexible joints. The exchange rates of the indole proton of Trpbeta37(C3) were measured by nuclear magnetic resonance spectroscopy, in both deoxygenated and ligated hemoglobin. The results indicate that, at 15 degrees C, the exchange rate is increased from 9.0. 10(-6) to 3.3. 10(-4) s(-1) upon ligand binding to hemoglobin. This change suggests that the structural units at the hinge regions of the alpha1beta2/alpha2beta1 interfaces containing Trpbeta37(C3) are specifically stabilized in unligated hemoglobin, and experience a change in structural free energy of approximately 4 kcal/(mol tetramer) upon ligand binding. Therefore, the hinge regions of the alpha1beta2/alpha2beta1 interfaces could play a role in the transmission of free energy through the hemoglobin molecule during its allosteric transition.  相似文献   

13.
Experimental evidence of a cation-pi interaction between a sodium cation (Na+) and the indole ring of residue Trp123 in a structure (2.0 A) of hen egg-white lysozyme is presented. The geometry of the metal ion-pi interaction observed in the protein structure (distance between the aromatic plane and the cation approximately 4 A) is consistent with geometries observed among small molecules crystal structures and quantum chemistry ab initio calculations. The present crystal structure of lysozyme provides unique structural information about the geometry of binding of cations to pi systems in proteins. It shows that the metal ion-pi interaction within proteins is not significantly different from similar bindings found in small molecules and that it can be modeled by theoretical methods.  相似文献   

14.
15.
The spin-labeled tryptophan was used as a structural probe of hemoglobin contact sites. The ESR spectral data indicated that the probe exhibits weak binding to hemoglobin with a dissociation constant of 3.2.10(-5) and 4.0 mol bound per hemoglobin tetramer. The spectrum suggested that the bound tryptophan was 'partially immobilized' with a correlation time reflecting the environment of the tryptophan binding site of 8.2 ns. The topology of the contact sites was investigated by using dual spin-label methodology in which spin-labeled tryptophan and (2H,15N) substituted and deuterated maleimide spin label [2H-15N]MSL covalently-bound to Cys-beta 93 residue were used. The ESR spectral data suggested that the tryptophan binding sites were located within 8-10 A of the nitroxide free radical of spin-labeled hemoglobin. The environment of the contact sites is discussed.  相似文献   

16.
17.
A mode of internal motion of single tryptophan, Trp 86, of Streptomyces subtilisin inhibitor, was analyzed from its time-resolved fluorescence. The intensity and anisotropy decays of Trp 86 were measured in the picosecond range. These decays were analyzed with theoretical expressions derived assuming that the indole ring of tryptophan as an asymmetric rotor rotates around covalent bonds connecting indole with the peptide chain and an effective quencher of fluorescence of Trp 86 is the nearby SS bond of Cys 35-Cys 50. First, the intensity decays at 6 degrees, 20 degrees, and 40 degrees C were analyzed, and then the both decays of the intensity and anisotropy at 20 degrees C were simultaneously simulated with common parameters. Constants concerning geometrical structures of the protein used for the analysis were obtained from x-ray crystallographic data. Best fit between the observed and calculated decay curves was obtained by a nonlinear least squares method by adjusting a quenching constant averaged over the rotational angles, koq height of the potential energy, p, and three of six diffusion coefficients, Dxx, Dyy, Dzz, Dxy, Dyz, and Dzx, as variable parameters. The obtained results revealed that the internal motion of the indole ring became faster, the quenching rate of the fluorescence of Trp 86 was enhanced and the height of potential energy became lower at higher temperatures, and suggested that Trp 86 was wobbling around the long axis of the indole ring in the protein.  相似文献   

18.
Human apohemoglobin tryptophan residues were localized in the regions of the protein globule with restricted mobility. By the method of dynamic quenching of phosphopyridoxyl chromophore fluorescence, the heterogeneity of pyridoxal-5-phosphate molecules covalently bound to the human hemoglobin molecules was determined from the accessibility to solvent. The first four pyridoxal-5-phosphate molecules are localized in the hydrophobic regions of the hemoglobin molecule; at the same time, they have a high mobility. One of these molecules is situated at the site inaccessible to the solvent, which coincides with the anion-binding center of the oxyhemoglobin molecule. The next pyridoxal-5-phosphate molecules modify the surface amino groups of the protein. In the apohemoglobin molecule, the pyridoxal-5-phosphate binding sites are more exposed to the solvent, as compared to hemoglobin. In the hemoglobin molecule modified by pyridoxal-5-phosphate, an effective electron excitation energy transfer from tryptophan residues to phosphopyridoxyl chromophores occurs. The effective distances between tryptophanyls of single subunits of hemoglobin and the covalently bound pyridoxal-5-phosphate molecule were estimated to be 19 A for the alpha-subunit and 17 A for the beta-subunit.  相似文献   

19.
The Escherichia coli trp repressor binds to the trp operator in the presence of tryptophan, thereby inhibiting tryptophan biosynthesis. Tryptophan analogues lacking the alpha-amino group act as inducers of trp operon expression. We have used one- and two-dimensional 1H-NMR spectroscopy to compare the binding to the repressor of the corepressors L-tryptophan, D-tryptophan and 5-methyl-DL-tryptophan with that of the inducer indole-3-propionic acid. We have determined the chemical shifts of the indole ring protons of the ligands when bound to the protein, principally by magnetization-transfer experiments. The chemical shifts of the indole NH and C4 protons differ between corepressors and inducer. At the same time, the pattern of intermolecular NOE between protons of the protein and those of the ligand also differ between the two classes of ligand. These two lines of evidence indicate that corepressors and inducers bind differently in the binding site, and the evidence suggests that the orientation of the indole ring in the binding site differs by approximately 180 degrees between the two kinds of ligand. This is in contrast to a previous solution study [Lane, A.N. (1986) Eur. J. Biochem. 157, 405-413], but consistent with recent X-ray crystallographic work [Lawson, C.L. & Sigler, P.B. (1988) Nature 333, 869-871]. D-Tryptophan and 5-methyltryptophan, which are more effective corepressors than L-tryptophan, bind similarly to L-tryptophan. The indole ring of D-tryptophan appears to bind in essentially the same orientation as that of the L isomer. There are, however, some differences in chemical shifts and NOE for 5-methyltryptophan, which indicate that there are significant differences between the two corepressors L-tryptophan and 5-methyltryptophan in the orientation of the indole ring within the binding site.  相似文献   

20.
CP320626, a potential antidiabetic drug, inhibits glycogen phosphorylase in synergism with glucose. To elucidate the structural basis of synergistic inhibition, we determined the structure of muscle glycogen phosphorylase b (MGPb) complexed with both glucose and CP320626 at 1.76 A resolution, and refined to a crystallographic R value of 0.211 (R(free)=0.235). CP320626 binds at a novel allosteric site, which is some 33 A from the catalytic site, where glucose binds. The high resolution structure allows unambiguous definition of the conformation of the 1-acetyl-4-hydroxy-piperidine ring supported by theoretical energy calculations. Both CP320626 and glucose promote the less active T-state, thereby explaining their synergistic inhibition. Structural comparison of MGPb--glucose--CP320626 complex with liver glycogen phosphorylase a (LGPa) complexed with a related compound (CP403700) show that the ligand binding site is conserved in LGPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号