首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hansen JC  Ghosh RP  Woodcock CL 《IUBMB life》2010,62(10):732-738
Methylated CpG Binding Protein 2 (MeCP2) is a nuclear protein named for its ability to selectively recognize methylated DNA. Much attention has been focused on understanding MeCP2 structure and function in the context of its role in Rett syndrome, a severe neurodevelopmental disorder that afflicts one in 10,000-15,000 girls. Early studies suggested a connection between DNA methylation, MeCP2, and establishment of a repressive chromatin structure at specific gene promoters. However, it is now recognized that MeCP2 can both activate and repress specific genes depending on the context. Likewise, in the cell, MeCP2 is bound to unmethylated DNA and chromatin in addition to methylated DNA. Thus, to understand the molecular basis of MeCP2 functionality, it is necessary to unravel the complex interrelationships between MeCP2 binding to unmethylated and methylated regions of the genome. MeCP2 is unusual and interesting in that it is an intrinsically disordered protein, that is, much of its primary sequence fails to fold into secondary structure and yet is functional. The unique structure of MeCP2 is the subject of the first section of this article. We then discuss recent investigations of the in vitro binding of MeCP2 to unmethylated and methylated DNA, and the potential ramifications of this work for in vivo function. We close by focusing on mechanistic studies indicating that the binding of MeCP2 to chromatin results in compaction into local (secondary) and global (tertiary) higher order structures. MeCP2 also competes with histone H1 for nucleosomal binding sites. The recent finding that MeCP2 is found at near stoichiometric levels with nucleosomes in neuronal cells underscores the multiple modes of engagement of MeCP2 with the genome, which include the cooperative tracking of methylation density.  相似文献   

2.
In a previous report we have found that a number of short DNA fragments methylated at CpG sequences bound more tightly to a methyl-CpG binding column than DNA fragments having a larger number of methyl-CpG sequences. The column consists of a polypeptide comprising the DNA binding domain of the rat MeCP2 protein attached to a solid support. In the present study, we have investigated the features of short DNA fragments which bind tightly to a methyl-CpG binding column. Tight binding was observed when the DNA fragment had a high density of methyl-CpG sequences. Many of these fragments, derived from human genomic DNA, contained Alu repeated sequences supporting the previous observation that the highly-abundant Alu sequences are highly methylated. Our results suggest that methyl-CpG density is an important factor in the interaction between DNA fragments and the DNA binding domain of MeCP2 attached to a solid support.  相似文献   

3.
4.
Mass spectrometry-based hydrogen/deuterium exchange (H/DX) has been used to define the polypeptide backbone dynamics of full-length methyl CpG binding protein 2 (MeCP2) when free in solution and when bound to unmethylated and methylated DNA. Essentially the entire MeCP2 polypeptide chain underwent H/DX at rates faster than could be measured (i.e. complete exchange in ≤10 s), with the exception of the methyl DNA binding domain (MBD). Even the H/DX of the MBD was rapid compared with that of a typical globular protein. Thus, there is no single tertiary structure of MeCP2. Rather, the full-length protein rapidly samples many different conformations when free in solution. When MeCP2 binds to unmethylated DNA, H/DX is slowed several orders of magnitude throughout the MBD. Binding of MeCP2 to methylated DNA led to additional minor H/DX protection, and only locally within the N-terminal portion of the MBD. H/DX also was used to examine the structural dynamics of the isolated MBD carrying three frequent mutations associated with Rett syndrome. The effects of the mutations ranged from very little (R106W) to a substantial increase in conformational sampling (F155S). Our H/DX results have yielded fine resolution mapping of the structure of full-length MeCP2 in the absence and presence of DNA, provided a biochemical basis for understanding MeCP2 function in normal cells, and predicted potential approaches for the treatment of a subset of RTT cases caused by point mutations that destabilize the MBD.  相似文献   

5.
Koch C  Strätling WH 《Biochemistry》2004,43(17):5011-5021
MeCP2 has been identified as a chromatin-associated protein that recognizes MAR elements as well as methyl-CpGs. To characterize target sequences of MeCP2 in human cells, we employed two complementary methods. First, by use of a preparative chromatin immunoprecipitation protocol, we created from MCF7 cells a library enriched with sequences bound to MeCP2. A total of 154 representative clones were sequenced and analyzed. A large fraction of clones was found to be associated with retrotransposons, mostly with Alu repeats. A subgroup of four clones is derived from putative MARs; one clone is associated with a CpG island, and four clones contain alphoid repeats. Classical satellite DNAs II and III are not represented among clones, although they are heavily methylated. Second, using indirect immunofluorescence microscopy, we show that MeCP2 staining of human metaphase chromosomes has a dotted to knobby appearance with a reduced level of staining of centromeric regions of some chromosomes. On the other hand, an anti-5-methylcytosine antibody preferentially stained the juxtacentromeric regions of chromosomes 1, 9, and 16, which habor highly methylated, classical satellite DNAs, and methylated alphoid sequences in centromeric regions of several other chromosomes with reduced intensity. In interphase MCF7 cells, the distribution of MeCP2 exhibits a granular appearance throughout the nucleus. This distribution does not parallel that of methylated cytosine and heterochromatin. The selective binding behavior of MeCP2 revealed by these results (preference for murine major satellite DNA, Alu sequences, MARs, and CpG islands) is explained by its ability to recognize the sequence information (guanine bases) adjacent to CpG (TpG) as demonstrated in previous footprinting experiments.  相似文献   

6.
7.
8.
Multiple binding modes for Hoechst 33258 to DNA   总被引:6,自引:0,他引:6  
Two binding modes for the bisbenzimidazole Hoechst 33258 to native DNA at physiological conditions have been distinguished. Type 1 binding, which dominated at low dye/phosphate ratios (D/P less than 0.05) or low dye concentrations, had a high quantum yield of fluorescence with maximum emission at 460 nm. Binding of the dye at type 2 sites (0.05 less than D/P less than 0.4) lead to quenching of fluorescence from type 1 bound dye, presumably by nonradiative energy transfer. Fluorescence quantum yield of type 2 bound dye was low (phi = 0.05-0.1) and it peaked around 490 nm. At D/P greater than 0.4, the dye/DNA complex precipitated. This was caused by an additional dye-DNA interaction that was strongly cooperative. The anomalous dispersion of the refractive index of the complex changed abruptly around D/P = 0.4, indicating that the precipitating dye-DNA interaction involved strong electronic interaction between dye molecules. Hoechst 33258 precipitated polynucleotides irrespective of strandedness and base composition when dye concentration was raised above 1 X 10(-5) M. In the presence of 25% ethanol, type 2 binding to DNA did not occur, whereas the binding constant for type 1 binding (kappa = 2 X 10(3) M-1) was about two orders of magnitude smaller than in physiological buffer. DNA was not precipitated by high concentrations of Hoechst 33258 in 25% ethanol.  相似文献   

9.
10.
11.
12.
13.
14.
15.
MeCP2 binds to methylated DNA in a chromatin context and has an important role in cancer and brain development and function. Histone deacetylase (HDAC) inhibitors are currently being used to palliate many cancer and neurological disorders. Yet, the molecular mechanisms involved are not well known for the most part and, in particular, the relationship between histone acetylation and MeCP2 is not well understood. In this paper, we study the effect of the HDAC inhibitor trichostatin A (TSA) on MeCP2, a protein whose dysregulation plays an important role in these diseases. We find that treatment of cells with TSA decreases the phosphorylation state of this protein and appears to result in a higher MeCP2 chromatin binding affinity. Yet, the binding dynamics with which the protein binds to DNA appear not to be significantly affected despite the chromatin reorganization resulting from the high levels of acetylation. HDAC inhibition also results in an overall decrease in MeCP2 levels of different cell lines. Moreover, we show that miR132 increases upon TSA treatment, and is one of the players involved in the observed downregulation of MeCP2.  相似文献   

16.
We have examined the posttranslational modification of the human chromatin protein DEK and found that DEK is phosphorylated by the protein kinase CK2 in vitro and in vivo. Phosphorylation sites were mapped by quadrupole ion trap mass spectrometry and found to be clustered in the C-terminal region of the DEK protein. Phosphorylation fluctuates during the cell cycle with a moderate peak during G(1) phase. Filter binding assays, as well as Southwestern analysis, demonstrate that phosphorylation weakens the binding of DEK to DNA. In vivo, however, phosphorylated DEK remains on chromatin. We present evidence that phosphorylated DEK is tethered to chromatin throughout the cell cycle by the un- or underphosphorylated form of DEK.  相似文献   

17.
18.
Escherichia coli single-stranded (ss)DNA binding (SSB) protein binds ssDNA in multiple binding modes and regulates many DNA processes via protein-protein interactions. Here, we present direct evidence for fluctuations between the two major modes of SSB binding, (SSB)(35) and (SSB)(65) formed on (dT)(70), with rates of interconversion on time scales that vary as much as 200-fold for a mere fourfold change in NaCl concentration. Such remarkable electrostatic effects allow only one of the two modes to be significantly populated outside a narrow range of salt concentration, providing a context for precise control of SSB function in cellular processes via SSB expression levels and interactions with other proteins. Deletion of the acidic C terminus of SSB, the site of binding of several proteins involved in DNA metabolism, does not affect the strong salt dependence, but shifts the equilibrium towards the highly cooperative (SSB)(35) mode, suggesting that interactions of proteins with the C terminus may regulate the binding mode transition and vice versa. Single molecule analysis further revealed a novel low abundance binding configuration and provides a direct demonstration that the SSB-ssDNA complex is a finely tuned assembly in dynamic equilibrium among several well-defined structural and functional states.  相似文献   

19.
20.
X Nan  R R Meehan    A Bird 《Nucleic acids research》1993,21(21):4886-4892
MeCP2 is a chromosomal protein which binds to DNA that is methylated at CpG. In situ immunofluorescence in mouse cells has shown that the protein is most concentrated in pericentromeric heterochromatin, suggesting that MeCP2 may play a role in the formation of inert chromatin. Here we have isolated a minimal methyl-CpG binding domain (MBD) from MeCP2. MBD is 85 amino acids in length, and binds exclusively to DNA that contains one or more symmetrically methylated CpGs. MBD has negligable non-specific affinity for DNA, confirming that non-specific and methyl-CpG specific binding domains of MeCP2 are distinct. In vitro footprinting indicates that MBD binding can protect a 12 nucleotide region surrounding a methyl-CpG pair, with an approximate dissociation constant of 10(-9) M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号