首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Carboplatin is an anticancer drug for the treatment of cancers affecting various organs including ovary and testes. It essentially exerts its cytotoxicity against cancerous cells via covalent attachment of platinum atom to DNA, generating various platinum-DNA adducts. Platinum-DNA adducts inhibit biological processes essential for cellular viability. However, carboplatin interacts nonspecifically with DNA, resulting in damaging of normal cell DNA. Potential in vitro interaction of carboplatin with genes encoding tumor suppressor proteins such as human breast cancer suppressor gene 1(BRCA1) was herein investigated. The 696--bp fragment of the 3'-region of BRCA1 gene (nucleotide 4897--5592) was amplified by RT-PCR using mRNA templates isolated from human white blood cells. Retardation of the electrophoretic migration on agarose gel of drug-treated DNA, in the dose-response manner, was observed. Analysis by restriction digestion with PvuII and Eco O 109I suggested that the platination favorably occurred at the dGpG sequence of Eco O 109I-cleaved site. The semi-quantitative PCR-based assay was used to determine the lesion frequencies produced by carboplatin in the 696-bp fragment of the 3'-region of BRCA1 gene and in the 3,426-bp fragment of the BRCA1 exon 11 of human breast adenocarcinoma MCF-7 cells. A significant decrease in DNA amplification was observed at 400 microM of carboplatin with approximately 1--2 platinum atoms per BRCA1 fragment. Carboplatin caused slightly less damage at equimolar concentrations in cells than in cell-free BRCA1 fragment.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
Obesity is associated with an increased risk of breast cancer among postmenopausal women. This is at least partly due to excessive estrogen production in adipose tissue of obese women. Aromatase, the key enzyme in estrogen biosynthesis, is an important target in endocrine therapy for estrogen receptor (ER)-positive postmenopausal breast cancer. In this study we show that high confluency of human adipose stromal cells (ASCs) cultured in vitro can significantly stimulate aromatase gene expression and reduce the expression of breast tumor suppressor BRCA1 and members of the NR4A orphan nuclear family. Furthermore, small interfering RNA (siRNA)-mediated knockdown of Nurr1, a member of the NR4A family, substantially increased aromatase expression. Lastly, we found that the cell density-triggered inducibility of aromatase expression varies in ASCs isolated from different disease-free individuals. Our finding highlights the impact of increased cell number on estrogen biosynthesis as in the case of excessive adiposity.  相似文献   

16.
17.
Our recent studies have mechanistically implicated a loss of stromal Cav-1 expression and HIF1-alpha-activation in driving the cancer-associated fibroblast phenotype, through the paracrine production of nutrients via autophagy and aerobic glycolysis. However, it remains unknown if HIF1a-activation is sufficient to confer the cancer-associated fibroblast phenotype. To test this hypothesis directly, we stably-expressed activated HIF1a in fibroblasts and then examined their ability to promote tumor growth using a xenograft model employing human breast cancer cells (MDA-MB-231). Fibroblasts harboring activated HIF1a showed a dramatic reduction in Cav-1 levels and a shift towards aerobic glycolysis, as evidenced by a loss of mitochondrial activity, and an increase in lactate production. Activated HIF1a also induced BNIP3 and BNIP3L expression, markers for the autophagic destruction of mitochondria. Most importantly, fibroblasts expressing activated HIF1a increased tumor mass by ~2-fold and tumor volume by ~3-fold, without a significant increase in tumor angiogenesis. In this context, HIF1a also induced an increase in the lymph node metastasis of cancer cells. Similar results were obtained by driving NFκB activation in fibroblasts, another inducer of autophagy. Thus, activated HIF1a is sufficient to functionally confer the cancer-associated fibroblast phenotype. It is also known that HIF1a expression is required for the induction of autophagy in cancer cells. As such, we next directly expressed activated HIF1a in MDA-MB-231 cells and assessed its effect on tumor growth via xenograft analysis. Surprisingly, activated HIF1a in cancer cells dramatically suppressed tumor growth, resulting in a 2-fold reduction in tumor mass and a 3-fold reduction in tumor volume. We conclude that HIF1a activation in different cell types can either promote or repress tumorigenesis. Based on these studies, we suggest that autophagy in cancer-associated fibroblasts promotes tumor growth via the paracrine production of recycled nutrients, which can directly "feed" cancer cells. Conversely, autophagy in cancer cells represses tumor growth via their "self-digestion." Thus, we should consider that the activities of various known oncogenes and tumor-suppressors may be compartment and cell-type specific, and are not necessarily an intrinsic property of the molecule itself. As such, other "classic" oncogenes and tumor suppressors will have to be re-evaluated to determine their compartment specific effects on tumor growth and metastasis. Lastly, our results provide direct experimental support for the recently proposed "Autophagic Tumor Stroma Model of Cancer."  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号