共查询到20条相似文献,搜索用时 0 毫秒
1.
Electrohydrodynamic jetting (EHDJ) which is also known as electrosprays (ES) has recently been elucidated as a unique electrified biotechnique for the safe handling and deployment of living organisms. This high intensity electric field driven jetting methodology is now referred to as "bioelectrosprays" (BES). Previously these charged jets have only been shown to jet-process immortalized cells which have undergone expected cellular behavior when compared with control cells. In this paper we demonstrate the ability to jet process primary living organisms in the stable conejetting mode. Finally the viability of the bio-electrosprayed living organisms has been assessed employing a flow cytometry approach which forms the discussion in this paper. Our findings further establish BES as a competing biotechnique, which could be employed for the deposition of primary living organisms according to a predetermined active cellular architecture. One day this could be used for the fabrication of viable tissues and organs for repair or replacement. These advanced studies carried out on BES have direct widespread applications ranging from developmental biology to regenerative and therapeutic medicine, which are a few amongst several other areas of study within the life sciences. 相似文献
3.
Understanding the genetics of how organisms adapt to changing environments is a fundamental topic in modern evolutionary ecology. The field is currently progressing rapidly because of advances in genomics technologies, especially DNA sequencing. The aim of this review is to first briefly summarise how next generation sequencing (NGS) has transformed our ability to identify the genes underpinning adaptation. We then demonstrate how the application of these genomic tools to ecological model species means that we can start addressing some of the questions that have puzzled ecological geneticists for decades such as: How many genes are involved in adaptation? What types of genetic variation are responsible for adaptation? Does adaptation utilise pre-existing genetic variation or does it require new mutations to arise following an environmental change? 相似文献
4.
The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer. 相似文献
7.
Microfluidic devices possess many advantages like high throughput, short analysis time, small volume and high sensitivity that fulfill all the important criteria of an immunoassay used for clinical diagnoses, environmental analyses and biochemical studies. These devices can be made from a few different materials, with polymers presently emerging as the most popular choice. Other than being optically clear, non-toxic and cheap, polymers can also be easily fabricated with a variety of techniques. In addition, there are many polymer surface modification methods available to improve the efficiency of these devices. Unfortunately, current microfluidic immunoassays have limited multiplexing capability compared to flow cytometric assays. Flow cytometry employ the use of encoded microbeads in contrast with normal or paramagnetic microbeads applied in current microfluidic devices. The encoded microbead is the key in providing multiplexing capability to the assay by allowing multi-analyte analysis. Using several unique sets of code, different analytes can be detected in a single assay by tracing the identity of individual beads. The same principle could be applied to microfluidic immunoassays in order to retain all the advantages of a fluidic device and significantly improve multiplexing capability. 相似文献
9.
It is the ultimate goal of tissue engineering: an autologous tissue engineered vascular graft (TEVG) that is immunologically compatible, nonthrombogenic, and can grow and remodel. Currently, native vessels are the preferred vascular conduit for procedures such as coronary artery bypass (CABG) or peripheral bypass surgery. However, in many cases these are damaged, have already been harvested, or are simply unusable. The use of synthetic conduits is severely limited in smaller diameter vessels due to increased incidence of thrombosis, infection, and graft failure. Current research has therefore energetically pursued the development of a TEVG that can incorporate into a patient's circulatory system, mimic the vasoreactivity and biomechanics of the native vasculature, and maintain long-term patency. 相似文献
11.
Oak forests support a rich ecology of fellow travellers, but how do these fare when the forests move during glacial cycles? The answers revealed by a new study are important for ecology, but being able to get answers at all highlights a turning point in evolutionary inference. 相似文献
12.
Immunologists need to establish a vibrant dialogue with young people. This is not only important for the continuation and progress of biomedical research, but it can also contribute to the fight against diseases such as HIV/AIDS and can help young people to make informed decisions about lifestyle, medical treatment and ethical issues. Good communication skills are crucial to any scientific career, and the lessons learned from talking with non-scientists can also be useful when writing scientific papers and grants. This article is a personal account of one scientist's experience of communicating biomedical science to young people. 相似文献
13.
Adult-onset neurodegenerative disorders are disabling and often fatal diseases of the nervous system whose underlying mechanisms of cell death remain unknown. Defects in mitochondrial respiration had previously been proposed to contribute to the occurrence of many, if not all, of the most common neurodegenerative disorders. However, the discovery of genes mutated in hereditary forms of these enigmatic diseases has additionally suggested defects in mitochondrial dynamics. Such disturbances can lead to changes in mitochondrial trafficking, in interorganellar communication, and in mitochondrial quality control. These new mechanisms by which mitochondria may also be linked to neurodegeneration will likely have far-reaching implications for our understanding of the pathophysiology and treatment of adult-onset neurodegenerative disorders. 相似文献
14.
Recent research in the area of prebiotic oligosaccharides and synbiotic combinations with probiotics is leading towards a more targeted development of functional food ingredients. Improved molecular techniques for analysis of the gut microflora, new manufacturing biotechnologies, and increased understanding of the metabolism of oligosaccharides by probiotics are facilitating development. Such developments are leading us to the time when we will be able to rationally develop prebiotics and synbiotics for specific functional properties and health outcomes. 相似文献
17.
In recognition of the increasing health burden of cardiovascular disease, the Dutch CardioVascular Alliance (DCVA) was founded with the ambition to lower the cardiovascular disease burden by 25% in 2030. To achieve this, the DCVA is a platform for all stakeholders in the cardiovascular field to align policies, agendas and research. An important goal of the DCVA is to guide and encourage young researchers at an early stage of their careers in order to help them overcome challenges and reach their full potential. Young@Heart is part of the DCVA that supports the young cardiovascular research community. This article illustrates the challenges and opportunities encountered by young cardiovascular researchers in the Netherlands and highlights Young@Heart’s vision to benefit from these opportunities and optimise collaborations to contribute to lowering the cardiovascular disease burden together as soon as possible. 相似文献
20.
Second-generation biologics are now entering the marketplace. 相似文献
|