首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mutation in theCENTRORADIALIS (CEN) gene ofAntirrhinum and in theTERMINAL FLOWER 1 (TFL1) gene ofArabidopsis causes their indeterminate inflorescence to determinate. We clonedCEN/TFL1 homologs fromNicotiana tabacum, the wild-type of which has a determinate inflorescence. TheCEN gene was expressed in the inflorescnece meristem and kept its inflorescence meristem identity, whereas the tobacco homolog (NCH) was expressed at a low level throughout the plant’s development. AlthoughCEN andNCH are highly homologous genes, they may have been recruited to different developmental functions during their evolution. TwoNCH genes are derived from amphidiploidN. tabacum, but both of them hybridized with its diploid parents,N. sylvestris andN. tomentosiformis. Southern blotting, and the genomic organization ofTFL1 inArabidopsis revealed that anotherCEN homolog exists in the genome ofArabidopsis. These results suggest that there are two copies of theCEN homolog per diploid plant. The extended abstract of a paper presented at the 13th International Symposium in Conjugation with Award of the International Prize for Biology “Frontier of Plant Biology” These two authors contributed to this work equally.  相似文献   

2.
Hepworth SR  Klenz JE  Haughn GW 《Planta》2006,223(4):769-778
The UNUSUAL FLORAL ORGANS (UFO) gene of Arabidopsis encodes an F-box protein required for the determination of floral-organ and floral-meristem identity. Mutation of UFO leads to dramatic changes in floral-organ type which are well-characterized whereas inflorescence defects are more subtle and less understood. These defects include an increase in the number of secondary inflorescences, nodes that alternate between forming flowers and secondary inflorescences, and nodes in which a single flower is subtended by a bract. Here, we show how inflorescence defects correlate with the abnormal development of floral primordia and establish a temporal requirement for UFO in this process. At the inflorescence apex of ufo mutants, newly formed primordia are initially bract-like. Expression of the floral-meristem identity genes LFY and AP1 are confined to a relatively small adaxial region of these primordia with expression of the bract-identity marker FIL observed in cells that comprise the balance of the primordia. Proliferation of cells in the adaxial region of these early primordia is delayed by several nodes such that primordia appear “chimeric” at several nodes, having visible floral and bract components. However, by late stage 2 of floral development, growth of the bract generally ceases and is overtaken by development of the floral primordium. This abnormal pattern of floral meristem development is not rescued by expression of UFO from the AP1 promoter, indicating that UFO is required prior to AP1 activation for normal development of floral primordia. We propose that UFO and LFY are jointly required in the inflorescence meristem to both promote floral meristem development and inhibit, in a non-cell autonomous manner, growth of the bract.Shelley R. Hepworth and Jennifer E. Klenz contributed equally to this work.  相似文献   

3.
4.
A new mutation inEscherichia coli K12,isfA, is described, which causes inhibition of SOS functions. The mutation, discovered in a ΔpolA + mutant, is responsible for inhibition of several phenomena related to the SOS response inpolA + strains: UV- and methyl methanesulfonate-induced mutagenesis, resumption of DNA replication in UV-irradiated cells, cell filamentation, prophage induction and increase in UV sensitivity. TheisfA mutation also significantly reduces UV-induced expression of β-galactosidase fromrecA::lacZ andumuC′::lacZ fusions. The results suggest that theisfA gene product may affect RecA* coprotease activity and may be involved in the regulation of the termination of the SOS response after completion of DNA repair. TheisfA mutation was localized at 85 min on theE. coli chromosome, and preliminary experiments suggest that it may be dominant to the wild-type allele.  相似文献   

5.
Transition from vegetative to reproductive development (flowering) is one of the most important decisions during the post-embryonic development of flowering plants. More than twenty loci are known to regulate this process inArabidopsis. Some of these flowering-time genes may act at the shoot apical meristem to regulate its competence to respond to floral inductive signals and floral evocation. Genetic and phenotypic analyses of mutants suggest that the late-flowering geneFT may be a good candidate for such genes. To test this, we have cloned theFT gene using aFT-deficiency line associated with a T-DNA insertion. Cloned genes and loss-of-function mutants in hand, it is now possible to analyse the role ofFT and other genes in flowering at the biochemical and cellular levels as well as at the genetic level. The deduced FT protein has homology with TFL1 and CEN proteins believed to be involved in regulation of inflorescence meristem identity. Phylogenetic analysis suggests that theFT group and theTFL1/CEN group of genes diverged before the diversification of major angiosperm clades. This raises the interesting question of the evolutionary relationship between the regulation of vegetative/reproductive switching in the shoot apical meristem and the regulation of inflorescence architecture in angiosperms. The extended abstract of a paper presented at the 13th International Symposium in Conjugation with Award of the International Prize for Biology “Fronitier of Plant Biology”  相似文献   

6.
7.
Qi Y  Sun Y  Xu L  Xu Y  Huang H 《Planta》2004,219(2):270-276
In seed plants, formation of the adaxial–abaxial polarity is of primary importance in leaf patterning. Since Arabidopsis thaliana (L.) Heynh. genes ASYMMETRIC LEAVES1 (AS1) and ASYMMETRIC LEAVES2 (AS2) are key regulators in specifying adaxial leaf identity, and ERECTA is involved in the AS1/AS2 pathway for regulating adaxial–abaxial polarity [L. Xu et al. (2003) Development 130:4097–4107], we studied the physiological functions of the ERECTA protein in plant development. We analyzed the effects of different environmental conditions on a special leaf structure in the as1 and as2 mutants. This structure, called the lotus-leaf, reflects a severe loss of adaxial–abaxial polarity in leaves. Higher concentrations of salt or other osmotic substance and lower temperature severely affected plant growth both in the wild type and the mutants, but did not affect lotus-leaf frequency in the as1 and as2 mutants. as1 and as2 mutants exhibited a very low lotus-leaf frequency at 22°C, a temperature that favors Arabidopsis growth. The lotus-leaf frequency rose significantly with an increase in growth temperature, and only in plants that are in the erecta mutation background. These results suggest that ERECTA function is required for reducing plant sensitivity to heat stress during adaxial–abaxial polarity formation in leaves.Abbreviations AS1, AS2 ASYMMETRIC LEAVES1, 2 - ER ERECTA  相似文献   

8.
Summary We have constructedspo0A-lacZ andspo0F-lacZ fusions with a temperate phage vector and have investigated howspo0 gene products are involved in the expression of each of these genes. The expression ofspo0A-lacZ andspo0F-lacZ was stimulated at about the time of cessation of vegetative growth in Spo+ cells. This stimulation ofspo0A-lacZ was impaired by mutations in thespo0B, D, E, F orH genes but was not affected by mutations in thespo0J orK genes. Similar results were obtained with thespo0F-lacZ fusion. The effect of thespo0A mutation onspo0A-lacZ expression was characteristic: thespo0A-directed β-galactosidase activity found during vegetative growth was significantly enhanced in thespo0A mutant. This result suggests thatspo0A gene expression is autoregulated being repressed by its own gene product. Another remarkable observation was the effect of thesof-1 mutation, which is known to be aspo0A allele; it suppressed the sporulation deficiency ofspo0B, spo0D andspo0F mutants. Thespo0A-lacZ stimulation, which is impaired by any one of thesespo0 mutations, was restored by the additionalsof-1 mutation.  相似文献   

9.
Summary The induction of mitotic gene conversion and crossing-over inSaccharomyces cerevisiae diploid cells homozygous for thepso4-1 mutation was examined in comparison to the corresponding wild-type strain. Thepso4-1 mutant strain was found to be completely blocked in mitotic recombination induced by photoaddition of mono- and bifunctional psoralen derivatives as well as by mono- (HN1) and bifunctional (HN2) nitrogen mustards or 254 nm UV radiation in both stationary and exponential phases of growth. Concerning the lethal effect, diploids homozygous for thepso4-1 mutation are more sensitive to all agents tested in any growth phase. However, this effect is more pronounced in the G2 phase of the cell cycle. These results imply that the ploidy effect and the resistance of budding cells are under the control of thePSO4 gene. On the other hand, thepso4-1 mutant is mutationally defective for all agents used. Therefore, thepso4-1 mutant has a generalized block in both recombination and mutation ability. This indicates that thePSO4 gene is involved in an error-prone repair pathway which relies on a recombinational mechanism, strongly suggesting an analogy between thepso4-1 mutation and theRecA orLexA mutation ofEscherichia coli.  相似文献   

10.
TheSaccharomyces cerevisiae killer toxin K1 is a secreted α/β-heterodimeric protein toxin that kills sensitive yeast cells in a receptor-mediated two-stage process. The first step involves toxin binding to β-1,6-d-glucan-components of the outer yeast cell surface; this step is blocked in yeast mutants bearing nuclear mutations in any of theKRE genes whose products are involved in synthesis and/or assembly of cell wall β-d-glucans. After binding to the yeast cell wall, the killer toxin is transferred to the cytoplasmic membrane, subsequently leading to cell death by forming lethal ion channels. In an attempt to identify a secondary K1 toxin receptor at the plasma membrane level, we mutagenized sensitive yeast strains and isolated killer-resistant (kre) mutants that were resistant as spheroplasts. Classical yeast genetics and successive back-crossings to sensitive wild-type strain indicated that this toxin resistance is due to mutation(s) in a single chromosomal yeast gene (KRE12), renderingkrel2 mutants incapable of binding significant amounts of toxin to the membrane. Sincekrel2 mutants showed normal toxin binding to the cell wall, but markedly reduced membrane binding, we isolated and purified cytoplasmic membranes from akrel2 mutant and from an isogenicKre12+ strain and analyzed the membrane protein patterns by 2D-electrophoresis using a combination of isoelectric focusing and SDS-PAGE. Using this technique, three different proteins (or subunits of a single multimeric protein) were identified that were present in much lower amounts in thekre12 mutant. A model for K1 killer toxin action is presented in which the gene product ofKRE12 functions in vivo as a K1 docking protein, facilitating toxin binding to the membrane and subsequent ion channel formation.  相似文献   

11.
Although cytokinin plays a central role in plant development, our knowledge about the signal transduction pathway initiated by this plant hormone is fragmentary. By randomly introducing enhancer elements into theArabidopsis genome throughAgrobacterium-mediated transformation, 5 cytokinin independent mutant calli (cki1-1, −2, −3, −4 andcki2) were obtained. These mutants exhibit typical cytokinin responses, including rapid proliferation, chloroplast differentiation, shoot induction and inhibition of root formation, in the absence of cytokinin. TheCKl1 gene encodes a product similar to the sensor histidine kinases of two-component systems, and its overexpression in plants induces typical cytokinin responses (Kakimoto 1996). Here I report that overexpression of this gene did not alter the auxin reqirement ofArabidopsis. Another mutant,many shoots, which was also identified on the same screening, produced many adventitious shoots on cotyledons, petioles and true leaves. The extended abstract of a paper presented at the 13th International Symposium in Conjugation with Award of the International Prize for Biology “Frontier of Plant Biology”  相似文献   

12.
13.
TheSaccharomyces cerevisiae PMR1 gene encodes a Ca2+-ATPase localized in the Golgi. We have investigated the effects ofPMR1 disruption inS. cerevisiae on the glycosylation and secretion of three heterologous glycoproteins, human α1-antitrypsin (α1-AT), human antithrombin III (ATHIII), andAspergillus niger glucose oxidase (GOD). Thepmr1 null mutant strain secreted larger amounts of ATHIII and GOD proteins per a unit cell mass than the wild type strain. Despite a lower growth rate of thepmr1 mutant, two-fold higher level of human ATHIII was detected in the culture supernatant from thepmr1 mutant compared to that of the wild-type strain. Thepmr1 mutant strain secreted α1-AT and the GOD proteins mostly as core-glycosylated forms, in contrast to the hyperglycosylated proteins secreted in the wild-type strain. Furthermore, the core-glycosylated forms secreted in thepmr1 mutant migrated slightly faster on SDS-PAGE than those secreted in themnn9 deletion mutant and the wild type strains. Analysis of the recombinant GOD with anti-α1,3-mannose antibody revealed that GOD secreted in thepmr1 mutant did not have terminal α1,3-linked mannoses unlike those secreted in themnn9 mutant and the wild type strains. The present results indicate that thepmr1 mutant, with the super-secretion phenotype, is useful as a host system to produce recombinant glycoproteins lacking high-mannose outer chains.  相似文献   

14.
15.
Constitutive stable DNA replication (cSDR), which uniquely occurs inEscherichia coli rnhA mutants deficient in ribonuclease HI activity, requires RecA function. TherecA428 mutation, which inactivates the recombinase activity but imparts a constitutive coprotease activity, blocks cSDR inrnhA mutants. The result indicates that the recombinase activity of RecA, which promotes homologous pairing and strand exchange, is essential for cSDR. Despite the requirement for RecA recombinase activity, mutations inrecB, recD, recJ, ruvA andruvC neither inhibit nor stimulate cSDR. It was proposed that the property of RecA essential for homologous pairing and strand exchange is uniquely required for initiation of cSDR inrnhA mutants without involving the homologous recombination process. The possibility that RecA protein is necessary to counteract the action of Tus protein, a contra-helicase which stalls replication forks in theter region of the chromosome, was ruled out because introduction of thetus : :kan mutation, which inactivates Tus protein, did not alleviate the RecA requirement for cSDR.  相似文献   

16.
A reverse genetic system for studying excision of the transposable elementDs1 in maize plants has been established previously. In this system, theDs1 element, as part of the genome of maize streak virus (MSV), is introduced into maize plants via agroinfection. In the presence of theAc element, excision ofDs1 from the MSV genome results in the appearance of viral symptoms on the maize plants. Here, we used this system to study DNA sequences requiredin cis for excision ofDs1. TheDs1 element contains theAc transposase binding motif AAACGG in only one of its subterminal regions (defined here as the 5′ subterminal region). We showed that mutation of these motifs abolished completely the excision capacity ofDs1. This is the first direct demonstration that the transposase binding motifs are essential for excision. Mutagenesis with oligonucleotide insertions in the other (3′) subterminal region resulted in elements with either a reduced or an increased excision efficiency, indicating that this subterminal region also has an important function.  相似文献   

17.
Pseudomonas tolaasii strain PT814 produces extracellular toxins, tolaasins, and a volatile toxin, tovsin, that are responsible for the induction of brown blotch and rotting, respectively, in a cultivated mushroom,Pleurotus ostreatus. Insertions of single transposon mini-Tn5Km 1 into the chromosome ofP. tolaasii strain PT814 generated mutants that are pleiotropically defective in tolaasin and protease production, and altered in colony morphology. The mutants, however, produce tovsin at the level of wild-type. Variants phenotypically similar to the pleiotropic mutants ofP. tolaasii strain PT814 spontaneously occurred inP. tolaasii strain S8501 at 22–30°C in vitro. The occurrence of variants was significantly reduced in the presence of extracts ofP ostreatus or at a temperature of 15–20°C. ThertpA gene (rtpA=regulator gene of tolaasin production and other pleiotropic traits) isolated from aP. tolaasii strain PT814 gene library restored the wild-type phenotype in both the mini-Tn5km 1 insertion and spontaneous mutants. mini-Tn5km 1 insertions were also located in the allele ofrtpA. Nucleotide sequencing of thertpA DNA revealed an open reading frame of 2,751 bp predicted to encode a protein consisting of 917 amino acid residues with a molecular mass of 100.6 kDa and displaying the conserved amino acid sequence of both sensor, and receiver domains of “bacterial two-component regulators”. The data suggest that the machinery responding to environmental stimuli is essential for the pathogenic interaction ofP. tolaasii with the mushroom.  相似文献   

18.
Inhibitors are very important in the study of hormone function. Brasinazole (Brz) is a specific inhibitor of brassinosteroids (BRs) biosynthesis. To expand our knowledge of the molecular mechanisms of plant steroid signaling, we performed genetic screening using medium containing Brz under dark conditions. Mutants insensitive to Brz developlonger hypocotyls than their wild type counterparts. We isolatedabz453 as a Brz insensitive mutant. TAIL-PCR and the segregation ratio of T2 plants indicated a single T-DNA insertion at the 24-Sterol C-methyltransferase (SMT2) gene in theabz453 mutant. Recapitulation for putative FCP serine phosphatase (FSP), the gene neighboringSMT2, indicated no significant phenotypes, but theSMT2 anti-sense (SMT2-AS) line developed longer hypocotyls than the wild type in medium containing Brz. Additionally, theSMT2-AS line displayed similar phenotypes to theabz453 line in soil including enhanced growth and smaller silique. Theabz453 andSMT2-AS mutants showed phenotypes similar to those of wild type in medium containing benzylaminopurine, pacrobutrazol and ACC (precursor for ethylene) under dark conditions. However, when brassinolide (BL) dose response was observed, theabz453 andSMT2-AS lines showed higher sensitivity than wild type. Theabz453/det2 andabz453/bri1-119 double mutants showed enhanced growth compared to thedet2 andbri1-119 line under both dark and light conditions. Specially, in dark conditions double mutants displayed nearly 2- and 1.5-fold longer hypocotyls thandet2 andbri1-119 plants. Brz insensitivity to theSMT2 knock-out mutant and phenotypes of double mutants indicate that not only do BRI1 and DET2 influence the BRs response, as evidenced by hypocotyl elongation, but another sterol derived signals may also be affected in mutants, suggesting that another pathway is involved in hypocotyl elongation due to SMT2.  相似文献   

19.
A collection of chlorophyll (Chl)-deficient mutants of sweetclover (Melilotus alba) with defects in eight nuclear loci were grown at 17 or 26° C. Plants grown at either temperature were examined for Chl content, Chla/b ratio, expression of the light-harvesting complex II (LHC-II) apoproteins, and protochlorophyllide (Pchlide) biosynthetic capacity. Except for thech4 mutant, the parental strain and all mutants accumulate more Chl when grown at 26° C than at 17° C. Thech5 mutants, lacking Chl b under any growth condition, and thech12 mutant showed little temperature-dependent phenotypic plasticity, whereas this was a marked phenomenon in the other mutants. Thech10 andch11 mutants demonstrated extreme temperature sensitivity with regard to the production of Chlb and the Chlb-binding LHC-II apoproteins. When excised trifoliolates were supplemented with exogenously supplied -aminolevulinic acid, only thech4 mutant was markedly impaired in the ability to produce Pchlide. These data indicate that temperature-sensitive phenotypic plasticity is a common phenomenon of chlorophyll-deficient mutants and substantiate that only a minority of Chl-deficient mutants is impaired in the biosynthesis of Chl.This research was supported by Grants GM84-CRCR-1-1479 (J.C.O.) and 89-00641 (J.M.) of the United States Department of Agriculture and by National Science Foundation Grant DMB87-03100 (J.M.). This is paper No. 8971, Nebraska Agricultural Research Division.  相似文献   

20.
Summary Inflorescence proliferation is a plant tissue culture technique that, can be used to obtain in vitro inflorescences year-round without the intervening development of vegetative organs. In this study, we used albino mutant inflorescences of Dendrocalamus latiflorus as the original explant material to investigate, the effect of plant growth regulators on long-term inflorescence proliferation. The albino inflorescences proliferated on solidified Murashige and Skoog (MS) basal medium supplemented with thidiazuron (TDZ), and the optimal concentration for successful long-term inflorescence proliferation was 0.45 μM TDZ. A combination of α-naphthaleneacetic acid (NAA) with 0.45 μM TDZ inhibited the inflorescence proliferation. Inflorescences cultured on a TDZ-free medium supplemented with 26.82 μM NAA rooted in 21 d, vegetative shoots formed by 42 d and, in one case, flowering occurred after 63 d. The auxins 2,4-dichlorophenoxyacetic acid (2,4-D, 4.52 μM) and pieloram (4.14 μM) induced shoot formation. The protocol described can be used to produce large numbers of mutant inflorescences within a relatively short period of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号