首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipoxygenases (LOXs) are enzymes involved in lipid peroxidation. Here we reported the identification, molecular and functional characterization of the gene encoding rice (Oryza sativa L.) seed LOX3 (sLOX3). Via a map-based cloning strategy we identified Os03g0700400 as the candidate gene encoding sLOX3. Further functional complementary test and biochemical characterization of the recombinant Os03g0700400 protein verified the identification. The sLOX3 gene was highly expressed in roots, moderately in embryos and very weakly in leaves, leaf sheaths and stems. Transient expression experiment (in rice protoplasts) and subsequent laser confocal microscopic analysis demonstrated that the sLOX3 protein was localized into the cytosol. We next showed that overexpression of sLOX3 in a japonica sLOX3-normal rice cultivar, Wuyunjing 7 accelerated the decrease of seed germination ability when the seeds were routinely stored, which demonstrated that sLOX3 had a negative effect on seed longevity (storability). Meanwhile, an increased occurrence of embryo decay was observed in the same transgenic seeds, suggesting that sLOX3 might negatively affect seed longevity by facilitating colonization of particular seed pathogens. Our result forwarded the understanding of the effects of 9-LOX on rice seed longevity.  相似文献   

2.
Xu X  Fang J  Wang W  Guo J  Chen P  Cheng J  Shen Z 《Transgenic research》2008,17(4):645-650
An alpha-amylase gene from Bacillus stearothermophilus under the control of the promoter of a major rice-seed storage protein was introduced into rice. The transgenic line with the highest alpha-amylase activity reached about 15,000 U/g of seeds (one unit is defined as the amount of enzyme that produces 1 mumol of reducing sugar in 1 min at 70 degrees C). The enzyme produced in the seeds had an optimum pH of 5.0-5.5 and optimum temperature of 60-70 degrees C. Without extraction or purification, the power of transgenic rice seeds was able to liquify 100 times its weight of corn powder in 2 h. Thus, the transgenic rice could be used for industrial starch liquefaction.  相似文献   

3.
The thermostable endo-1,4-β-glucanase (E1) from Acidothermus cellulolyticus, is a useful enzyme for commercial hydrolysis of cellulose into glucose. A codon-optimized synthetic gene encoding this enzyme was transformed into rice (Oryza sativa L. ssp. japonica) under the control of the rice seed storage protein Gt1 promoter. The transgenic line C19 was identified as the one with the highest endoglucanase activity among the total of 36 independent transgenic lines obtained. The cellulase activity in the C19 seeds was estimated at about 830U/g of dried seeds using CMC as substrate. The enzymes produced in the seeds had an optimum pH of 5.0 and optimum temperature of 80°C, which is similar to the enzymes produced by the native bacterium host. This study demonstrates that the transgenic rice seeds could be used as a bioreactor for production of enzymes for cellulosic biomass conversion.  相似文献   

4.
The recessive floury-2 (flo-2) locus of rice (Oryza sativa L.), which is located on chromosome 4, causes a strong reduction in expression of the gene encoding an isoform of branching enzyme RBE1 in immature seeds 10 d after flowering. Mapping of the RBE1 gene demonstrated the localization on rice chromosome 6, suggesting that the wild-type Floury-2 (Flo-2) gene regulates RBE1 gene expression in trans. However, reduced expression of the genes encoding some other starch-synthesizing enzymes, including another isoform of branching enzyme RBE3 and granule-bound starch synthase, was also found in the flo-2 seeds. In spite of the low level of RBE1 gene expression in the immature seeds of the flo-2 mutants, the RBE1 gene was equally expressed in the leaves of the wild type and flo-2 mutants. Thus, these results imply that the Flo-2 gene may co-regulate expression of some of the genes participating in starch synthesis possibly in a developing seed-specific manner.  相似文献   

5.
Microsomal omega-3 fatty acid desaturase is an essential enzyme in the production of the n-3 polyunsaturated fatty acid alpha-linolenic acid during the seed developing stage. We have constructed a chimeric gene consisting of a maize Ubi1-P-int and a soybean GmFAD3 cDNA, which was introduced into rice plants by Agrobacterium-mediated transformation. Ten transformants containing the chimeric gene were established and expression subsequently confirmed by Northern blotting. Furthermore, alpha-linolenic acid content of the T(1) seeds increased dramatically up to tenfold that of the control, and this phenotype was also stably inherited in the T(2) and T(3) progenies. These results demonstrate that the alpha-linolenic acid content of rice seed oil can easily be altered using the combination of a high-activity promoter and a GmFAD3 gene.  相似文献   

6.
7.
ω-Alkynyl-fatty acids can be used as probes for covalent binding to intracellular macromolecules. To inform future in vivo studies, we determined the rates of reaction of ω-alkynyl-labeled linoleate with recombinant enzymes of the skin 12R-lipoxygenase (12R-LOX) pathway involved in epidermal barrier formation (12R-LOX, epidermal lipoxygenase-3 (eLOX3), and SDR9C7). We also examined the reactivity of ω-alkynyl-arachidonic acid with representative lipoxygenase enzymes employing either “carboxyl end-first” substrate binding (5S-LOX) or “tail-first” (platelet-type 12S-LOX). ω-Alkynyl-linoleic acid was oxygenated by 12R-LOX at 62 ± 9 % of the rate compared to linoleic acid, the alkynyl-9R-HPODE product was isomerized by eLOX3 at only 43 ± 1 % of the natural substrate, whereas its epoxy alcohol product was converted to epoxy ketone linoleic by an NADH-dependent dehydrogenase (SDR9C7) with 91 ± 1 % efficiency. The results suggest the optimal approach will be application of the 12R-LOX/eLOX3-derived epoxyalcohol, which should be most efficiently incorporated into the pathway and allow subsequent analysis of covalent binding to epidermal proteins. Regarding the orientation of substrate binding in LOX catalysis, our results and previous reports suggest the ω-alkynyl group has a stronger inhibitory effect on tail-first binding, as might be expected. Beyond slowing the reaction, however, we found that the tail-first binding and transformation of ω-alkynyl-arachidonic acid by platelet-type 12S-LOX results in almost complete enzyme inactivation, possibly due to reactive intermediates blocking the enzyme active site. Overall, the results reinforce the conclusion that ω-alkynyl-fatty acids are suitable for selected applications after appropriate reactivity is established.  相似文献   

8.
9.
10.
Glucoamylase, which catalyses the hydrolysis of the α-1,4 glycosidic bonds of starch, is an important industrial enzyme used in starch enzymatic saccharification. In this study, a glucoamylase gene from Aspergillus awamori, under the control of the promoter of seed storage protein Gt1, was introduced into rice by Agrobacterium-mediated transformation. Significant glucoamylase activity was detected specifically in the seeds but not other tissues of the transgenic rice lines. The highest enzymatic activity was found in the transgenic line Bg17-2, which was estimated to have about 500 units per gram of seeds (one unit is defined as the amount of enzyme that produces 1 μmol of reducing sugar in 1 min at 60 °C using soluble starch as substrate). The optimum pH for the activity of the rice produced enzyme is 5.0–5.5, and the optimum temperature is around 60 °C. One part of this transgenic glucoamylase rice seed flour fully converted 25 parts of corn starch pre-liquefied by an α-amylase also produced by a transgenic rice into glucose in 16 h incubation. This study suggests that this hydrolysis enzyme may substitute commercial fermentation enzymes for industrial starch conversion.  相似文献   

11.
Chastain CJ  Heck JW  Colquhoun TA  Voge DG  Gu XY 《Planta》2006,224(4):924-934
Pyruvate, orthophosphate dikinase (PPDK; E.C.2.7.9.1) is most well known as a photosynthetic enzyme in C4 plants. The enzyme is also ubiquitous in C3 plant tissues, although a precise non-photosynthetic C3 function(s) is yet to be validated, owing largely to its low abundance in most C3 organs. The single C3 organ type where PPDK is in high abundance, and, therefore, where its function is most amenable to elucidation, are the developing seeds of graminaceous cereals. In this report, we suggest a non-photosynthetic function for C3 PPDK by characterizing its abundance and posttranslational regulation in developing Oryza sativa (rice) seeds. Using primarily an immunoblot-based approach, we show that PPDK is a massively expressed protein during the early syncitial-endosperm/-cellularization stage of seed development. As seed development progresses from this early stage, the enzyme undergoes a rapid, posttranslational down-regulation in activity and amount via regulatory threonyl-phosphorylation (PPDK inactivation) and protein degradation. Immunoblot analysis of separated seed tissue fractions (pericarp, embryo + aleurone, seed embryo) revealed that regulatory phosphorylation of PPDK occurs in the non-green seed embryo and green outer pericarp layer, but not in the endosperm + aleurone layer. The modestly abundant pool of inactive PPDK (phosphorylated + dephosphorylated) that was found to persist in mature rice seeds was shown to remain largely unchanged (inactive) upon seed germination, suggesting that PPDK in rice seeds function in developmental rather than in post-developmental processes. These and related observations lead us to postulate a putative function for the enzyme that aligns its PEP to pyruvate-forming reaction with biosynthetic processes that are specific to early cereal seed development.  相似文献   

12.
Candida antarctica lipase B (CALB) is a versatile biocatalyst used for a wide range of biotransformation. Methods for low cost production of this enzyme are highly desirable. Here, we report a mass production method of CALB using transgenic rice seeds as the bioreactor. The transgenic rice transformed with the CALB gene under the control of the promoter of the rice seed storage protein GT1 was found to have accumulated a large quantity of CALB in seeds. The transgenic line with the highest lipolytic activity reached to 85 units per gram of dry seeds. One unit is defined as the amount of lipase necessary to liberate 1 μmol p‐nitrophenol from p‐nitrophenyl butyrate in 1 min. The rice recombinant lipase (rOsCALB) from this line represents 40% of the total soluble proteins in the crude seed extracts. The enzyme purified from the rice seeds had an optimal temperature of 40 °C, and optimal pH of 8.5, similar to that of the fermentation products. Test of its conversion ability as a biocatalyst for biodiesel production suggested that rOsCALB is functionally identical to the fermentation products in its industrial application.  相似文献   

13.
The formation of amylase isozymes in germinating rice (Oryza sativa) seeds was studied by isoelectric focusing on polyacrylamide gel disc electrophoresis. Time sequence comparisons of the amylase zymogram were made between extracts from gibberellic acid-treated embryoless and embryo-attached half-endosperm of rice seeds. In both cases, 4 major and 9 to 10 minor isozyme bands were detectable at the maximal stage of the enzyme induction. However, in the embryo-attached half-seeds, bands started to diminish after the 5th day of incubation, in agreement with the results of time sequence analyses of enzyme activities. Nearly identical patterns of amylase isozyme bands on a polyacrylamide gel disc electrophoresis in combination with isoelectric focusing indicate the intrinsic role of gibberellic acid in the starch breakdown in germinating rice seeds. We tentatively assign the newly synthesized enzymes to be α-amylases based on experimental results concerning the lability of the preparation on a prolonged treatment at pH 3.3 and the stability on heat treatment for 15 minutes at 70 C.  相似文献   

14.
Erythroid precursor cells lose the capacity for mRNA synthesis due to exclusion of the nucleus during maturation. Therefore, the stability and translation of mRNAs that code for specific proteins, which function in late stages of maturation when reticulocytes become erythrocytes, are controlled tightly. Reticulocyte 15-lipoxygenase (r15-LOX) initiates the breakdown of mitochondria in mature reticulocytes. Through the temporal restriction of mRNA translation, the synthesis of r15-LOX is prevented in premature cells. The enzyme is synthesized only in mature reticulocytes, although r15-LOX mRNA is already present in erythroid precursor cells. Translation of r15-LOX mRNA is inhibited by hnRNP K and hnRNP E1, which bind to the differentiation control element (DICE) in its 3' untranslated region (3'UTR). The hnRNP K/E1-DICE complex interferes with the joining of the 60S ribosomal subunit to the 40S subunit at the AUG. We took advantage of the inducible human erythroid K562 cell system that fully recapitulates this process to identify so far unknown factors, which are critical for DICE-dependent translational regulation. Applying RNA chromatography with the DICE as bait combined with hnRNP K immunoprecipitation, we specifically purified the DEAD-box RNA helicase 6 (DDX6) that interacts with hnRNP K and hnRNP E1 in a DICE-dependent manner. Employing RNA interference and fluorescence in situ hybridization, we show that DDX6 colocalizes with endogenous human (h)r15-LOX mRNA to P-body-like RNP granules, from which 60S ribosomal subunits are excluded. Our data suggest that in premature erythroid cells translational silencing of hr15-LOX mRNA is maintained by DDX6 mediated storage in these RNP granules.  相似文献   

15.
Phyto-oxylipins are a group of biologically active molecules that play an important role in plant defence. Their production begins with the oxygenation of polyunsaturated fatty acids by lipoxygenases (LOX) to form 9- or 13-hydroperoxides that are substrates for several enzymes involved in the synthesis of final oxylipins, which can act as signal molecules and/or direct antimicrobials. In the present work, the response of the 9-LOX pathway in the almond/Aspergillus carbonarius (producer of ochratoxin A) interaction was studied. Both LOX gene expression and activity are up-regulated over the course of fungal infection in immature and mature almonds. The biochemical characterization of major LOX and hydroperoxide lyase (HPL) isoforms indicated that 9-LOX metabolism is specifically induced by A. carbonarius. Lipid peroxidation profiling showed that, in infected immature almonds, enzymatically produced 9-hydro(peroxy) fatty acids (HFAs) were the main HFAs and are further metabolized by HPL into C9-aldehydes. Both HPL gene expression and C9-aldehydes increased over the course of fungal infection. In mature almonds infected with A. carbonarius, levels of LOX expression and activity were lower than those found in immature seeds, and 9-HFA represented the minority of total HFA, which consisted of mostly 13- and non-enzymatically produced HFA. In these experimental conditions, no volatile aldehydes were recorded from these samples, even though HPL was up-regulated in infected mature almonds. The effects on the growth of A. carbonarius of the aldehydes produced by these enzymes were also tested in vitro. Results reported here led to the proposal that, in almond seed, the association of 9-LOX and HPL has an important role in seed defence mechanism against pathogen infection.  相似文献   

16.
Iron fortification of rice seed by the soybean ferritin gene   总被引:79,自引:0,他引:79  
  相似文献   

17.
In this work we test the hypothesis that yield of rice ( Oryza sativa L.) can be enhanced by increasing endosperm activity of ADP-glucose pyrophosphorylase (AGP), a key enzyme in starch biosynthesis. The potential for increases in yield exist because rice initiates more seeds than are taken to maturity and possesses excess photosynthetic capacity that could be utilized if there were more demand for assimilate. Following an approach already shown to be successful in wheat, experiments were designed to increase demand for assimilate by increasing the capacity for starch synthesis in endosperm. This was accomplished by transforming rice with a modified maize AGP large subunit sequence ( Sh2r6hs) under control of an endosperm-specific promoter. This altered subunit confers upon AGP decreased sensitivity to allosteric inhibition by inorganic phosphate (Pi) and enhanced heat stability, potentially leading to higher AGP activity in vivo. The Sh2r6hs transgene increased AGP activity in developing endosperm by 2.7-fold in the presence of Pi. Increases in AGP activity in transgenic seeds compared with controls were maximal between 10-15 days after anthesis. Starch content of individual seeds at harvest was not increased, but seed weight per plant and total plant biomass were each increased by more than 20%. Increased endosperm AGP activity thus stimulates setting of additional seeds and overall plant growth rather than increasing yield of seeds already set. Results demonstrate that deregulation of endosperm AGP increases overall plant sink strength, leading to larger, more productive plants in a manner similar to that in wheat having similar genetic modification.  相似文献   

18.
Molecular analysis of the gene encoding a rice starch branching enzyme   总被引:16,自引:0,他引:16  
Summary The sequence of a rice gene encoding a starch branching enzyme (sbe1) shows extreme divergence from that of the rice gene, that is homologous to bacterial glycogen branching enzyme (sbe2). sbe1 is expressed abundantly and specifically in developing seeds and maximally in the middle stages of seed development. This expression pattern completely coincides with that of the waxy gene, which encodes a granule-bound starch synthase. Three G-box motifs and consensus promoter sequences are present in the 5 flanking region of sbe1. It encodes a putative transit peptide, which is required for transport into the amyloplast. A 2.2 kb intron (intron 2) precedes the border between the regions encoding the transit peptide and the mature protein, and contains a high G/C content with several repeated sequences in its 5 half. Although only a single copy of sbe1 is present in the rice genome, Southern analysis using intron 2 as a probe indicates the presence of several homologous sequences in the rice genome, suggesting that this large intron and also the transit peptide coding region may be acquired from another portion of the genome by duplication and insertion of the sequence into the gene.  相似文献   

19.
We have characterized an almond (Prunus dulcis) lipoxygenase (LOX) that is expressed early in seed development. The presence of an active lipoxygenase was confirmed by western blot analysis and by measuring the enzymatic activity in microsomal and soluble protein samples purified from almond seeds at this stage of development. The almond lipoxygenase, which had a pH optimum around 6, was identified as a 9-LOX on the basis of the isomers of linoleic acid hydroperoxides produced in the enzymatic reaction. A genomic clone containing a complete lipoxygenase gene was isolated from an almond DNA library. The 6776-bp sequence reported includes an open reading frame of 4667 bp encoding a putative polypeptide of 862 amino acids with a calculated molecular mass of 98.0 kDa and a predicted pI of 5.61. Almond seed lipoxygenase shows 71% identity with an Arabidopsis LOX1 gene and is closely related to tomato fruit and potato tuber lipoxygenases. The sequence of the active site was consistent with the isolated gene encoding a 9-LOX.  相似文献   

20.
A chimeric gene consisting of the 5 flanking sequences of a rice glutelin gene (Gt3) linked to the chloramphenicol acetyltransferase (CAT) coding segment was introduced into tobacco via Agrobacterium tumefaciens-mediated transformation. CAT enzyme activity could be detected in extracts from seeds as early as 8 days after flowering and obtained a maximum level at 16 days after flowering, the onset of overall protein accumulation. Significant expression of CAT activity in non-seed tissues occurred in some, but not all plants, suggesting possible chromosome position effects on non-seed tissue expression. A positive correlation was observed between expression levels in seeds and gene copy numbers.Author for correspondence  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号