首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fluorescence characteristics of product (I), formed during the lipid peroxidation of rat liver phosphatidylcholine liposomes containing glycine, and fluorescent product (II), derived from the reaction of malonaldehyde with glycine, were examined to elucidate the mechanism of fluorescent chromophore formation. Fluorescent product (I) had a fluorescence emission maximum at 430 nm when excited at 360 nm; its fluorescence intensity decreases in alkaline medium, but is restored by readjustment of pH to neutrality. In contrast, fluorescent product (II) exhibited an emission maximum at 458 nm, and the fluorescence was quenched at acidic pH. The fluorescent substances formed during the lipid peroxidation of hemoglobin-free human erythrocyte ghost membranes had similar fluorescence characteristics to product (I). Gel filtration experiments showed that molecular size of fluorescent product (I) was larger than that of fluorescent product (II). The thiobarbituric acid-reactive substances released from peroxidizing liposomal phospholipids had a larger molecular size than malonaldehyde, and produced little or no fluorescence with glycine. It is concluded that the precursor of the fluorescent product formed during the lipid peroxidation of membrane phospholipids differs from malonaldehyde. The mechanism of the formation of blue emitting fluorescent material, believed to be a component of lipofuscin, seems to involve peroxidized phospholipids of the membrane.  相似文献   

2.
When mouse peritoneal macrophages as well as P388D1 cells, an established macrophage-like cell line, were cultured with liposomes composed of rat liver phosphatidylcholine and phosphatidylserine, storage of fluorescent products, ceroid-like pigments, within those cells was observed with light and fluorescence microscopy, and fluorescence spectrophotometry. The amounts of thiobarbituric acid-reactive substances and fluorescent products in macrophages were increased gradually to reach a maximal level to between 6 and 8 days of culture. The involvement of peroxidation of liposomal lipids in the formation of the pigments was further suggested by the 6 days that incorporation of alpha-tocopherol into liposomes decreased the storage of the pigments. No appreciable formation of the pigments was observed in macrophages cultured with liposomes containing dipalmitoylphosphatidylcholine instead of rat liver phosphatidylcholine. The fluorescent products formed in cultured cells were found in lipid-soluble and -insoluble fractions. Lipid-insoluble fluorescent products had an excitation maximum at 360 nm and a fluorescence maximum at 430 nm in SDS-aqueous solution (pH 7.4) and the intensity of the fluorescence was quenched at base pH, but it was not changed in acidic media. These findings indicate that the macrophages can store Schiff base fluorescent substances formed by the reaction between peroxidation products of exogenous lipids and amino compounds in the cells, under some pathological conditions.  相似文献   

3.
The distribution of lipid peroxidation products in liposomes after γ-irradiation at various doses was studied. Increases in thiobarbituric-acid-reactive substances, in the absorbance at 232 nm and in hydroperoxides were observed mainly in liposomal membranes after relatively low doses of irradiation, while carbonyl compounds were distributed both inside and outside the membranes. After higher doses of irradiation, however, the absorbance at 232 nm and the amount of hydroperoxides reached a maximal level in the membrane portion and then decreased when the decomposition products were released from the membranes. Under this condition, malondialdehyde and other carbonyl compounds were increased mainly in the medium of liposomal suspension. These results are discussed with reference to the lipid peroxidation process which is induced quantitatively by ionizing radiation.  相似文献   

4.
Lipid peroxidation induced by heavy ion irradiation was investigated in 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC) liposomes. Lipid peroxidation was induced using accelerated heavy ions that exhibit linear energy transfer (LET) values between 30 and 15 000 keV/μm and doses up to 100 kGy. With increasing LET, the formation of lipid peroxidation products such as conjugated dienes, lipid hydroperoxides, and thiobarbituric acid-reactive substances decreased. When comparing differential absorption spectra and membrane fluidity following irradiation with heavy ions and x-rays (3 Gy/min), respectively, it is obvious that there are significant differences between the influences of densely and sparsely ionizing radiation on liposomal membranes. Indications for lipid fragmentation could be detected after heavy ion irradiation. Received: 6 March 1997 / Accepted in revised form: 31 March 1998  相似文献   

5.
Fluorescence emitted from microsomal membranes by lipid peroxidation   总被引:1,自引:0,他引:1  
The fluorescence emitted from rat liver microsomal membranes which had undergone enzymatic and nonenzymatic lipid peroxidation was detected directly. This fluorescence produced in peroxidized membranes increased progressively with peroxidation reaction time, and the fluorescent substances produced were retained in the membranes without being released into the aqueous phase. Extracts of the peroxidized membranes with organic solvents (chloroform/methanol) emitted fluorescence which was also dependent on the peroxidation reaction time. The generation profiles of fluorescence emitted from both the peroxidized membranes and their extracted membrane lipids differed essentially from that of thiobarbituric acid-reactive substances which reached a plateau at a relatively early stage of peroxidation reaction. These results indicate that lipid peroxidation induces stepwise chemical and physical changes in membranes and that the fluorescence from peroxidized membranes will be useful in studying such changes occurring in biological membranes.  相似文献   

6.
Treatment of the porcine intestinal brush-border membranes with 100 microM ascorbic acid and 10 microM Fe2+ in the presence of various concentrations of tert-butyl hydroperoxide (t-BuOOH) resulted in a marked fluorescence development at 430 nm, depending on the hydroperoxide concentration. This fluorescence formation was closely related to lipid peroxidation of the membranes as assessed by formation of conjugated diene. However there is no linear relation between thiobarbituric acid-reactive substances (TBARS) and fluorescence formation. On the other hand, fluorescence formation in the membranes by treatment with ascorbic acid/Fe2+ or t-BuOOH alone was negligible. The results with antioxidants and radical scavengers suggest that ascorbic acid/Fe2+/t-BuOOH-induced lipid peroxidation of the membranes is mainly due to t-butoxyl and/or t-butyl peroxy radicals. Most TBARS produced during the peroxidation reaction were released from the membranes, but fluorescent products remained in the membrane components. The fluorescence properties of products formed by lipid peroxidation of the membranes were compared with those of products derived from the interaction of malondialdehyde (MDA) or acetaldehyde with the membranes. The fluorescence products in the acetaldehyde-modified membranes also exhibited the emission maximum at 430 nm, while the emission maximum of MDA-modified membranes was 470 nm. The fluorescence intensity of MDA-modified membranes was markedly decreased by treatment with 10 mM NaBH4 but that of the peroxidized or acetaldehyde-modified membranes was enhanced by about two-fold with the treatment. In addition, a pH dependence profile revealed that the fluorescence intensity of the peroxidized or acetaldehyde-modified membranes decreases with increasing pH of the medium, whereas that of MDA-modified ones did not change over the pH range from 5.4 to 8.0. On the basis of these results, the fluorescence properties of products formed in the intestinal brush-border membranes by lipid peroxidation are discussed.  相似文献   

7.
The action of various substances on the morphology of multilayer membranes made of lipids of egg yolk was studied. It has been shown that electroneutral and anionic compounds scaresly affected liposomes, whereas substances with pronounced basic properties, i.e. peroxidase, hemoglobin, cytochrome c, and RNAase, as well as lanthanium ions, induced the formation of invaginations, vesicles and aggregation of liposomes. Metals with variable valency: Cu2+, Cu4+, Ru6+, including lipid oxidants Fe3+ and UO+, produced similar morphological changes more intensely and moreover destroyed liposomal membranes. The activator of lipid peroxidation, namely ascorbic acid, intensified while antioxidizers such as alpha-tocopherylacetate and ionol removed the action of Fe3+ on liposomes. A protective effect was displayed by Ca2+ and Mg2+ ions and due to an increase in pH medium. Since many tested substances with the basic properties stimulate endocytosis of cells the processes of lipid peroxidation and electrostatic interactions are supposed to be part of endocytosis mechanism which does not involve the metabolic energy. It is also assumed that endocytosis may arise at the stage of protocells in terms of evolutions.  相似文献   

8.
Peroxidative modification of phospholipids in myocardial membranes   总被引:2,自引:0,他引:2  
Rat heart myocardial membranes exposed to the free radical generating system, Fe2+/ascorbate, undergo lipid peroxidation as evidenced by the accumulation of thiobarbituric acid-reactive substances, loss of polyunsaturated fatty acids from phospholipids, and formation of conjugated dienes and fluorescent substances. In addition, the treated membranes exhibit a dramatic decrease in extractable phospholipids. This decrease is even more pronounced in individual phospholipid classes isolated by high-performance liquid chromatography. The decrease in lipid phosphorus under oxidant stress is accompanied by an increase in the phosphorus content of the aqueous phase after Folch extraction and by an even greater increase of phosphorus in the protein residue. In addition, increased amounts of saturated and monounsaturated fatty acyl groups are found in the protein residue of Fe2+/ascorbate-treated membranes. Extraction of the oxidant-treated membranes with acidic solvents does not enhance the recovery of phospholipids and neither does treatment with detergents, trypsin, and chymotrypsin prior to lipid extraction. However, treatment with the bacterial protease, Pronase, markedly enhances the recovery of phospholipids from the peroxidized membranes. These results indicate that membrane phospholipids undergoing free radical-induced peroxidation may form lipid-protein adducts, which renders them inextractable with lipid solvents.  相似文献   

9.
Liposome suspension prepared from the unsaturated phospholipids exposed to lipid peroxidation (LPO) induced posterior subcapsular cataracts after injection into the posterior vitreous of rabbit eyes. In the background of this model lies a type of lens opacity formed during retinal degeneration when toxic peroxide substances diffuse anteriorly through the vitreous body resulting in vitreous opacities and complicated cataracts. Saturated liposomes (prepared from beta-oleoyl-gamma-palmitoyl) L-alpha-lecithin) did not induce lens opacities, which is the evidence that a lipid peroxidation mechanism may be responsible for the posterior cataracts. Along with cataract formation accumulation of LPO fluorescent products in vitreous, aqueous humor and lens was observed. It was followed by a decreased level of reduced glutathione in the lens. The obtained results strongly support the hypothesis of LPO initial role in cataracts.  相似文献   

10.
The role of plasmalogens in iron-induced lipid peroxidation was investigated in two liposomal systems. The first consisted of total brain phospholipids with and without plasmalogens, and the second of phosphatidylethanolamine/phosphatidylcholine liposomes with either diacyl- or alkenylacyl-phosphatidylethanolamine. By measuring thiobarbituric acid reactive substances, oxygen consumption, fatty acids and aldehydes, we show that plasmalogens effectively protect polyunsaturated fatty acids from oxidative damage, and that the vinyl ether function of plasmalogens is consumed simultaneously. Furthermore, the lack of lag phase, the increased antioxidant efficiency with time, and the experiments with lipid- and water-soluble azo compounds, indicate that plasmalogens probably interfere with the propagation rather than the initiation of lipid peroxidation, and that the antioxidative effect cannot be related to iron chelation.  相似文献   

11.
Oxidation of ferrous iron during peroxidation of lipid substrates   总被引:3,自引:0,他引:3  
Oxidation of Fe2+ in solution was dependent upon medium composition and the presence of lipid. The complete oxidation of Fe2+ in 0.9% saline was markedly accelerated in the presence of phosphate or EDTA and the ferrous oxidation product formed was readily recoverable as Fe2+ by ascorbate reduction. In contrast, in the presence of either brain synaptosomal membranes, phospholipid liposomes, fatty acid micelles or H2O2, less than 50% of the Fe2+ oxidized during an incubation could be recovered as Fe2+ via reduction with ascorbate. In the presence of unsaturated lipid, oxidation of Fe2+ was associated with peroxidation of lipid, as assessed by the uptake of O2 and formation of thiobarbituric acid-reactive products during incubations. Although relatively little Fe2+ oxidation or lipid peroxidation occurred in saline with synaptosomes or linoleic acid micelles during an incubation with Fe2+ alone, significant Fe2+ oxidation and lipid peroxidation occurred in incubations containing a 1:1 ratio of Fe2+ and Fe3+. Extensive Fe2+ oxidation and lipid peroxidation also occurred with Fe2+ alone in saline incubations with either linolenic or arachidonic acid acid micelles or liposomes prepared from dilinoleoylphosphatidylcholine. While a 1:1 ratio of Fe2+ and Fe3+ enhanced thiobarbituric acid-reactive product formation in incubations containing linolenic or arachidonic micelles, it reduced the rate of O2 consumption as compared with Fe2+ alone. The results demonstrate that oxidation of Fe2+ in incubations containing lipid substrates is linked to and accelerated by peroxidation of those substrates. Furthermore, the results suggest that oxidation of Fe2+ in the presence of lipid or H2O2 creates forms of iron which differ from those formed during simple Fe2+ autoxidation.  相似文献   

12.
Retina is highly susceptible to oxidative damage due to its high content of polyunsaturated fatty acids (PUFAs), mainly docosahexaenoic acid (22:6 n3). Lipid peroxidation process is thought to be involved in many physiological and pathological events. Many model membranes can be used to learn more about issues that cannot be studied in biological membranes. Sonicated liposomes (SL) and non-sonicated liposomes (NSL) prepared with lipids isolated from bovine retina and characterized by dynamic light-scattering, were submitted to lipid peroxidation, under air atmosphere at 22 °C, with Fe2+ or Fe3+ as initiator, in different aqueous media. Conjugated dienes and trienes, determined by absorption at 234 and 270 nm respectively, and thiobarbituric acid-reactive substances were measured as a function of time. Peroxidation of SL or NSL initiated with 25 μM FeSO4 in 20 mM Tris-HCl pH 7.4 resulted in an increase in TBARS production after a lag phase of 60 min. Incubation of both types of liposomes in water resulted in shortening of the lag phase at 30 min. When lipid peroxidation was performed in 0.15 M NaCl, lag phase completely disappeared. On the other hand, FeCl3 (25 μM) induced a limited production of TBARS only just after 30 min of incubation. When Fe2+- or Fe3+-lipid peroxidation of both types of liposomes was carried out in water or 0.15 M NaCl, formation of conjugated dienes and conjugated trienes were higher than in reactions carried out in 20 mM Tris-HCl pH 7.4.Our results established that both liposome types were susceptible to Fe2+- and Fe3+-initiated lipid peroxidation. However, Fe2+ showed a clearly enhanced effect on peroxidation rate and steady state concentration of oxidation products.We verified that peroxidation of liposomes made of retinal lipids is affected not only by type of initiator but also by aqueous media. This model constitutes a useful system to study formation of lipid peroxidation intermediaries and products in an aqueous environment.  相似文献   

13.
The effects of free fatty acids on hemoglobin conversion and lipid peroxidation were studied in hemoglobin-containing liposomes (hemosomes) formed from an equimolar mixture of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). It was shown that in hemosomes oxyhemoglobin is converted into hemichrome by the interaction of saturated fatty acids (arachidic, stearic, palmitic, myristic and lauric). This is accompanied by accumulation of primary and secondary products of lipid peroxidation. All fatty acids, except for lauric acid, have a stabilizing effect on lipid peroxidation in liposomes prepared from an equimolar mixture of PC and PE. The formation of lipid peroxidation products is inhibited by superoxide dismutase, D-alpha-tocopherol, D-mannitol and thiourea. The relationships between hemoglobin conversion and lipid peroxidation in hemosomes under effects of fatty acids were studied. The mechanisms of these reactions are discussed.  相似文献   

14.
Unilamellar liposomes are used as a simple two-compartment model to study the interaction of antioxidants. The vesicle membrane can be loaded with lipophilic compounds such as carotenoids or tocopherols, and the aqueous core space with hydrophilic substances like glutathione (GSH) or ascorbate, mimicking the interphase between an aqueous compartment of a cell and its surrounding membrane.

Unilamellar liposomes were used to investigate the interaction of GSH with the carotenoids lutein, β-carotene and lycopene in preventing lipid peroxidation. Lipid peroxidation was initiated with 2,2′-azo-bis-[2,4-dimethylvaleronitrile] (AMVN). Malondialdehyde (MDA) formation was measured as an indicator of oxidation; additionally, the loss of GSH was followed. In liposomes without added antioxidant, MDA levels of 119 ± 6 nmol/mg phospholipid were detected after incubation with AMVN for 2 h at 37°C. Considerably lower levels of 57 ± 8 nmol MDA/mg phospholipid were found when the liposomal vesicles had been loaded with GSH. Upon incorporation of β-carotene, lycopene or lutein, the resistance of unilamellar liposomes towards lipid peroxidation was further modified. An optimal further protection was observed with 0.02 nmol β-carotene/mg phospholipid or 0.06 nmol lycopene/mg phospholipid. At higher levels both these carotenoids exhibited prooxidant effects. Lutein inhibited lipid peroxidation in a dose-dependent manner between 0.02 and 2.6 nmol/mg phospholipid. With increasing levels of lycopene and lutein the consumption of encapsulated GSH decreased moderately, and high levels of β-carotene led to a more pronounced loss of GSH.

The data demonstrate that interactions between GSH and carotenoids may improve resistance of biological membranes towards lipid peroxidation. Different carotenoids exhibit specific properties, and the level for optimal protection varies between the carotenoids.  相似文献   

15.
Unilamellar liposomes are used as a simple two-compartment model to study the interaction of antioxidants. The vesicle membrane can be loaded with lipophilic compounds such as carotenoids or tocopherols, and the aqueous core space with hydrophilic substances like glutathione (GSH) or ascorbate, mimicking the interphase between an aqueous compartment of a cell and its surrounding membrane.

Unilamellar liposomes were used to investigate the interaction of GSH with the carotenoids lutein, β-carotene and lycopene in preventing lipid peroxidation. Lipid peroxidation was initiated with 2,2'-azo-bis-[2,4-dimethylvaleronitrile] (AMVN). Malondialdehyde (MDA) formation was measured as an indicator of oxidation; additionally, the loss of GSH was followed. In liposomes without added antioxidant, MDA levels of 119 ± 6 nmol/mg phospholipid were detected after incubation with AMVN for 2 h at 37°C. Considerably lower levels of 57 ± 8 nmol MDA/mg phospholipid were found when the liposomal vesicles had been loaded with GSH. Upon incorporation of β-carotene, lycopene or lutein, the resistance of unilamellar liposomes towards lipid peroxidation was further modified. An optimal further protection was observed with 0.02 nmol β-carotene/mg phospholipid or 0.06 nmol lycopene/mg phospholipid. At higher levels both these carotenoids exhibited prooxidant effects. Lutein inhibited lipid peroxidation in a dose-dependent manner between 0.02 and 2.6 nmol/mg phospholipid. With increasing levels of lycopene and lutein the consumption of encapsulated GSH decreased moderately, and high levels of β-carotene led to a more pronounced loss of GSH.

The data demonstrate that interactions between GSH and carotenoids may improve resistance of biological membranes towards lipid peroxidation. Different carotenoids exhibit specific properties, and the level for optimal protection varies between the carotenoids.  相似文献   

16.
When egg yolk diacylglycerophosphocholine (PC) liposomes were incubated with human oxyhemoglobin, peroxidation of liposomal lipid was induced, as monitored by an increase of thiobarbituric acid (TBA)-reactive substances, an increase of lipid hydroperoxides and the generation of chemiluminescence in the presence of luminol. During the reaction, cytotoxic substance(s), which induced shedding of acetylcholinesterase-enriched vesicles from human erythrocytes, were produced. Formation of TBA-reactive substances and lipid hydroperoxides preceded generation of chemiluminescence, conversion of oxyhemoglobin to methemoglobin and production of the toxic substances. Either superoxide dismutase or catalase could suppress generation of chemiluminescence, but not other events. Methemoglobin or ferrous ion plus ascorbate could induce peroxidation of the liposomes without production of the cytotoxic substance(s). Synthetic PCs containing both saturated and polyunsaturated fatty acyl chains caused the production of cytotoxic products which induced shedding of vesicles from erythrocytes, whereas those containing only polyunsaturated fatty acyl chains did not, suggesting that the molecular species which can produce cytotoxic products may be phospholipids containing both saturated and polyunsaturated fatty acids. The mechanism of oxyhemoglobin-induced peroxidation of lipids will be also discussed.  相似文献   

17.
A new experimental model system constituted by ultraviolet-treated low-density lipoproteins (LDL) has been designed in order to investigate the biological effects of lipid peroxides entering the cell through the endocytotic pathway. This paper reports the chemical modifications of the lipid components and apolipoproteins of the ultraviolet-treated LDL. Human LDL were submitted to short ultraviolet radiations (254 nm, 0.5 mW/cm2, for variable periods of time) and compared to LDL peroxidized by iron. The lipid peroxidation was monitored by following the formation of the peroxidation products (conjugated dienes, thiobarbituric acid-reactive substances (TBARS) and fluorescent lipid-soluble products) and the change of the composition in polyunsaturated fatty acids, carotenes and vitamin E. Several parameters of the apo B-100 structure were investigated: molecular size (by SDS-PAGE) and TNBS-reactive amino groups (chemical determination by trinitrobenzene sulfonic acid). The most important feature was the absence of major modification of apo B-100 in ultraviolet-treated LDL: the molecular weight and the content in TNBS-reactive amino groups of apo B-100 were not modified. In contrast, iron-treated LDL exhibited a loss of the apo B-100 band and a decrease in the number of TNBS-reactive amino group. Both ultraviolet radiations and iron ions induced a significant decrease in the content of polyunsaturated fatty acids, carotenes and vitamin E together with a large formation of lipid peroxidation products. However, the time-course of the formation of conjugated dienes, TBARS and fluorescent lipid-soluble products was quite different using the two oxidative systems. These results demonstrate that ultraviolet radiations induced a strong peroxidation of the lipid content of LDL and no (or only minor) changes in the apolipoprotein moiety whereas iron-catalyzed peroxidation resulted in the formation fo lipid peroxidation products as well as apo B alterations.  相似文献   

18.
Azo compounds enable us to generate peroxyl radicals by thermal decomposition at a constant rate and at a desired site, that is, water-soluble compounds produce initiating radicals in an aqueous phase and lipid-soluble compounds initiate the oxidation within the membrane-lipid layer. Using these radicals generated in different sites, we oxidized red blood cell ghost membranes to study the relationships between alpha-tocopherol depletion, initiation of lipid peroxidation, and protein damage. When radicals were generated in the aqueous phase, the loss of membrane protein thiols was observed concurrently with the consumption of membrane tocopherol and after tocopherol was exhausted the peroxidation of membrane lipids occurred. On the other hand, when radicals were initiated within the lipid region, the oxidation of thiols and the formation of thiobarbituric acid-reactive substances were suppressed to give an induction period until tocopherol fell below a critical level. Our results indicate that the surface thiols of extrinsic proteins may compete with alpha-tocopherol for trapping aqueous radicals and spare tocopherol to some extent, whereas the oxidation of intrinsic buried thiols may commence due to lipid-derived radicals produced after tocopherol was consumed. In conclusion, alpha-tocopherol in the membrane can break the free radical chain efficiently to inhibit the lipid peroxidation. However, the effect of tocopherol on the inhibition of membrane protein damage, exhibited by the loss of thiols and the formation of high-molecular-weight proteins, would be different depending on the site of initial radical generation.  相似文献   

19.
Inactivation of transforming activity of plasmid DNA by lipid peroxidation   总被引:2,自引:0,他引:2  
DNA damage due to NADPH-dependent lipid peroxidation of liposomes was examined using liposomes prepared from lipids, NADPH-cytochrome P-450 reductase and cytochrome P-450 isolated from rat liver microsomes. Plasmid pBR322 DNA was incubated in the reaction mixture for liposomal lipid peroxidation and introduced to Escherichia coli CSR603 (uvrArecA). More of the transforming activity of the DNA was lost as the lipid peroxidation progressed, and this inactivation was dependent on the extent of lipid peroxidation. Single strand breaks occurred in the plasmid DNA. Hydroxyl radical scavengers could not prevent most of the strand breaks or the lipid peroxidation reaction. Chloroform extracts from the reaction mixture of peroxidized microsomes also inactivated the transforming activity of pBR322 DNA but did not cause strand breaks. The 105 000 X g supernatant of the reaction mixture, which contained more than 85% of the thiobarbituric acid-reactive substances, did not inactivate the plasmid DNA. The degradative products of [U-14C]arachidonic acid in the liposomes did not bind to DNA. These results led to the conclusion that at least two types of DNA damaging agent are produced during NADPH-dependent microsomal lipid peroxidation. One induces single strand breaks of DNA and another inactivates the plasmid-transforming activity without inducing strand breaks.  相似文献   

20.
A certain iron chelate, ferric nitrilotriacetate (Fe3+-NTA) is nephrotoxic and also carcinogenic to the kidney in mice and rats, a distinguishing feature not shared by other iron chelates tested so far. Iron-promoted lipid peroxidation is thought to be responsible for the initial events. We examined its ability to initiate lipid peroxidation in vitro in comparison with that of other ferric chelates. Chelation of Fe2+ by nitrilotriacetate (NTA) enhanced the autoxidation of Fe2+. In the presence of Fe2+-NTA, lipid peroxidation occurred as measured by the formation of conjugated diene in detergent-dispersed linoleate micelles, and by the formation of thiobarbituric acid-reactive substances in the liposomes of rat liver microsomal lipids. Addition of ascorbic acid to Fe3+-NTA solution promoted dose-dependent consumption of dissolved oxygen, which indicates temporary reduction of iron. On reduction, Fe3+-NTA initiated lipid peroxidation both in the linoleate micelles and in the liposomes. Fe3+-NTA also initiated NADPH-dependent lipid peroxidation in rat liver microsomes. Although other chelators used (deferoxamine, EDTA, diethylenetriaminepentaacetic acid, ADP) enhanced autoxidation, reduction by ascorbic acid, or in vitro lipid peroxidation of linoleate micelles or liposomal lipids, NTA was the sole chelator that enhanced all the reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号